// test OperatorNode import assert from 'assert' import math from '../../../../src/defaultInstance.js' const Node = math.Node const ConstantNode = math.ConstantNode const SymbolNode = math.SymbolNode const OperatorNode = math.OperatorNode const ConditionalNode = math.ConditionalNode // Set up a bunch of expression pieces that are used over and over: const one = new ConstantNode(1) const two = new ConstantNode(2) const three = new ConstantNode(3) const four = new ConstantNode(4) const five = new ConstantNode(5) const add23 = new OperatorNode('+', 'add', [two, three]) const sub23 = new OperatorNode('-', 'subtract', [two, three]) const asym = new SymbolNode('a') const bsym = new SymbolNode('b') const csym = new SymbolNode('c') const dsym = new SymbolNode('d') const xsym = new SymbolNode('x') const ysym = new SymbolNode('y') describe('OperatorNode', function () { it('should create an OperatorNode', function () { const n = new OperatorNode('op', 'fn', []) assert(n instanceof OperatorNode) assert(n instanceof Node) assert.strictEqual(n.type, 'OperatorNode') }) it('should have isOperatorNode', function () { const node = new OperatorNode('op', 'fn', []) assert(node.isOperatorNode) }) it('should throw an error when calling without new operator', function () { assert.throws( function () { OperatorNode('+', 'add', [two, three]) }, TypeError) }) it('should compile an OperatorNode', function () { assert.strictEqual(add23.compile().evaluate(), 5) }) it('should test whether a unary or binary operator', function () { const n1 = new OperatorNode('-', 'unaryMinus', [two]) assert.strictEqual(n1.isUnary(), true) assert.strictEqual(n1.isBinary(), false) // change the args of an operator node (bad practice, but should keep working correctly) n1.args.push(three) assert.strictEqual(n1.isUnary(), false) assert.strictEqual(n1.isBinary(), true) const n2 = new OperatorNode('+', 'add', [two, three]) assert.strictEqual(n2.isUnary(), false) assert.strictEqual(n2.isBinary(), true) const n3 = new OperatorNode('+', 'add', [two, three, four]) assert.strictEqual(n3.isUnary(), false) assert.strictEqual(n3.isBinary(), false) // change the args of an operator node (bad practice, but should keep working correctly) n3.args.splice(2, 1) assert.strictEqual(n3.isUnary(), false) assert.strictEqual(n3.isBinary(), true) }) it('should throw an error in case of unresolved operator function', function () { const n = new OperatorNode('***', 'foo', [two, three]) assert.throws(function () { n.compile() }, /Function foo missing in provided namespace/) }) it('should filter an OperatorNode', function () { assert.deepStrictEqual(add23.filter(function (node) { return node instanceof OperatorNode }), [add23]) assert.deepStrictEqual(add23.filter(function (node) { return node instanceof SymbolNode }), []) assert.deepStrictEqual(add23.filter(function (node) { return node instanceof ConstantNode }), [two, three]) assert.deepStrictEqual(add23.filter(function (node) { return node instanceof ConstantNode && node.value === 2 }), [two]) assert.deepStrictEqual(add23.filter(function (node) { return node instanceof ConstantNode && node.value === 4 }), []) }) it('should filter an OperatorNode without contents', function () { const n = new OperatorNode('op', 'fn', []) assert.deepStrictEqual(n.filter(function (node) { return node instanceof OperatorNode }), [n]) assert.deepStrictEqual(n.filter(function (node) { return node instanceof SymbolNode }), []) }) it('should run forEach on an OperatorNode', function () { // x^2-x const c = new OperatorNode('^', 'pow', [xsym, two]) const d = new SymbolNode('x') // to make sure it's different from xsym const e = new OperatorNode('-', 'subtract', [c, d]) const nodes = [] const paths = [] e.forEach(function (node, path, parent) { nodes.push(node) paths.push(path) assert.strictEqual(parent, e) }) assert.strictEqual(nodes.length, 2) assert.strictEqual(nodes[0], c) assert.strictEqual(nodes[1], d) assert.deepStrictEqual(paths, ['args[0]', 'args[1]']) }) it('should map an OperatorNode', function () { // x^2-x const c = new OperatorNode('^', 'pow', [xsym, two]) const d = new SymbolNode('x') // to make sure it's different from xsym const e = new OperatorNode('-', 'subtract', [c, d]) const nodes = [] const paths = [] const g = e.map(function (node, path, parent) { nodes.push(node) paths.push(path) assert.strictEqual(parent, e) return node instanceof SymbolNode && node.name === 'x' ? three : node }) assert.strictEqual(nodes.length, 2) assert.strictEqual(nodes[0], c) assert.strictEqual(nodes[1], d) assert.deepStrictEqual(paths, ['args[0]', 'args[1]']) assert.notStrictEqual(g, e) assert.strictEqual(g.args[0], e.args[0]) assert.strictEqual(g.args[0].args[0], xsym) // nested x is not replaced assert.deepStrictEqual(g.args[0].args[1], two) assert.deepStrictEqual(g.args[1], three) }) it('should map an implicit OperatorNode', function () { const product = new OperatorNode('*', 'multiply', [xsym, ysym], true /* implicit */) assert.deepStrictEqual(product.map(function (x) { return x }), product) }) it('should throw an error when the map callback does not return a node', function () { const c = new OperatorNode('^', 'pow', [xsym, two]) assert.throws(function () { c.map(function () { return undefined }) }, /Callback function must return a Node/) }) it('should transform an OperatorNodes parameters', function () { // x^2-x const c = new OperatorNode('^', 'pow', [xsym, two]) const d = new SymbolNode('x') // to make sure it's different from xsym const e = new OperatorNode('-', 'subtract', [c, d]) const g = e.transform(function (node) { return node instanceof SymbolNode && node.name === 'x' ? three : node }) assert.deepStrictEqual(g.args[1], three) }) it('should transform an OperatorNode itself', function () { const c = new OperatorNode('+', 'add', [xsym, two]) const g = c.transform(function (node) { return node instanceof OperatorNode ? three : node }) assert.notStrictEqual(g, c) assert.deepStrictEqual(g, three) }) it('should clone an OperatorNode', function () { const c = new OperatorNode('+', 'add', [xsym, two]) const d = c.clone() assert(d instanceof OperatorNode) assert.deepStrictEqual(d, c) assert.notStrictEqual(d, c) assert.notStrictEqual(d.args, c.args) assert.strictEqual(d.args[0], c.args[0]) assert.strictEqual(d.args[1], c.args[1]) }) it('should clone implicit multiplications', function () { const node = new OperatorNode('*', 'multiply', [two, xsym], true) assert.strictEqual('2 x', node.toString()) assert.strictEqual(true, node.clone().implicit) assert.strictEqual(node.toString(), node.clone().toString()) }) it('test equality another Node', function () { // not using the standard instances to make sure everything is fresh const a = new OperatorNode('+', 'add', [new SymbolNode('x'), new ConstantNode(2)]) const b = new OperatorNode('+', 'add', [new SymbolNode('x'), new ConstantNode(2)]) const c = new OperatorNode('*', 'multiply', [new SymbolNode('x'), new ConstantNode(2)]) const d = new OperatorNode('*', 'add', [new SymbolNode('x'), new ConstantNode(3)]) const e = new OperatorNode('*', 'add', [new SymbolNode('x'), new ConstantNode(2), new ConstantNode(4)]) assert.strictEqual(a.equals(null), false) assert.strictEqual(a.equals(undefined), false) assert.strictEqual(a.equals(b), true) assert.strictEqual(a.equals(c), false) assert.strictEqual(a.equals(d), false) assert.strictEqual(a.equals(e), false) }) // Put a given expression through formatting paces: test its consistency, // and results under toString and toTex, with various options: // example is a object with either a key 'i' for input, or 'n' for Node // (in the former case the value of 'i' is parsed to get the Node to test) // and keys 's' and 'l' for the string and LaTex output, respectively. // If the output is expected to differ for paren values of 'keep' and 'auto', // then the keys 'skeep', 'sauto', 'lkeep', and 'lauto' can be used instead // Takes optional 2nd argument that gives the list of paren values to try, // defaults to ['keep', 'auto'] function ex (example, parens = ['keep', 'auto']) { const hasi = 'i' in example const expr = hasi ? math.parse(example.i) : example.n const orig = hasi ? example.i : `${expr.getIdentifier()}${expr.args.map(arg => arg.getIdentifier())}` for (const paren of parens) { const prefix = `${orig},${paren}: ` // eases reading of failure output const skey = 's' in example ? 's' : 's' + paren const lkey = 'l' in example ? 'l' : 'l' + paren assert.strictEqual( prefix + expr.toString({ parenthesis: paren }), prefix + example[skey]) assert.strictEqual( prefix + expr.toTex({ parenthesis: paren }), prefix + example[lkey]) } } describe('toString and toTex', function () { it('on an OperatorNode', function () { ex({ n: add23, s: '2 + 3', l: '2+3' }) }) it('on an OperatorNode with factorial', function () { ex({ n: new OperatorNode('!', 'factorial', [two]), s: '2!', l: '2!' }) }) it('on an OperatorNode with unary minus', function () { ex({ n: new OperatorNode('-', 'unaryMinus', [two]), s: '-2', l: '-2' }) }) it('on an OperatorNode with zero arguments', function () { ex({ n: new OperatorNode('foo', 'foo', []), s: 'foo()', l: '\\mathrm{foo}\\left(\\right)' }) }) it('on an OperatorNode with more than two operators', function () { ex({ n: new OperatorNode('foo', 'foo', [two, three, four]), s: 'foo(2, 3, 4)', l: '\\mathrm{foo}\\left(2,3,4\\right)' }) }) it('on addition and multiplication with more than two operands', function () { // This is slightly different than most of the tests, so not using `ex` const add = new OperatorNode('+', 'add', [asym, bsym, csym]) const multiply = new OperatorNode('*', 'multiply', [asym, bsym, csym]) const implicitMultiply = new OperatorNode('*', 'multiply', [asym, bsym, csym], true) assert.strictEqual(add.toString(), 'a + b + c') assert.strictEqual(multiply.toString(), 'a * b * c') // The first two verify that implicit: hide is indeed the default assert.strictEqual(implicitMultiply.toString(), 'a b c') assert.strictEqual(implicitMultiply.toString({ implicit: 'hide' }), 'a b c') assert.strictEqual(implicitMultiply.toString({ implicit: 'show' }), 'a * b * c') assert.strictEqual(add.toTex(), ' a+\\mathrm{b}+ c') assert.strictEqual(multiply.toTex(), ' a\\cdot\\mathrm{b}\\cdot c') // The first two verify that implicit: hide is indeed the default assert.strictEqual(implicitMultiply.toTex(), ' a~\\mathrm{b}~ c') assert.strictEqual(implicitMultiply.toTex({ implicit: 'hide' }), ' a~\\mathrm{b}~ c') assert.strictEqual(implicitMultiply.toTex({ implicit: 'show' }), ' a\\cdot\\mathrm{b}\\cdot c') }) it('on addition and multiplication with more than two operands including OperatorNode', function () { const mult = new OperatorNode('*', 'multiply', [asym, bsym]) const add = new OperatorNode('+', 'add', [asym, bsym]) const multipleMultWithMult = new OperatorNode('*', 'multiply', [csym, mult, dsym]) const multipleMultWithAdd = new OperatorNode('*', 'multiply', [csym, add, dsym]) const multipleAddWithMult = new OperatorNode('+', 'add', [csym, mult, dsym]) const multipleAddWithAdd = new OperatorNode('+', 'add', [csym, add, dsym]) ex({ n: multipleMultWithMult, s: 'c * a * b * d', l: ' c\\cdot a\\cdot\\mathrm{b}\\cdot d' }) ex({ n: multipleMultWithAdd, s: 'c * (a + b) * d', l: ' c\\cdot\\left( a+\\mathrm{b}\\right)\\cdot d' }) ex({ n: multipleAddWithMult, s: 'c + a * b + d', l: ' c+ a\\cdot\\mathrm{b}+ d' }) ex({ n: multipleAddWithAdd, s: 'c + a + b + d', l: ' c+ a+\\mathrm{b}+ d' }) }) it('on an OperatorNode that contains an operatornode with more than two operands', function () { const mult = new OperatorNode('*', 'multiply', [asym, bsym, csym]) const add = new OperatorNode('+', 'add', [asym, bsym, csym]) const addWithMult = new OperatorNode('+', 'add', [mult, dsym]) const addWithAdd = new OperatorNode('+', 'add', [add, dsym]) const multWithMult = new OperatorNode('*', 'multiply', [mult, dsym]) const multWithAdd = new OperatorNode('*', 'multiply', [add, dsym]) ex({ n: addWithMult, s: 'a * b * c + d', l: ' a\\cdot\\mathrm{b}\\cdot c+ d' }) ex({ n: addWithAdd, s: 'a + b + c + d', l: ' a+\\mathrm{b}+ c+ d' }) ex({ n: multWithMult, s: 'a * b * c * d', l: ' a\\cdot\\mathrm{b}\\cdot c\\cdot d' }) ex({ n: multWithAdd, s: '(a + b + c) * d', l: '\\left( a+\\mathrm{b}+ c\\right)\\cdot d' }) }) it('on an OperatorNode with nested operator nodes', function () { const sub45 = new OperatorNode('-', 'subtract', [four, five]) const prod1 = new OperatorNode('*', 'multiply', [add23, sub45]) const prod2 = new OperatorNode('*', 'multiply', [add23, four]) const diff1 = new OperatorNode('-', 'subtract', [prod2, five]) ex({ n: sub45, s: '4 - 5', l: '4-5' }) ex({ n: prod1, s: '(2 + 3) * (4 - 5)', l: '\\left(2+3\\right)\\cdot\\left(4-5\\right)' }) ex({ n: diff1, s: '(2 + 3) * 4 - 5', l: '\\left(2+3\\right)\\cdot4-5' }) }) it('on left associative OperatorNodes that are associative with another Node', function () { ex({ i: '(a+b)+c', skeep: '(a + b) + c', sauto: 'a + b + c', lkeep: '\\left( a+\\mathrm{b}\\right)+ c', lauto: ' a+\\mathrm{b}+ c' }) ex({ i: 'a+(b+c)', skeep: 'a + (b + c)', sauto: 'a + b + c', lkeep: ' a+\\left(\\mathrm{b}+ c\\right)', lauto: ' a+\\mathrm{b}+ c' }) ex({ i: '(a+b)-c', skeep: '(a + b) - c', sauto: 'a + b - c', lkeep: '\\left( a+\\mathrm{b}\\right)- c', lauto: ' a+\\mathrm{b}- c' }) ex({ i: 'a+(b-c)', skeep: 'a + (b - c)', sauto: 'a + b - c', lkeep: ' a+\\left(\\mathrm{b}- c\\right)', lauto: ' a+\\mathrm{b}- c' }) ex({ i: '(a*b)*c', skeep: '(a * b) * c', sauto: 'a * b * c', lkeep: '\\left( a\\cdot\\mathrm{b}\\right)\\cdot c', lauto: ' a\\cdot\\mathrm{b}\\cdot c' }) ex({ i: 'a*(b*c)', skeep: 'a * (b * c)', sauto: 'a * b * c', lkeep: ' a\\cdot\\left(\\mathrm{b}\\cdot c\\right)', lauto: ' a\\cdot\\mathrm{b}\\cdot c' }) ex({ i: '(a*b)/c', skeep: '(a * b) / c', sauto: 'a * b / c', lkeep: '\\frac{\\left( a\\cdot\\mathrm{b}\\right)}{ c}', lauto: '\\frac{ a\\cdot\\mathrm{b}}{ c}' }) ex({ i: 'a*(b/c)', skeep: 'a * (b / c)', sauto: 'a * b / c', lkeep: ' a\\cdot\\left(\\frac{\\mathrm{b}}{ c}\\right)', lauto: ' a\\cdot\\frac{\\mathrm{b}}{ c}' }) }) it('on left associative OperatorNodes that are not associative with another Node', function () { ex({ i: '(a-b)-c', skeep: '(a - b) - c', sauto: 'a - b - c', lkeep: '\\left( a-\\mathrm{b}\\right)- c', lauto: ' a-\\mathrm{b}- c' }) ex({ i: 'a-(b-c)', s: 'a - (b - c)', l: ' a-\\left(\\mathrm{b}- c\\right)' }) ex({ i: '(a-b)+c', skeep: '(a - b) + c', sauto: 'a - b + c', lkeep: '\\left( a-\\mathrm{b}\\right)+ c', lauto: ' a-\\mathrm{b}+ c' }) ex({ i: 'a-(b+c)', s: 'a - (b + c)', l: ' a-\\left(\\mathrm{b}+ c\\right)' }) ex({ i: '(a/b)/c', skeep: '(a / b) / c', sauto: 'a / b / c', lkeep: '\\frac{\\left(\\frac{ a}{\\mathrm{b}}\\right)}{ c}', lauto: '\\frac{\\frac{ a}{\\mathrm{b}}}{ c}' }) ex({ i: 'a/(b/c)', s: 'a / (b / c)', lkeep: '\\frac{ a}{\\left(\\frac{\\mathrm{b}}{ c}\\right)}', lauto: '\\frac{ a}{\\frac{\\mathrm{b}}{ c}}' }) ex({ i: '(a/b)*c', skeep: '(a / b) * c', sauto: 'a / b * c', lkeep: '\\left(\\frac{ a}{\\mathrm{b}}\\right)\\cdot c', lauto: '\\frac{ a}{\\mathrm{b}}\\cdot c' }) ex({ i: 'a/(b*c)', s: 'a / (b * c)', lkeep: '\\frac{ a}{\\left(\\mathrm{b}\\cdot c\\right)}', lauto: '\\frac{ a}{\\mathrm{b}\\cdot c}' }) }) it('on right associative OperatorNodes that are not associative with another Node', function () { ex({ i: '(a^b)^c', s: '(a ^ b) ^ c', l: '{\\left({ a}^{\\mathrm{b}}\\right)}^{ c}' }) ex({ i: 'a^(b^c)', skeep: 'a ^ (b ^ c)', sauto: 'a ^ b ^ c', lkeep: '{ a}^{\\left({\\mathrm{b}}^{ c}\\right)}', lauto: '{ a}^{{\\mathrm{b}}^{ c}}' }) }) it('on unary OperatorNodes containing a binary OperatorNode', function () { ex({ i: '(a*b)!', s: '(a * b)!', l: '\\left( a\\cdot\\mathrm{b}\\right)!' }) ex({ i: '-(a*b)', s: '-(a * b)', l: '-\\left( a\\cdot\\mathrm{b}\\right)' }) ex({ i: '-(a+b)', s: '-(a + b)', l: '-\\left( a+\\mathrm{b}\\right)' }) }) it('on unary OperatorNodes containing a unary OperatorNode', function () { ex({ i: '(-a)!', s: '(-a)!', l: '\\left(- a\\right)!' }) ex({ i: '-(a!)', skeep: '-(a!)', sauto: '-a!', lkeep: '-\\left( a!\\right)', lauto: '- a!' }) ex({ i: '-(-a)', s: '-(-a)', l: '-\\left(- a\\right)' }) }) }) it('should stringify an OperatorNode with custom toString', function () { // Also checks if the custom functions get passed on to the children const customFunction = function (node, options) { if (node.type === 'OperatorNode') { return node.op + node.fn + '(' + node.args[0].toString(options) + ', ' + node.args[1].toString(options) + ')' } else if (node.type === 'ConstantNode') { return 'const(' + node.value + ', ' + math.typeOf(node.value) + ')' } } const n2 = new OperatorNode('-', 'subtract', [one, two]) assert.strictEqual(add23.toString({ handler: customFunction }), '+add(const(2, number), const(3, number))') assert.strictEqual(n2.toString({ handler: customFunction }), '-subtract(const(1, number), const(2, number))') }) it('should stringify an OperatorNode with custom toString for a single operator', function () { // Also checks if the custom functions get passed on to the children const customFunction = function (node, options) { if ((node.type === 'OperatorNode') && (node.fn === 'add')) { return node.args[0].toString(options) + node.op + node.fn + node.op + node.args[1].toString(options) } else if (node.type === 'ConstantNode') { return 'const(' + node.value + ', ' + math.typeOf(node.value) + ')' } } assert.strictEqual(add23.toString({ handler: customFunction }), 'const(2, number)+add+const(3, number)') }) it('should respect the \'all\' parenthesis option', function () { ex({ i: '1+1+1', s: '(1 + 1) + 1', l: '\\left(1+1\\right)+1' }, ['all']) }) it('should correctly format fractions in \'all\' parenthesis mode', function () { ex({ i: '1/2/3', s: '(1 / 2) / 3', l: '\\frac{\\left(\\frac{1}{2}\\right)}{3}' }, ['all']) }) it('should format an OperatorNode with factorial of an OperatorNode', function () { const mult23 = new OperatorNode('*', 'multiply', [two, three]) const div23 = new OperatorNode('/', 'divide', [two, three]) const n1 = new OperatorNode('!', 'factorial', [sub23]) const n2 = new OperatorNode('!', 'factorial', [add23]) const n3 = new OperatorNode('!', 'factorial', [mult23]) const n4 = new OperatorNode('!', 'factorial', [div23]) ex({ n: n1, s: '(2 - 3)!', l: '\\left(2-3\\right)!' }) ex({ n: n2, s: '(2 + 3)!', l: '\\left(2+3\\right)!' }) ex({ n: n3, s: '(2 * 3)!', l: '\\left(2\\cdot3\\right)!' }) ex({ n: n4, s: '(2 / 3)!', l: '\\frac{2}{3}!' }) }) it('should format an OperatorNode with unary minus', function () { const n2 = new OperatorNode('-', 'unaryMinus', [sub23]) const n3 = new OperatorNode('-', 'unaryMinus', [add23]) ex({ n: n2, s: '-(2 - 3)', l: '-\\left(2-3\\right)' }) ex({ n: n3, s: '-(2 + 3)', l: '-\\left(2+3\\right)' }) }) it('should format an OperatorNode that subtracts an OperatorNode', function () { const n1 = new OperatorNode('-', 'subtract', [one, sub23]) const n2 = new OperatorNode('-', 'subtract', [one, add23]) ex({ n: n1, s: '1 - (2 - 3)', l: '1-\\left(2-3\\right)' }) ex({ n: n2, s: '1 - (2 + 3)', l: '1-\\left(2+3\\right)' }) }) it('should format fractions with operators that are enclosed in parenthesis', function () { ex({ n: new OperatorNode('/', 'divide', [add23, four]), s: '(2 + 3) / 4', l: '\\frac{2+3}{4}' }) }) it('should have an identifier', function () { assert.strictEqual(add23.getIdentifier(), 'OperatorNode:add') }) it('should LaTeX an OperatorNode with custom toTex', function () { // Also checks if the custom functions get passed on to the children const customFunction = function (node, options) { if (node.type === 'OperatorNode') { return node.op + node.fn + '(' + node.args[0].toTex(options) + ', ' + node.args[1].toTex(options) + ')' } else if (node.type === 'ConstantNode') { return 'const\\left(' + node.value + ', ' + math.typeOf(node.value) + '\\right)' } } assert.strictEqual(add23.toTex({ handler: customFunction }), '+add(const\\left(2, number\\right), const\\left(3, number\\right))') assert.strictEqual(sub23.toTex({ handler: customFunction }), '-subtract(const\\left(2, number\\right), const\\left(3, number\\right))') }) it('should LaTeX an OperatorNode with custom toTex for a single operator', function () { // Also checks if the custom functions get passed on to the children const customFunction = function (node, options) { if ((node.type === 'OperatorNode') && (node.fn === 'add')) { return node.args[0].toTex(options) + node.op + node.fn + node.op + node.args[1].toTex(options) } else if (node.type === 'ConstantNode') { return 'const\\left(' + node.value + ', ' + math.typeOf(node.value) + '\\right)' } } assert.strictEqual(add23.toTex({ handler: customFunction }), 'const\\left(2, number\\right)+add+const\\left(3, number\\right)') }) it('should format powers of fractions with parentheses', function () { const frac = new OperatorNode('/', 'divide', [one, one]) const pow = new OperatorNode('^', 'pow', [frac, one]) ex({ n: pow, s: '(1 / 1) ^ 1', l: '\\left({\\frac{1}{1}}\\right)^{1}' }) }) it('should format powers of conditions with parentheses', function () { const cond = new ConditionalNode(one, one, one) const pow = new OperatorNode('^', 'pow', [cond, one]) ex({ n: pow, s: '(1 ? 1 : 1) ^ 1', l: '\\left({\\begin{cases} {1}, &\\quad{\\text{if }\\;1}\\\\{1}, &\\quad{\\text{otherwise}}\\end{cases}}\\right)^{1}' }) }) it('should format simple expressions in \'auto\' mode', function () { // this covers a bug that was triggered previously ex({ i: '1+(1+1)', skeep: '1 + (1 + 1)', sauto: '1 + 1 + 1', lkeep: '1+\\left(1+1\\right)', lauto: '1+1+1' }) }) // Variant of the `ex` tester that also tests implicit hide and show function exhs (example, parens = ['keep', 'auto']) { const imps = ['hide', 'show'] const hasi = 'i' in example const expr = hasi ? math.parse(example.i) : example.n const orig = hasi ? example.i : `${expr.getIdentifier()}${expr.args.map(arg => arg.getIdentifier())}` for (const paren of parens) { const skey = 's' in example ? 's' : 's' + paren const lkey = 'l' in example ? 'l' : 'l' + paren for (const i of [0, 1]) { const prefix = `${orig},${paren},${imps[i]}: ` // eases reading of failure output assert.strictEqual( prefix + expr.toString({ parenthesis: paren, implicit: imps[i] }), prefix + example[skey][i]) assert.strictEqual( prefix + expr.toTex({ parenthesis: paren, implicit: imps[i] }), prefix + example[lkey][i]) } } } it('should format implicit multiplications', function () { exhs({ i: '4a', s: ['4 a', '4 * a'], l: ['4~ a', '4\\cdot a'] }) exhs({ i: '4 a', s: ['4 a', '4 * a'], l: ['4~ a', '4\\cdot a'] }) exhs({ i: 'a b', s: ['a b', 'a * b'], l: [' a~\\mathrm{b}', ' a\\cdot\\mathrm{b}'] }) exhs({ i: '2a b', s: ['2 a b', '2 * a * b'], l: ['2~ a~\\mathrm{b}', '2\\cdot a\\cdot\\mathrm{b}'] }) exhs({ i: 'a b c', s: ['a b c', 'a * b * c'], l: [' a~\\mathrm{b}~ c', ' a\\cdot\\mathrm{b}\\cdot c'] }) exhs({ i: '(2+3)a', s: ['(2 + 3) a', '(2 + 3) * a'], l: ['\\left(2+3\\right)~ a', '\\left(2+3\\right)\\cdot a'] }) exhs({ i: '(2+3)2', s: ['(2 + 3) 2', '(2 + 3) * 2'], l: ['\\left(2+3\\right)~2', '\\left(2+3\\right)\\cdot2'] }) exhs({ i: '2(3+4)', s: ['2 (3 + 4)', '2 * (3 + 4)'], l: ['2~\\left(3+4\\right)', '2\\cdot\\left(3+4\\right)'] }) exhs({ i: 'a / b c', s: ['a / b c', 'a / (b * c)'], l: ['\\frac{ a}{\\mathrm{b}~ c}', '\\frac{ a}{\\mathrm{b}\\cdot c}'] }) exhs({ i: 'a / b c d', s: ['a / b c d', 'a / (b * c * d)'], l: ['\\frac{ a}{\\mathrm{b}~ c~ d}', '\\frac{ a}{\\mathrm{b}\\cdot c\\cdot d}'] }) exhs({ i: '1/2 a', s: ['1 / 2 a', '1 / 2 * a'], l: ['\\frac{1}{2}~ a', '\\frac{1}{2}\\cdot a'] }) exhs({ i: '-2/3 a', s: ['-2 / 3 a', '-2 / 3 * a'], l: ['\\frac{-2}{3}~ a', '\\frac{-2}{3}\\cdot a'] }) exhs({ i: '2!/3 a', s: ['2! / 3 a', '2! / (3 * a)'], l: ['\\frac{2!}{3~ a}', '\\frac{2!}{3\\cdot a}'] }) exhs({ i: '+2!/3 a', s: ['+2! / 3 a', '+2! / (3 * a)'], l: ['\\frac{+2!}{3~ a}', '\\frac{+2!}{3\\cdot a}'] }) exhs({ i: '2/3! a', s: ['2 / 3! a', '2 / (3! * a)'], l: ['\\frac{2}{3!~ a}', '\\frac{2}{3!\\cdot a}'] }) exhs({ i: '-2!/+3! a', s: ['-2! / +3! a', '-2! / (+3! * a)'], l: ['\\frac{-2!}{+3!~ a}', '\\frac{-2!}{+3!\\cdot a}'] }) exhs({ i: '2/-3 a', s: ['2 / -3 a', '2 / (-3 * a)'], l: ['\\frac{2}{-3~ a}', '\\frac{2}{-3\\cdot a}'] }) exhs({ i: '-(2+3)/3x', s: ['-(2 + 3) / 3 x', '-(2 + 3) / (3 * x)'], l: ['\\frac{-\\left(2+3\\right)}{3~ x}', '\\frac{-\\left(2+3\\right)}{3\\cdot x}'] }) exhs({ i: '-2/(3+4)x', s: ['-2 / (3 + 4) x', '-2 / ((3 + 4) * x)'], l: ['\\frac{-2}{\\left(3+4\\right)~ x}', '\\frac{-2}{\\left(3+4\\right)\\cdot x}'] }) exhs({ i: '(2)/3x', skeep: ['(2) / 3 x', '(2) / (3 * x)'], sauto: ['2 / (3 x)', '2 / (3 * x)'], lkeep: ['\\frac{\\left(2\\right)}{3~ x}', '\\frac{\\left(2\\right)}{3\\cdot x}'], lauto: ['\\frac{2}{3~ x}', '\\frac{2}{3\\cdot x}'] }) exhs({ i: '2/(3)x', skeep: ['2 / (3) x', '2 / ((3) * x)'], sauto: ['2 / (3 x)', '2 / (3 * x)'], lkeep: ['\\frac{2}{\\left(3\\right)~ x}', '\\frac{2}{\\left(3\\right)\\cdot x}'], lauto: ['\\frac{2}{3~ x}', '\\frac{2}{3\\cdot x}'] }) exhs({ i: '(2)/(3)x', skeep: ['(2) / (3) x', '(2) / ((3) * x)'], sauto: ['2 / (3 x)', '2 / (3 * x)'], lkeep: ['\\frac{\\left(2\\right)}{\\left(3\\right)~ x}', '\\frac{\\left(2\\right)}{\\left(3\\right)\\cdot x}'], lauto: ['\\frac{2}{3~ x}', '\\frac{2}{3\\cdot x}'] }) exhs({ i: '(2!)/(3)x', skeep: ['(2!) / (3) x', '(2!) / ((3) * x)'], sauto: ['2! / 3 x', '2! / (3 * x)'], lkeep: ['\\frac{\\left(2!\\right)}{\\left(3\\right)~ x}', '\\frac{\\left(2!\\right)}{\\left(3\\right)\\cdot x}'], lauto: ['\\frac{2!}{3~ x}', '\\frac{2!}{3\\cdot x}'] }) exhs({ i: '(2!)/3x', skeep: ['(2!) / 3 x', '(2!) / (3 * x)'], sauto: ['2! / 3 x', '2! / (3 * x)'], lkeep: ['\\frac{\\left(2!\\right)}{3~ x}', '\\frac{\\left(2!\\right)}{3\\cdot x}'], lauto: ['\\frac{2!}{3~ x}', '\\frac{2!}{3\\cdot x}'] }) }) it('toJSON and fromJSON', function () { // There is no such thing as an implicit add node, really, but // put toJSON really through its paces const node = new OperatorNode('+', 'add', [one, two], true) const json = node.toJSON() assert.deepStrictEqual(json, { mathjs: 'OperatorNode', op: '+', fn: 'add', args: [one, two], implicit: true, isPercentage: false }) const parsed = OperatorNode.fromJSON(json) assert.deepStrictEqual(parsed, node) }) it('should HTML operators', function () { assert.strictEqual(math.parse('2 + 3').toHTML(), '2' + '+' + '3' ) assert.strictEqual(math.parse('not 5').toHTML(), 'not' + '5' ) assert.strictEqual(math.parse('5!').toHTML(), '5' + '!' ) assert.strictEqual(math.parse('5\'').toHTML(), '5' + ''' ) }) it('should HTML an OperatorNode with custom handler for a single operator', function () { // Also checks if the custom functions get passed on to the children const customFunction = function (node, options) { if ((node.type === 'OperatorNode') && (node.fn === 'add')) { return `${node.args[0].toHTML(options)} plus ${node.args[1].toHTML(options)}` } else if (node.type === 'ConstantNode') { return '' + node.value + '' } } assert.strictEqual(add23.toTex({ handler: customFunction }), '2 plus 3') }) it('should format implicit multiplications between ConstantNodes with parentheses', function () { ex({ i: '(3)x', skeep: '(3) x', sauto: '3 x', lkeep: '\\left(3\\right)~ x', lauto: '3~ x' }) ex({ i: '(4)(4)(4)(4)', skeep: '(4) (4) (4) (4)', sauto: '4 (4) (4) (4)', lkeep: '\\left(4\\right)~\\left(4\\right)~\\left(4\\right)~\\left(4\\right)', lauto: '4~\\left(4\\right)~\\left(4\\right)~\\left(4\\right)' }) ex({ i: '4b*4(4)', s: '4 b * 4 (4)', l: '4~\\mathrm{b}\\cdot4~\\left(4\\right)' }) ex({ i: '(4(4(4)))', skeep: '(4 (4 (4)))', sauto: '4 (4 (4))', lkeep: '\\left(4~\\left(4~\\left(4\\right)\\right)\\right)', lauto: '4~\\left(4~\\left(4\\right)\\right)' }) }) it('should stringify implicit multiplications recoverably and to preserve their values', function () { const m1 = new OperatorNode('-', 'unaryMinus', [one]) const m2 = new OperatorNode('-', 'unaryMinus', [two]) const p1 = new OperatorNode('+', 'unaryPlus', [one]) const p2 = new OperatorNode('+', 'unaryPlus', [two]) const onetwo = new OperatorNode('/', 'divide', [one, two]) const m1two = new OperatorNode('/', 'divide', [m1, two]) const p1two = new OperatorNode('/', 'divide', [p1, two]) const onem2 = new OperatorNode('/', 'divide', [one, m2]) const onep2 = new OperatorNode('/', 'divide', [one, p2]) const onePlus2 = new OperatorNode('+', 'add', [one, two]) const onePlusm2 = new OperatorNode('+', 'add', [one, m2]) const onePlus2over2 = new OperatorNode('/', 'divide', [ new OperatorNode('+', 'add', [one, two]), two]) const twoOver1plus2 = new OperatorNode('/', 'divide', [ two, new OperatorNode('+', 'add', [one, two])]) const avar = new SymbolNode('a') const ascope = { a: 2 } const cs = [ onetwo, m1two, p1two, onem2, onep2, onePlus2, onePlusm2, onePlus2over2, twoOver1plus2] for (const paren of ['auto', 'keep']) { for (const coeff of cs) { let expr = new math.OperatorNode('*', 'multiply', [coeff, avar], true) let estring = expr.toString({ parenthesis: paren, implicit: 'hide' }) const rexpr = math.parse(estring) const rstring = rexpr.toString({ parenthesis: 'all' }) // Make sure parsing the string version gives back the same grouping as the // original: assert.strictEqual(rstring, expr.toString({ parenthesis: 'all' })) // And make sure that it produces the same value assert.strictEqual(rexpr.evaluate(ascope), expr.evaluate(ascope)) // And make sure that's the same value you get with a constant in the expression expr = new math.OperatorNode('*', 'multiply', [coeff, two], true) estring = expr.toString({ parenthesis: paren, implicit: 'hide' }) assert.strictEqual(math.evaluate(estring, {}), expr.evaluate(ascope)) } } }) it('should HTML implicit multiplications between ConstantNodes with parentheses', function () { const z = math.parse('(3)x') const a = math.parse('(4)(4)(4)(4)') const b = math.parse('4b*4(4)') const c = math.parse('(4(4(4)))') assert.strictEqual(z.toHTML({ implicit: 'hide', parenthesis: 'auto' }), '3x') assert.strictEqual(a.toHTML({ implicit: 'hide', parenthesis: 'auto' }), '4(4)(4)(4)') assert.strictEqual(b.toHTML({ implicit: 'hide', parenthesis: 'auto' }), '4b*4(4)') assert.strictEqual(c.toHTML({ implicit: 'hide', parenthesis: 'auto' }), '4(4(4))') }) })