Removed broken (redundant) unit test

This commit is contained in:
jos 2015-05-22 21:15:08 +02:00
parent 3e6445a6d0
commit c19befd7c2

View File

@ -86,49 +86,6 @@ describe('import', function() {
});
it('should extend math with numbers', function() {
// extend math.js with numbers.js
// examples copied from https://github.com/sjkaliski/numbers.js/blob/master/examples/statistic.js
math.import(require('numbers'), {wrap: true, silent: true});
assert.equal(math.fibonacci(7), 13);
// Consider a data representing total follower count of a
// variety of users.
var followers = math.matrix([100, 50, 1000, 39, 283, 634, 3, 6123]);
// We can generate a report of summary statistics
// which includes the mean, 1st and 3rd quartiles,
// and standard deviation.
var report = math.report(followers);
approx.deepEqual(report, {
mean: 1029,
firstQuartile: 44.5,
median: 191.5,
thirdQuartile: 817,
standardDev: 1953.0897316815733
});
// Maybe we decide to become a bit more curious about
// trends in follower count, so we start conjecturing about
// our ability to "predict" trends.
// Let's consider the number of tweets those users have.
var tweets = math.matrix([100, 10, 400, 5, 123, 24, 302, 2000]);
// Let's calculate the correlation.
var correlation = math.correlation(tweets, followers);
approx.equal(correlation, 0.98054753183666);
// Now let's create a linear regression.
var linReg = math.linearRegression(tweets, followers);
// linReg is actually a function we can use to map tweets
// onto followers. We'll see that around 1422 followers
// are expected if a user tweets 500 times.
var estFollowers = linReg(500);
approx.equal(estFollowers, 1422.431464053916);
});
it('should throw an error in case of wrong number of arguments', function () {
assert.throws (function () {math.import()}, /ArgumentsError/);
assert.throws (function () {math.import('', {}, 3)}, /ArgumentsError/);