mapnik/include/mapnik/marker_helpers.hpp
2014-09-06 22:44:57 -07:00

500 lines
20 KiB
C++

/*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
* Copyright (C) 2012 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
#ifndef MAPNIK_MARKER_HELPERS_HPP
#define MAPNIK_MARKER_HELPERS_HPP
#include <mapnik/color.hpp>
#include <mapnik/feature.hpp>
#include <mapnik/geometry.hpp>
#include <mapnik/geom_util.hpp>
#include <mapnik/symbolizer.hpp>
#include <mapnik/expression_node.hpp>
#include <mapnik/expression_evaluator.hpp>
#include <mapnik/svg/svg_path_attributes.hpp>
#include <mapnik/svg/svg_converter.hpp>
#include <mapnik/marker.hpp> // for svg_storage_type
#include <mapnik/markers_placement.hpp>
#include <mapnik/attribute.hpp>
#include <mapnik/box2d.hpp>
#include <mapnik/vertex_converters.hpp>
#include <mapnik/label_collision_detector.hpp>
// agg
#include "agg_ellipse.h"
#include "agg_color_rgba.h"
#include "agg_renderer_base.h"
#include "agg_renderer_scanline.h"
#include "agg_rendering_buffer.h"
#include "agg_scanline_u.h"
#include "agg_image_filters.h"
#include "agg_trans_affine.h"
#include "agg_span_allocator.h"
#include "agg_image_accessors.h"
#include "agg_pixfmt_rgba.h"
#include "agg_span_image_filter_rgba.h"
#include "agg_span_interpolator_linear.h"
// boost
#include <boost/optional.hpp>
// stl
#include <memory>
#include <type_traits> // remove_reference
namespace mapnik {
struct clip_poly_tag;
template <typename SvgRenderer, typename Detector, typename RendererContext>
struct vector_markers_rasterizer_dispatch : mapnik::noncopyable
{
using renderer_base = typename SvgRenderer::renderer_base ;
using vertex_source_type = typename SvgRenderer::vertex_source_type ;
using attribute_source_type = typename SvgRenderer::attribute_source_type;
using pixfmt_type = typename renderer_base::pixfmt_type ;
using BufferType = typename std::tuple_element<0,RendererContext>::type;
using RasterizerType = typename std::tuple_element<1,RendererContext>::type;
vector_markers_rasterizer_dispatch(vertex_source_type & path,
attribute_source_type const& attrs,
box2d<double> const& bbox,
agg::trans_affine const& marker_trans,
markers_symbolizer const& sym,
Detector & detector,
double scale_factor,
feature_impl & feature,
attributes const& vars,
bool snap_to_pixels,
RendererContext const& renderer_context)
: buf_(std::get<0>(renderer_context)),
pixf_(buf_),
renb_(pixf_),
svg_renderer_(path, attrs),
ras_(std::get<1>(renderer_context)),
bbox_(bbox),
marker_trans_(marker_trans),
sym_(sym),
detector_(detector),
feature_(feature),
vars_(vars),
scale_factor_(scale_factor),
snap_to_pixels_(snap_to_pixels)
{
pixf_.comp_op(static_cast<agg::comp_op_e>(get<composite_mode_e>(sym, keys::comp_op, feature_, vars_, src_over)));
}
template <typename T>
void add_path(T & path)
{
agg::scanline_u8 sl_;
marker_placement_enum placement_method = get<marker_placement_enum>(sym_, keys::markers_placement_type, feature_, vars_, MARKER_POINT_PLACEMENT);
bool ignore_placement = get<bool>(sym_, keys::ignore_placement, feature_, vars_, false);
bool allow_overlap = get<bool>(sym_, keys::allow_overlap, feature_, vars_, false);
bool avoid_edges = get<bool>(sym_, keys::avoid_edges, feature_, vars_, false);
double opacity = get<double>(sym_,keys::opacity, feature_, vars_, 1.0);
double spacing = get<double>(sym_, keys::spacing, feature_, vars_, 100.0);
double max_error = get<double>(sym_, keys::max_error, feature_, vars_, 0.2);
coord2d center = bbox_.center();
agg::trans_affine_translation recenter(-center.x, -center.y);
agg::trans_affine tr = recenter * marker_trans_;
markers_placement_params params { bbox_, tr, spacing * scale_factor_, max_error, allow_overlap, avoid_edges };
markers_placement_finder<T, Detector> placement_finder(
placement_method, path, detector_, params);
double x, y, angle = .0;
while (placement_finder.get_point(x, y, angle, ignore_placement))
{
agg::trans_affine matrix = tr;
matrix.rotate(angle);
matrix.translate(x, y);
if (snap_to_pixels_)
{
// https://github.com/mapnik/mapnik/issues/1316
matrix.tx = std::floor(matrix.tx + .5);
matrix.ty = std::floor(matrix.ty + .5);
}
svg_renderer_.render(ras_, sl_, renb_, matrix, opacity, bbox_);
}
}
private:
BufferType & buf_;
pixfmt_type pixf_;
renderer_base renb_;
SvgRenderer svg_renderer_;
RasterizerType & ras_;
box2d<double> const& bbox_;
agg::trans_affine const& marker_trans_;
markers_symbolizer const& sym_;
Detector & detector_;
feature_impl & feature_;
attributes const& vars_;
double scale_factor_;
bool snap_to_pixels_;
};
template <typename Detector,typename RendererContext>
struct raster_markers_rasterizer_dispatch : mapnik::noncopyable
{
using BufferType = typename std::remove_reference<typename std::tuple_element<0,RendererContext>::type>::type;
using RasterizerType = typename std::tuple_element<1,RendererContext>::type;
using color_type = agg::rgba8;
using order_type = agg::order_rgba;
using pixel_type = agg::pixel32_type;
using blender_type = agg::comp_op_adaptor_rgba_pre<color_type, order_type>; // comp blender
using pixfmt_comp_type = agg::pixfmt_custom_blend_rgba<blender_type, BufferType>;
using renderer_base = agg::renderer_base<pixfmt_comp_type>;
raster_markers_rasterizer_dispatch(image_data_32 const& src,
agg::trans_affine const& marker_trans,
markers_symbolizer const& sym,
Detector & detector,
double scale_factor,
feature_impl & feature,
attributes const& vars,
RendererContext const& renderer_context,
bool snap_to_pixels = false)
: buf_(std::get<0>(renderer_context)),
pixf_(buf_),
renb_(pixf_),
ras_(std::get<1>(renderer_context)),
src_(src),
marker_trans_(marker_trans),
sym_(sym),
detector_(detector),
feature_(feature),
vars_(vars),
scale_factor_(scale_factor),
snap_to_pixels_(snap_to_pixels)
{
pixf_.comp_op(static_cast<agg::comp_op_e>(get<composite_mode_e>(sym, keys::comp_op, feature_, vars_, src_over)));
}
template <typename T>
void add_path(T & path)
{
marker_placement_enum placement_method = get<marker_placement_enum>(sym_, keys::markers_placement_type, feature_, vars_, MARKER_POINT_PLACEMENT);
bool allow_overlap = get<bool>(sym_, keys::allow_overlap, feature_, vars_, false);
bool avoid_edges = get<bool>(sym_, keys::avoid_edges, feature_, vars_, false);
box2d<double> bbox_(0,0, src_.width(),src_.height());
double opacity = get<double>(sym_, keys::opacity, feature_, vars_, 1.0);
bool ignore_placement = get<bool>(sym_, keys::ignore_placement, feature_, vars_, false);
double spacing = get<double>(sym_, keys::spacing, feature_, vars_, 100.0);
double max_error = get<double>(sym_, keys::max_error, feature_, vars_, 0.2);
markers_placement_params params { bbox_, marker_trans_, spacing * scale_factor_, max_error, allow_overlap, avoid_edges };
markers_placement_finder<T, label_collision_detector4> placement_finder(
placement_method, path, detector_, params);
double x, y, angle = .0;
while (placement_finder.get_point(x, y, angle, ignore_placement))
{
agg::trans_affine matrix = marker_trans_;
matrix.rotate(angle);
matrix.translate(x, y);
render_raster_marker(matrix, opacity);
}
}
void render_raster_marker(agg::trans_affine const& marker_tr,
double opacity)
{
using pixfmt_pre = agg::pixfmt_rgba32_pre;
agg::scanline_u8 sl_;
double width = src_.width();
double height = src_.height();
if (std::fabs(1.0 - scale_factor_) < 0.001
&& (std::fabs(1.0 - marker_tr.sx) < agg::affine_epsilon)
&& (std::fabs(0.0 - marker_tr.shy) < agg::affine_epsilon)
&& (std::fabs(0.0 - marker_tr.shx) < agg::affine_epsilon)
&& (std::fabs(1.0 - marker_tr.sy) < agg::affine_epsilon))
{
agg::rendering_buffer src_buffer((unsigned char *)src_.getBytes(),src_.width(),src_.height(),src_.width() * 4);
pixfmt_pre pixf_mask(src_buffer);
if (snap_to_pixels_)
{
renb_.blend_from(pixf_mask,
0,
std::floor(marker_tr.tx + .5),
std::floor(marker_tr.ty + .5),
unsigned(255*opacity));
}
else
{
renb_.blend_from(pixf_mask,
0,
marker_tr.tx,
marker_tr.ty,
unsigned(255*opacity));
}
}
else
{
using img_accessor_type = agg::image_accessor_clone<pixfmt_pre>;
using interpolator_type = agg::span_interpolator_linear<>;
//using span_gen_type = agg::span_image_filter_rgba_2x2<img_accessor_type,interpolator_type>;
using span_gen_type = agg::span_image_resample_rgba_affine<img_accessor_type>;
using renderer_type = agg::renderer_scanline_aa_alpha<renderer_base,
agg::span_allocator<color_type>,
span_gen_type>;
double p[8];
p[0] = 0; p[1] = 0;
p[2] = width; p[3] = 0;
p[4] = width; p[5] = height;
p[6] = 0; p[7] = height;
marker_tr.transform(&p[0], &p[1]);
marker_tr.transform(&p[2], &p[3]);
marker_tr.transform(&p[4], &p[5]);
marker_tr.transform(&p[6], &p[7]);
agg::span_allocator<color_type> sa;
agg::image_filter_lut filter;
filter.calculate(agg::image_filter_bilinear(), true);
agg::rendering_buffer marker_buf((unsigned char *)src_.getBytes(),
src_.width(),
src_.height(),
src_.width()*4);
pixfmt_pre pixf(marker_buf);
img_accessor_type ia(pixf);
agg::trans_affine final_tr(p, 0, 0, width, height);
if (snap_to_pixels_)
{
final_tr.tx = std::floor(final_tr.tx+.5);
final_tr.ty = std::floor(final_tr.ty+.5);
}
interpolator_type interpolator(final_tr);
span_gen_type sg(ia, interpolator, filter);
renderer_type rp(renb_,sa, sg, unsigned(opacity*255));
ras_.move_to_d(p[0],p[1]);
ras_.line_to_d(p[2],p[3]);
ras_.line_to_d(p[4],p[5]);
ras_.line_to_d(p[6],p[7]);
agg::render_scanlines(ras_, sl_, rp);
}
}
private:
BufferType & buf_;
pixfmt_comp_type pixf_;
renderer_base renb_;
RasterizerType & ras_;
image_data_32 const& src_;
agg::trans_affine const& marker_trans_;
markers_symbolizer const& sym_;
Detector & detector_;
feature_impl & feature_;
attributes const& vars_;
double scale_factor_;
bool snap_to_pixels_;
};
template <typename T>
void build_ellipse(T const& sym, mapnik::feature_impl & feature, attributes const& vars, svg_storage_type & marker_ellipse, svg::svg_path_adapter & svg_path)
{
double width = 0.0;
double height = 0.0;
if (has_key<double>(sym,keys::width) && has_key<double>(sym,keys::height))
{
width = get<double>(sym, keys::width, feature, vars, 0.0);
height = get<double>(sym, keys::height, feature, vars, 0.0);
}
else if (has_key<double>(sym,keys::width))
{
width = height = get<double>(sym, keys::width, feature, vars, 0.0);
}
else if (has_key<double>(sym,keys::height))
{
width = height = get<double>(sym, keys::height, feature, vars, 0.0);
}
svg::svg_converter_type styled_svg(svg_path, marker_ellipse.attributes());
styled_svg.push_attr();
styled_svg.begin_path();
agg::ellipse c(0, 0, width/2.0, height/2.0);
styled_svg.storage().concat_path(c);
styled_svg.end_path();
styled_svg.pop_attr();
double lox,loy,hix,hiy;
styled_svg.bounding_rect(&lox, &loy, &hix, &hiy);
styled_svg.set_dimensions(width,height);
marker_ellipse.set_dimensions(width,height);
marker_ellipse.set_bounding_box(lox,loy,hix,hiy);
}
template <typename Attr>
bool push_explicit_style(Attr const& src, Attr & dst,
markers_symbolizer const& sym,
feature_impl & feature,
attributes const& vars)
{
auto fill_color = get_optional<color>(sym, keys::fill, feature, vars);
auto fill_opacity = get_optional<double>(sym, keys::fill_opacity, feature, vars);
auto stroke_color = get_optional<color>(sym, keys::stroke, feature, vars);
auto stroke_width = get_optional<double>(sym, keys::stroke_width, feature, vars);
auto stroke_opacity = get_optional<double>(sym, keys::stroke_opacity, feature, vars);
if (fill_color ||
fill_opacity ||
stroke_color ||
stroke_width ||
stroke_opacity)
{
bool success = false;
for(unsigned i = 0; i < src.size(); ++i)
{
success = true;
dst.push_back(src[i]);
mapnik::svg::path_attributes & attr = dst.last();
if (attr.stroke_flag)
{
if (stroke_width)
{
attr.stroke_width = *stroke_width;
}
if (stroke_color)
{
color const& s_color = *stroke_color;
attr.stroke_color = agg::rgba(s_color.red()/255.0,
s_color.green()/255.0,
s_color.blue()/255.0,
s_color.alpha()/255.0);
}
if (stroke_opacity)
{
attr.stroke_opacity = *stroke_opacity;
}
}
if (attr.fill_flag)
{
if (fill_color)
{
color const& f_color = *fill_color;
attr.fill_color = agg::rgba(f_color.red()/255.0,
f_color.green()/255.0,
f_color.blue()/255.0,
f_color.alpha()/255.0);
}
if (fill_opacity)
{
attr.fill_opacity = *fill_opacity;
}
}
}
return success;
}
return false;
}
template <typename T>
void setup_transform_scaling(agg::trans_affine & tr,
double svg_width,
double svg_height,
mapnik::feature_impl & feature,
attributes const& vars,
T const& sym)
{
double width = get<double>(sym, keys::width, feature, vars, 0.0);
double height = get<double>(sym, keys::height, feature, vars, 0.0);
if (width > 0 && height > 0)
{
double sx = width/svg_width;
double sy = height/svg_height;
tr *= agg::trans_affine_scaling(sx,sy);
}
else if (width > 0)
{
double sx = width/svg_width;
tr *= agg::trans_affine_scaling(sx);
}
else if (height > 0)
{
double sy = height/svg_height;
tr *= agg::trans_affine_scaling(sy);
}
}
// Apply markers to a feature with multiple geometries
template <typename Converter>
void apply_markers_multi(feature_impl const& feature, attributes const& vars, Converter & converter, markers_symbolizer const& sym)
{
std::size_t geom_count = feature.paths().size();
if (geom_count == 1)
{
converter.apply(feature.paths()[0]);
}
else if (geom_count > 1)
{
marker_multi_policy_enum multi_policy = get<marker_multi_policy_enum>(sym, keys::markers_multipolicy, feature, vars, MARKER_EACH_MULTI);
marker_placement_enum placement = get<marker_placement_enum>(sym, keys::markers_placement_type, feature, vars, MARKER_POINT_PLACEMENT);
if (placement == MARKER_POINT_PLACEMENT &&
multi_policy == MARKER_WHOLE_MULTI)
{
double x, y;
if (label::centroid_geoms(feature.paths().begin(), feature.paths().end(), x, y))
{
geometry_type pt(geometry_type::types::Point);
pt.move_to(x, y);
// unset any clipping since we're now dealing with a point
converter.template unset<clip_poly_tag>();
converter.apply(pt);
}
}
else if ((placement == MARKER_POINT_PLACEMENT || placement == MARKER_INTERIOR_PLACEMENT) &&
multi_policy == MARKER_LARGEST_MULTI)
{
// Only apply to path with largest envelope area
// TODO: consider using true area for polygon types
double maxarea = 0;
geometry_type const* largest = 0;
for (geometry_type const& geom : feature.paths())
{
const box2d<double>& env = geom.envelope();
double area = env.width() * env.height();
if (area > maxarea)
{
maxarea = area;
largest = &geom;
}
}
if (largest)
{
converter.apply(*largest);
}
}
else
{
if (multi_policy != MARKER_EACH_MULTI && placement != MARKER_POINT_PLACEMENT)
{
MAPNIK_LOG_WARN(marker_symbolizer) << "marker_multi_policy != 'each' has no effect with marker_placement != 'point'";
}
for (geometry_type const& path : feature.paths())
{
converter.apply(path);
}
}
}
}
}
#endif //MAPNIK_MARKER_HELPERS_HPP