cs_chol()

This commit is contained in:
rjbaucells 2015-04-24 00:07:06 -04:00
parent 4197743500
commit cbf5df0f70
4 changed files with 364 additions and 0 deletions

View File

@ -0,0 +1,157 @@
'use strict';
function factory (type, config, load) {
var divideScalar = load(require('../../arithmetic/divideScalar'));
var sqrt = load(require('../../arithmetic/sqrt'));
var subtract = load(require('../../arithmetic/subtract'));
var multiply = load(require('../../arithmetic/multiply'));
var im = load(require('../../complex/im'));
var re = load(require('../../complex/re'));
var conj = load(require('../../complex/conj'));
var equal = load(require('../../relational/equal'));
var smallerEq = load(require('../../relational/smallerEq'));
var sparse_symperm = load(require('./sparse_symperm'));
var sparse_ereach = load(require('./sparse_ereach'));
var CcsMatrix = type.CcsMatrix;
/**
* Computes the Cholesky factorization of matrix A. It computes L and P so
* L * L' = P * A * P'
*
* @param {Matrix} m The A Matrix to factorize, only upper triangular part used
* @param {Object} s The symbolic analysis from sparse_schol()
*
* @return {Number} The numeric Cholesky factorization of A or null
*
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
*/
var sparse_chol = function (m, s) {
// validate input
if (!m)
return null;
// m arrays
var size = m._size;
// columns
var n = size[1];
// symbolic analysis result
var parent = s.parent;
var cp = s.cp;
var pinv = s.pinv;
// nonzero elements (estimate)
var lnz = cp[n];
// L arrays
var lvalues = new Array(lnz);
var lindex = new Array(lnz);
var lptr = new Array(n + 1);
// L
var L = new CcsMatrix({
values: lvalues,
index: lindex,
ptr: lptr,
size:[n, n]
});
// vars
var c = new Array(2 * n);
var x = new Array(n);
// compute C = P * A * P'
var cm = pinv ? sparse_symperm (m, pinv, 1) : m;
// C matrix arrays
var cvalues = cm._values;
var cindex = cm._index;
var cptr = cm._ptr;
// vars
var k, p;
// initialize variables
for (k = 0; k < n; k++)
lptr[k] = c[k] = cp[k];
// compute L(k,:) for L*L' = C
for (k = 0; k < n; k++) {
// nonzero pattern of L(k,:)
var top = sparse_ereach(cm, k, parent, c);
// x (0:k) is now zero
x[k] = 0;
// x = full(triu(C(:,k)))
for (p = cptr[k]; p < cptr[k+1]; p++) {
if (cindex[p] <= k)
x[cindex[p]] = cvalues[p];
}
// d = C(k,k)
var d = x[k];
// clear x for k+1st iteration
x[k] = 0;
// solve L(0:k-1,0:k-1) * x = C(:,k)
for (; top < n; top++) {
// s[top..n-1] is pattern of L(k,:)
var i = s[top];
// L(k,i) = x (i) / L(i,i)
var lki = divideScalar(x[i], lvalues[lptr[i]]);
// clear x for k+1st iteration
x[i] = 0;
for (p = lptr[i] + 1; p < c[i]; p++) {
// row
var r = lindex[p];
// update x[r]
x[r] = subtract(x[r], multiply(lvalues[p], lki));
}
// d = d - L(k,i)*L(k,i)
d = subtract(d, multiply(lki, conj(lki)));
p = c[i]++;
// store L(k,i) in column i
lindex[p] = k;
lvalues[p] = conj(lki);
}
// compute L(k,k)
if (smallerEq(re(d), 0) || !equal(im(d), 0)) {
// not pos def
return null;
}
p = c[k]++;
// store L(k,k) = sqrt(d) in column k
lindex[p] = k;
lvalues[p] = sqrt(d);
}
// finalize L
lptr[n] = cp[n];
// P matrix
var P;
// check we need to calculate P
if (pinv) {
// P arrays
var pvalues = [];
var pindex = [];
var pptr = new Array(n + 1);
// create P matrix
for (p = 0; p < n; p++) {
// initialize ptr (one value per column)
pptr[p] = p;
// index (apply permutation vector)
pindex.push(pinv[p]);
// value 1
pvalues.push(1);
}
// update ptr
pptr[n] = n;
// P
P = new CcsMatrix({
values: pvalues,
index: pindex,
ptr: pptr,
size: [n, n]
});
}
// return L & P
return {
L: L,
P: P
};
};
return sparse_chol;
}
exports.name = 'sparse_chol';
exports.path = 'sparse';
exports.factory = factory;

View File

@ -0,0 +1,38 @@
'use strict';
function factory () {
/**
* It sets the p[i] equal to the sum of c[0] through c[i-1].
*
* @param {Array} ptr The CCS matrix ptr array
* @param {Array} c The CCS matrix ptr array
* @param {Number} n The number of columns
*
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
*/
var sparse_cumsum = function (ptr, c, n) {
// variables
var i;
var nz = 0;
for (i = 0; i < n; i++) {
// initialize ptr @ i
ptr[i] = nz;
// increment number of nonzeros
nz += c[i];
// also copy p[0..n-1] back into c[0..n-1]
c[i] = ptr[i];
}
// finalize ptr
ptr[n] = nz;
// return sum (c [0..n-1])
return nz;
};
return sparse_cumsum;
}
exports.name = 'sparse_cumsum';
exports.path = 'sparse';
exports.factory = factory;

View File

@ -0,0 +1,72 @@
'use strict';
function factory (type, config, load) {
var sparse_marked = load(require('./sparse_marked'));
var sparse_mark = load(require('./sparse_mark'));
/**
* Find nonzero pattern of Cholesky L(k,1:k-1) using etree and triu(A(:,k))
*
* @param {Matrix} a The A matrix
* @param {Number} k The kth column in A
* @param {Array} parent The parent vector from the symbolic analysis result
* @param {Array} w The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
* The first n entries is the nonzero pattern, the last n entries is the stack
*
* @return {Number} The index for the nonzero pattern
*
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
*/
var sparse_ereach = function (a, k, parent, w) {
// a arrays
var aindex = a._index;
var aptr = a._ptr;
var asize = a._size;
// columns
var n = asize[1];
// initialize top
var top = n;
// vars
var p, p0, p1, len;
// mark node k as visited
sparse_mark(w, k);
// loop values & index for column k
for (p0 = aptr[k], p1 = aptr[k + 1], p = p0; p < p1; p++) {
// A(i,k) is nonzero
var i = aindex[p];
// only use upper triangular part of A
if (i > k)
continue;
// traverse up etree
for (len = 0; !sparse_marked(w, i); i = parent[i]) {
// L(k,i) is nonzero, last n entries in w
w[n + len++] = i;
// mark i as visited
sparse_mark(w, i);
}
while (len > 0) {
// decrement top & len
--top;
--len;
// push path onto stack, last n entries in w
w[n + top] = w[n + len];
}
}
// unmark all nodes
for (p = top; p < n; p++) {
// use stack value, last n entries in w
sparse_mark(w, w[n + p]);
}
// unmark node k
sparse_mark(w, k);
// s[top..n-1] contains pattern of L(k,:)
return top;
};
return sparse_ereach;
}
exports.name = 'sparse_ereach';
exports.path = 'sparse';
exports.factory = factory;

View File

@ -0,0 +1,97 @@
'use strict';
function factory (type, config, load) {
var sparse_cumsum = load(require('./sparse_cumsum'));
var conj = load(require('../../complex/conj'));
var CcsMatrix = type.CcsMatrix;
/**
* Computes the symmetric permutation of matrix A accessing only
* the upper triangular part of A.
*
* C = P * A * P'
*
* @param {Matrix} a The A matrix
* @param {Array} pinv The inverse of permutation vector
* @param {boolean} values Process matrix values (true)
*
* @return {Matrix} The C matrix, C = P * A * P'
*
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
*/
var sparse_symperm = function (a, pinv, values) {
// A matrix arrays
var avalues = a._values;
var aindex = a._index;
var aptr = a._ptr;
var asize = a._size;
// columns
var n = asize[1];
// number of nonzero elements in C
var nz = aptr[n];
// C matrix arrays
var cvalues = values && avalues ? new Array(nz) : null;
var cindex = new Array(nz);
var cptr = new Array(n + 1);
// variables
var i, i2, j, j2, p, p0, p1;
// create workspace vector
var w = new Array(n);
// count entries in each column of C
for (j = 0; j < n; j++) {
// column j of A is column j2 of C
j2 = pinv ? pinv[j] : j;
// loop values in column j
for (p0 = aptr[j], p1 = aptr[j + 1], p = p0; p < p1; p++) {
// row
i = aindex[p];
// skip lower triangular part of A
if (i > j)
continue;
// row i of A is row i2 of C
i2 = pinv ? pinv[i] : i;
// column count of C
w[Math.max(i2, j2)]++;
}
}
// compute column pointers of C
sparse_cumsum(cptr, w, n);
// loop columns
for (j = 0; j < n; j++) {
// column j of A is column j2 of C
j2 = pinv ? pinv[j] : j;
// loop values in column j
for (p0 = aptr[j], p1 = aptr[j + 1], p = p0; p < p1; p++) {
// row
i = aindex[p];
// skip lower triangular part of A
if (i > j)
continue;
// row i of A is row i2 of C
i2 = pinv ? pinv[i] : i;
// C index for column j2
var q = w[Math.max(i2, j2)]++;
// update C index for entry q
cindex[q] = Math.min(i2, j2);
// check we need to process values
if (cvalues)
cvalues[q] = (i2 <= j2) ? avalues[p] : conj(avalues[p]);
}
}
// return C matrix
return new CcsMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [n, n]
});
};
return sparse_symperm;
}
exports.name = 'sparse_symperm';
exports.path = 'sparse';
exports.factory = factory;