mirror of
https://github.com/josdejong/mathjs.git
synced 2026-01-25 15:07:57 +00:00
added correlation function to statistics (#3015)
* added correlation function to statistics * added implemenation for signature Matrix, Matrix and support for BigNumbers * reverted changes to default for version numbers of devDepenencies * reverted changes to default for version numbers of devDepenencies in package-lock.json * change variable name from xArray, yArray to x and y * added Matrix as param in index.d.ts * corrected the file and function names for correlation function * renamed createCorrelation to createCorr in factoriesNumber.js * fixed failing test case for matrix and added params and return in corr
This commit is contained in:
parent
2a3c99de7a
commit
1ee8733832
1
AUTHORS
1
AUTHORS
@ -231,5 +231,6 @@ MaybePixem <47889538+MaybePixem@users.noreply.github.com>
|
||||
Aly Khaled <alykhaled2001@live.com>
|
||||
BuildTools <anikpatel1322@gmail.com>
|
||||
Anik Patel <74193405+Bobingstern@users.noreply.github.com>
|
||||
vrushaket <vrushu00@gmail.com>
|
||||
|
||||
# Generated by tools/update-authors.js
|
||||
|
||||
@ -197,6 +197,7 @@ import { stdDocs } from './function/statistics/std.js'
|
||||
import { cumSumDocs } from './function/statistics/cumsum.js'
|
||||
import { sumDocs } from './function/statistics/sum.js'
|
||||
import { varianceDocs } from './function/statistics/variance.js'
|
||||
import { corrDocs } from './function/statistics/corr.js'
|
||||
import { acosDocs } from './function/trigonometry/acos.js'
|
||||
import { acoshDocs } from './function/trigonometry/acosh.js'
|
||||
import { acotDocs } from './function/trigonometry/acot.js'
|
||||
@ -543,6 +544,7 @@ export const embeddedDocs = {
|
||||
std: stdDocs,
|
||||
sum: sumDocs,
|
||||
variance: varianceDocs,
|
||||
corr: corrDocs,
|
||||
|
||||
// functions - trigonometry
|
||||
acos: acosDocs,
|
||||
|
||||
22
src/expression/embeddedDocs/function/statistics/corr.js
Normal file
22
src/expression/embeddedDocs/function/statistics/corr.js
Normal file
@ -0,0 +1,22 @@
|
||||
export const corrDocs = {
|
||||
name: 'corr',
|
||||
category: 'Statistics',
|
||||
syntax: [
|
||||
'corr(A,B)'
|
||||
],
|
||||
description: 'Compute the correlation coefficient of a two list with values, For matrices, the matrix correlation coefficient is calculated.',
|
||||
examples: [
|
||||
'corr([2, 4, 6, 8],[1, 2, 3, 6])',
|
||||
'corr(matrix([[1, 2.2, 3, 4.8, 5], [1, 2, 3, 4, 5]]), matrix([[4, 5.3, 6.6, 7, 8], [1, 2, 3, 4, 5]]))'
|
||||
],
|
||||
seealso: [
|
||||
'max',
|
||||
'mean',
|
||||
'min',
|
||||
'median',
|
||||
'min',
|
||||
'prod',
|
||||
'std',
|
||||
'sum'
|
||||
]
|
||||
}
|
||||
@ -237,6 +237,7 @@ export { createMad } from './function/statistics/mad.js'
|
||||
export { createVariance } from './function/statistics/variance.js'
|
||||
export { createQuantileSeq } from './function/statistics/quantileSeq.js'
|
||||
export { createStd } from './function/statistics/std.js'
|
||||
export { createCorr } from './function/statistics/corr.js'
|
||||
export { createCombinations } from './function/probability/combinations.js'
|
||||
export { createCombinationsWithRep } from './function/probability/combinationsWithRep.js'
|
||||
export { createGamma } from './function/probability/gamma.js'
|
||||
|
||||
@ -263,6 +263,7 @@ export { createMad } from './function/statistics/mad.js'
|
||||
export { createVariance } from './function/statistics/variance.js'
|
||||
export { createQuantileSeq } from './function/statistics/quantileSeq.js'
|
||||
export { createStd } from './function/statistics/std.js'
|
||||
export { createCorr } from './function/statistics/corr.js'
|
||||
|
||||
// string
|
||||
export { createFormat } from './function/string/format.js'
|
||||
|
||||
64
src/function/statistics/corr.js
Normal file
64
src/function/statistics/corr.js
Normal file
@ -0,0 +1,64 @@
|
||||
import { factory } from '../../utils/factory.js'
|
||||
const name = 'corr'
|
||||
const dependencies = ['typed', 'matrix', 'mean', 'sqrt', 'sum', 'add', 'subtract', 'multiply', 'pow', 'divide']
|
||||
|
||||
export const createCorr = /* #__PURE__ */ factory(name, dependencies, ({ typed, matrix, sqrt, sum, add, subtract, multiply, pow, divide }) => {
|
||||
/**
|
||||
* Compute the correlation coefficient of a two list with values, For matrices, the matrix correlation coefficient is calculated.
|
||||
*
|
||||
* Syntax:
|
||||
*
|
||||
* math.corr(A, B)
|
||||
*
|
||||
* Examples:
|
||||
*
|
||||
* math.corr([1, 2, 3, 4, 5], [4, 5, 6, 7, 8]) // returns 1
|
||||
* math.corr([1, 2.2, 3, 4.8, 5], [4, 5.3, 6.6, 7, 8]) // returns 0.9569941688503644
|
||||
* math.corr(math.matrix([[1, 2.2, 3, 4.8, 5], [1, 2, 3, 4, 5]]), math.matrix([[4, 5.3, 6.6, 7, 8], [1, 2, 3, 4, 5]])) // returns DenseMatrix [0.9569941688503644, 1]
|
||||
*
|
||||
* See also:
|
||||
*
|
||||
* median, mean, min, max, sum, prod, std, variance
|
||||
*
|
||||
* @param {Array | Matrix} A The first array or matrix to compute correlation coefficient
|
||||
* @param {Array | Matrix} B The second array or matrix to compute correlation coefficient
|
||||
* @return {*} The correlation coefficient
|
||||
*/
|
||||
return typed(name, {
|
||||
'Array, Array': function (A, B) {
|
||||
return _corr(A, B)
|
||||
},
|
||||
'Matrix, Matrix': function (xMatrix, yMatrix) {
|
||||
return matrix(_corr(xMatrix.toArray(), yMatrix.toArray()))
|
||||
}
|
||||
})
|
||||
/**
|
||||
* Calculate the correlation coefficient between two arrays or matrices.
|
||||
* @param {Array | Matrix} A
|
||||
* @param {Array | Matrix} B
|
||||
* @return {*} correlation coefficient
|
||||
* @private
|
||||
*/
|
||||
function _corr (A, B) {
|
||||
if (Array.isArray(A[0]) && Array.isArray(B[0])) {
|
||||
const correlations = []
|
||||
for (let i = 0; i < A.length; i++) {
|
||||
correlations.push(correlation(A[i], B[i]))
|
||||
}
|
||||
return correlations
|
||||
} else {
|
||||
return correlation(A, B)
|
||||
}
|
||||
}
|
||||
function correlation (A, B) {
|
||||
const n = A.length
|
||||
const sumX = sum(A)
|
||||
const sumY = sum(B)
|
||||
const sumXY = A.reduce((acc, x, index) => add(acc, multiply(x, B[index])), 0)
|
||||
const sumXSquare = sum(A.map(x => pow(x, 2)))
|
||||
const sumYSquare = sum(B.map(y => pow(y, 2)))
|
||||
const numerator = subtract(multiply(n, sumXY), multiply(sumX, sumY))
|
||||
const denominator = sqrt(multiply(subtract(multiply(n, sumXSquare), pow(sumX, 2)), subtract(multiply(n, sumYSquare), pow(sumY, 2))))
|
||||
return divide(numerator, denominator)
|
||||
}
|
||||
})
|
||||
21
test/unit-tests/function/statistics/corr.test.js
Normal file
21
test/unit-tests/function/statistics/corr.test.js
Normal file
@ -0,0 +1,21 @@
|
||||
import assert from 'assert'
|
||||
import math from '../../../../src/defaultInstance.js'
|
||||
const corr = math.corr
|
||||
const BigNumber = math.BigNumber
|
||||
|
||||
describe('correlation', function () {
|
||||
it('should return the correlation coefficient from an array', function () {
|
||||
assert.strictEqual(corr([new BigNumber(1), new BigNumber(2.2), new BigNumber(3), new BigNumber(4.8), new BigNumber(5)], [new BigNumber(4), new BigNumber(5.3), new BigNumber(6.6), new BigNumber(7), new BigNumber(8)]).toNumber(), 0.9569941688503653)
|
||||
assert.strictEqual(corr([1, 2, 3, 4, 5], [4, 5, 6, 7, 8]), 1)
|
||||
assert.strictEqual(corr([1, 2.2, 3, 4.8, 5], [4, 5.3, 6.6, 7, 8]), 0.9569941688503644)
|
||||
assert.deepStrictEqual(corr(math.matrix([[1, 2.2, 3, 4.8, 5], [1, 2, 3, 4, 5]]), math.matrix([[4, 5.3, 6.6, 7, 8], [1, 2, 3, 4, 5]]))._data, [0.9569941688503644, 1])
|
||||
})
|
||||
|
||||
it('should throw an error if called with invalid number of arguments', function () {
|
||||
assert.throws(function () { corr() })
|
||||
})
|
||||
|
||||
it('should throw an error if called with an empty array', function () {
|
||||
assert.throws(function () { corr([]) })
|
||||
})
|
||||
})
|
||||
8
types/index.d.ts
vendored
8
types/index.d.ts
vendored
@ -2970,6 +2970,14 @@ declare namespace math {
|
||||
normalization: 'unbiased' | 'uncorrected' | 'biased'
|
||||
): MathNumericType
|
||||
|
||||
/**
|
||||
* Calculate the correlation coefficient between two matrix.
|
||||
* @param {Array | Matrix} x The first array or matrix to compute correlation coefficient
|
||||
* @param {Array | Matrix} y The second array or matrix to compute correlation coefficient
|
||||
* @returns correlation coefficient
|
||||
*/
|
||||
corr(x: MathCollection, y: MathCollection): MathType
|
||||
|
||||
/*************************************************************************
|
||||
* String functions
|
||||
************************************************************************/
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user