mapnik/include/mapnik/value.hpp

1028 lines
24 KiB
C++

/*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
* Copyright (C) 2015 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
#ifndef MAPNIK_VALUE_HPP
#define MAPNIK_VALUE_HPP
// mapnik
#include <mapnik/value_types.hpp>
#include <mapnik/value_hash.hpp>
#include <mapnik/util/conversions.hpp>
#include <mapnik/util/variant.hpp>
// stl
#include <string>
#include <cmath>
#include <memory>
#include <iosfwd>
#include <cstddef>
#include <new>
#include <type_traits>
// icu
#include <unicode/unistr.h>
#include <unicode/ustring.h>
namespace mapnik {
using value_base = util::variant<value_null, value_bool, value_integer,value_double, value_unicode_string>;
inline void to_utf8(mapnik::value_unicode_string const& input, std::string & target)
{
target.clear(); // mimic previous target.assign(...) semantics
input.toUTF8String(target); // this appends to target
}
namespace detail {
namespace {
template <typename T, typename U>
struct both_arithmetic : std::integral_constant<bool,
std::is_arithmetic<T>::value &&
std::is_arithmetic<U>::value > {};
struct equals
{
static bool apply(value_null, value_unicode_string const& rhs)
{
return false;
}
template <typename T>
static auto apply(T const& lhs, T const& rhs)
-> decltype(lhs == rhs)
{
return lhs == rhs;
}
};
struct not_equal
{
// back compatibility shim to equate empty string with null for != test
// https://github.com/mapnik/mapnik/issues/1859
// TODO - consider removing entire specialization at Mapnik 3.1.x
static bool apply(value_null, value_unicode_string const& rhs)
{
if (rhs.isEmpty()) return false;
return true;
}
template <typename T>
static auto apply(T const& lhs, T const& rhs)
->decltype(lhs != rhs)
{
return lhs != rhs;
}
};
struct greater_than
{
static bool apply(value_null, value_unicode_string const& rhs)
{
return false;
}
template <typename T>
static auto apply(T const& lhs, T const& rhs)
->decltype(lhs > rhs)
{
return lhs > rhs;
}
};
struct greater_or_equal
{
static bool apply(value_null, value_unicode_string const& rhs)
{
return false;
}
template <typename T>
static auto apply(T const& lhs, T const& rhs)
->decltype(lhs >= rhs)
{
return lhs >= rhs;
}
};
struct less_than
{
static bool apply(value_null, value_unicode_string const& rhs)
{
return false;
}
template <typename T>
static auto apply(T const& lhs, T const& rhs)
->decltype(lhs < rhs)
{
return lhs < rhs;
}
};
struct less_or_equal
{
static bool apply(value_null, value_unicode_string const& rhs)
{
return false;
}
template <typename T>
static auto apply(T const& lhs, T const& rhs)
->decltype(lhs <= rhs)
{
return lhs <= rhs;
}
};
}
template <typename Op, bool default_result>
struct comparison
{
// special case for unicode_strings (fixes MSVC C4800)
bool operator() (value_unicode_string const& lhs,
value_unicode_string const& rhs) const
{
return Op::apply(lhs, rhs) ? true : false;
}
//////////////////////////////////////////////////////////////////////////
// special case for unicode_string and value_null
//////////////////////////////////////////////////////////////////////////
bool operator() (value_null const& lhs, value_unicode_string const& rhs) const
{
return Op::apply(lhs, rhs);
}
//////////////////////////////////////////////////////////////////////////
// same types
template <typename T>
bool operator() (T lhs, T rhs) const
{
return Op::apply(lhs, rhs);
}
// both types are arithmetic - promote to the common type
template <typename T, typename U, typename std::enable_if<both_arithmetic<T,U>::value, int>::type = 0>
bool operator() (T const& lhs, U const& rhs) const
{
using common_type = typename std::common_type<T,U>::type;
return Op::apply(static_cast<common_type>(lhs),static_cast<common_type>(rhs));
}
//
template <typename T, typename U, typename std::enable_if<!both_arithmetic<T,U>::value, int>::type = 0>
bool operator() (T const& lhs, U const& rhs) const
{
return default_result;
}
};
template <typename V>
struct add
{
using value_type = V;
value_type operator() (value_unicode_string const& lhs ,
value_unicode_string const& rhs ) const
{
return lhs + rhs;
}
value_type operator() (value_null const& lhs ,
value_null const& rhs) const
{
return lhs;
}
value_type operator() (value_unicode_string const& lhs, value_null) const
{
return lhs;
}
value_type operator() (value_null, value_unicode_string const& rhs) const
{
return rhs;
}
template <typename L>
value_type operator() (L const& lhs, value_null const&) const
{
return lhs;
}
template <typename R>
value_type operator() (value_null const&, R const& rhs) const
{
return rhs;
}
template <typename L>
value_type operator() (L const& lhs , value_unicode_string const& rhs) const
{
std::string val;
if (util::to_string(val,lhs))
return value_unicode_string(val.c_str()) + rhs;
return rhs;
}
template <typename R>
value_type operator() (value_unicode_string const& lhs, R const& rhs) const
{
std::string val;
if (util::to_string(val,rhs))
return lhs + value_unicode_string(val.c_str());
return lhs;
}
template <typename T1, typename T2>
value_type operator() (T1 const& lhs, T2 const& rhs) const
{
return typename std::common_type<T1,T2>::type{ lhs + rhs };
}
value_type operator() (value_bool lhs, value_bool rhs) const
{
return value_integer(lhs + rhs);
}
};
template <typename V>
struct sub
{
using value_type = V;
value_type operator() (value_null const& lhs ,
value_null const& rhs) const
{
return lhs;
}
value_type operator() (value_null, value_unicode_string const& rhs) const
{
return rhs;
}
value_type operator() (value_unicode_string const& lhs, value_null) const
{
return lhs;
}
template <typename R>
value_type operator() (value_unicode_string const& lhs, R const&) const
{
return lhs;
}
template <typename L>
value_type operator() (L const&, value_unicode_string const& rhs) const
{
return rhs;
}
template <typename L>
value_type operator() (L const& lhs, value_null const&) const
{
return lhs;
}
template <typename R>
value_type operator() (value_null const&, R const& rhs) const
{
return rhs;
}
template <typename T>
value_type operator() (T lhs, T rhs) const
{
return lhs - rhs ;
}
value_type operator() (value_unicode_string const&,
value_unicode_string const&) const
{
return value_type();
}
template <typename T1, typename T2>
value_type operator() (T1 const& lhs, T2 const& rhs) const
{
return typename std::common_type<T1,T2>::type{ lhs - rhs };
}
value_type operator() (value_bool lhs, value_bool rhs) const
{
return value_integer(lhs - rhs);
}
};
template <typename V>
struct mult
{
using value_type = V;
value_type operator() (value_null const& lhs ,
value_null const& rhs) const
{
return lhs;
}
value_type operator() (value_unicode_string const& lhs, value_null) const
{
return lhs;
}
value_type operator() (value_null, value_unicode_string const& rhs) const
{
return rhs;
}
template <typename L>
value_type operator() (L const& lhs, value_null const&) const
{
return lhs;
}
template <typename R>
value_type operator() (value_null const&, R const& rhs) const
{
return rhs;
}
template <typename R>
value_type operator() (value_unicode_string const& lhs, R const&) const
{
return lhs;
}
template <typename L>
value_type operator() (L const&, value_unicode_string const& rhs) const
{
return rhs;
}
template <typename T>
value_type operator() (T lhs, T rhs) const
{
return lhs * rhs;
}
value_type operator() (value_unicode_string const&,
value_unicode_string const&) const
{
return value_type();
}
template <typename T1, typename T2>
value_type operator() (T1 const& lhs, T2 const& rhs) const
{
return typename std::common_type<T1,T2>::type{ lhs * rhs };
}
value_type operator() (value_bool lhs, value_bool rhs) const
{
return value_integer(lhs * rhs);
}
};
template <typename V>
struct div
{
using value_type = V;
value_type operator() (value_null const& lhs ,
value_null const& rhs) const
{
return lhs;
}
value_type operator() (value_unicode_string const& lhs, value_null) const
{
return lhs;
}
value_type operator() (value_null, value_unicode_string const& rhs) const
{
return rhs;
}
template <typename L>
value_type operator() (L const& lhs, value_null const&) const
{
return lhs;
}
template <typename R>
value_type operator() (value_null const&, R const& rhs) const
{
return rhs;
}
template <typename T>
value_type operator() (T lhs, T rhs) const
{
if (rhs == 0) return value_type();
return lhs / rhs;
}
value_type operator() (value_bool lhs, value_bool rhs) const
{
if (rhs == 0) return lhs;
return value_integer(lhs) / value_integer(rhs);
}
value_type operator() (value_unicode_string const&,
value_unicode_string const&) const
{
return value_type();
}
template <typename R>
value_type operator() (value_unicode_string const& lhs, R const&) const
{
return lhs;
}
template <typename L>
value_type operator() (L const&, value_unicode_string const& rhs) const
{
return rhs;
}
template <typename T1, typename T2>
value_type operator() (T1 const& lhs, T2 const& rhs) const
{
if (rhs == 0) return value_type();
using common_type = typename std::common_type<T1,T2>::type;
return common_type(lhs)/common_type(rhs);
}
};
template <typename V>
struct mod
{
using value_type = V;
template <typename T1, typename T2>
value_type operator() (T1 const& lhs, T2 const&) const
{
return lhs;
}
template <typename T>
value_type operator() (T lhs, T rhs) const
{
return lhs % rhs;
}
value_type operator() (value_unicode_string const&,
value_unicode_string const&) const
{
return value_type();
}
value_type operator() (value_bool,
value_bool) const
{
return false;
}
value_type operator() (value_double lhs, value_integer rhs) const
{
return std::fmod(lhs, static_cast<value_double>(rhs));
}
value_type operator() (value_integer lhs, value_double rhs) const
{
return std::fmod(static_cast<value_double>(lhs), rhs);
}
value_type operator() (value_double lhs, value_double rhs) const
{
return std::fmod(lhs, rhs);
}
};
template <typename V>
struct negate
{
using value_type = V;
template <typename T>
value_type operator() (T val) const
{
return -val;
}
value_type operator() (value_null val) const
{
return val;
}
value_type operator() (value_bool val) const
{
return val ? value_integer(-1) : value_integer(0);
}
value_type operator() (value_unicode_string const&) const
{
return value_type();
}
};
// converters
template <typename T>
struct convert {};
template <>
struct convert<value_bool>
{
value_bool operator() (value_bool val) const
{
return val;
}
value_bool operator() (value_unicode_string const& ustr) const
{
return !ustr.isEmpty();
}
value_bool operator() (value_null const&) const
{
return false;
}
template <typename T>
value_bool operator() (T val) const
{
return val > 0 ? true : false;
}
};
template <>
struct convert<value_double>
{
value_double operator() (value_double val) const
{
return val;
}
value_double operator() (value_integer val) const
{
return static_cast<value_double>(val);
}
value_double operator() (value_bool val) const
{
return static_cast<value_double>(val);
}
value_double operator() (std::string const& val) const
{
value_double result;
if (util::string2double(val,result))
return result;
return 0;
}
value_double operator() (value_unicode_string const& val) const
{
std::string utf8;
val.toUTF8String(utf8);
return operator()(utf8);
}
value_double operator() (value_null const&) const
{
return 0.0;
}
};
template <>
struct convert<value_integer>
{
value_integer operator() (value_integer val) const
{
return val;
}
value_integer operator() (value_double val) const
{
return static_cast<value_integer>(rint(val));
}
value_integer operator() (value_bool val) const
{
return static_cast<value_integer>(val);
}
value_integer operator() (std::string const& val) const
{
value_integer result;
if (util::string2int(val,result))
return result;
return value_integer(0);
}
value_integer operator() (value_unicode_string const& val) const
{
std::string utf8;
val.toUTF8String(utf8);
return operator()(utf8);
}
value_integer operator() (value_null const&) const
{
return value_integer(0);
}
};
template <>
struct convert<std::string>
{
template <typename T>
std::string operator() (T val) const
{
std::string str;
util::to_string(str, val);
return str;
}
// specializations
std::string operator() (value_unicode_string const& val) const
{
std::string utf8;
val.toUTF8String(utf8);
return utf8;
}
std::string operator() (value_double val) const
{
std::string str;
util::to_string(str, val); // TODO set precision(16)
return str;
}
std::string operator() (value_bool val) const
{
return val ? "true": "false";
}
std::string operator() (value_null const&) const
{
return std::string();
}
};
struct to_unicode_impl
{
template <typename T>
value_unicode_string operator() (T val) const
{
std::string str;
util::to_string(str,val);
return value_unicode_string(str.c_str());
}
// specializations
value_unicode_string const& operator() (value_unicode_string const& val) const
{
return val;
}
value_unicode_string operator() (value_double val) const
{
std::string str;
util::to_string(str,val);
return value_unicode_string(str.c_str());
}
value_unicode_string operator() (value_bool val) const
{
return value_unicode_string(val ? "true" : "false");
}
value_unicode_string operator() (value_null const&) const
{
return value_unicode_string();
}
};
struct to_expression_string_impl
{
struct EscapingByteSink : U_NAMESPACE_QUALIFIER ByteSink
{
std::string dest_;
char quote_;
explicit EscapingByteSink(char quote)
: quote_(quote)
{}
virtual void Append(const char* data, int32_t n)
{
// reserve enough room to hold the appended chunk and quotes;
// if another chunk follows, or any character needs escaping,
// the string will grow naturally
if (dest_.empty())
{
dest_.reserve(2 + static_cast<std::size_t>(n));
dest_.append(1, quote_);
}
else
{
dest_.reserve(dest_.size() + n + 1);
}
for (auto end = data + n; data < end; ++data)
{
if (*data == '\\' || *data == quote_)
dest_.append(1, '\\');
dest_.append(1, *data);
}
}
virtual void Flush()
{
if (dest_.empty())
dest_.append(2, quote_);
else
dest_.append(1, quote_);
}
};
explicit to_expression_string_impl(char quote = '\'')
: quote_(quote) {}
std::string operator() (value_unicode_string const& val) const
{
EscapingByteSink sink(quote_);
val.toUTF8(sink);
return sink.dest_;
}
std::string operator() (value_integer val) const
{
std::string output;
util::to_string(output,val);
return output;
}
std::string operator() (value_double val) const
{
std::string output;
util::to_string(output,val); // TODO precision(16)
return output;
}
std::string operator() (value_bool val) const
{
return val ? "true" : "false";
}
std::string operator() (value_null const&) const
{
return "null";
}
const char quote_;
};
} // namespace detail
namespace value_adl_barrier {
class value : public value_base
{
friend const value operator+(value const&,value const&);
friend const value operator-(value const&,value const&);
friend const value operator*(value const&,value const&);
friend const value operator/(value const&,value const&);
friend const value operator%(value const&,value const&);
public:
value() = default;
// conversion from type T is done via a temporary of type U, which
// is determined by mapnik_value_type;
// enable_if< decay<T> != value > is necessary to avoid ill-formed
// recursion in noexcept specifier; and it also prevents using this
// constructor where implicitly-declared copy/move should be used
// (e.g. value(value&))
template <typename T,
typename U = typename std::enable_if<
!detail::is_same_decay<T, value>::value,
detail::mapnik_value_type_decay<T>
>::type::type>
value(T && val)
noexcept(noexcept(U(std::forward<T>(val))) &&
std::is_nothrow_constructible<value_base, U && >::value)
: value_base(U(std::forward<T>(val))) {}
template <typename T,
typename U = typename std::enable_if<
!detail::is_same_decay<T, value>::value,
detail::mapnik_value_type_decay<T>
>::type::type>
value& operator=(T && val)
noexcept(noexcept(U(std::forward<T>(val))) &&
std::is_nothrow_assignable<value_base, U && >::value)
{
value_base::operator=(U(std::forward<T>(val)));
return *this;
}
bool operator==(value const& other) const
{
return util::apply_visitor(detail::comparison<detail::equals, false>(), *this, other);
}
bool operator!=(value const& other) const
{
return util::apply_visitor(detail::comparison<detail::not_equal, true>(), *this, other);
}
bool operator>(value const& other) const
{
return util::apply_visitor(detail::comparison<detail::greater_than, false>(), *this, other);
}
bool operator>=(value const& other) const
{
return util::apply_visitor(detail::comparison<detail::greater_or_equal, false>(), *this, other);
}
bool operator<(value const& other) const
{
return util::apply_visitor(detail::comparison<detail::less_than, false>(), *this, other);
}
bool operator<=(value const& other) const
{
return util::apply_visitor(detail::comparison<detail::less_or_equal, false>(), *this, other);
}
value operator- () const
{
return util::apply_visitor(detail::negate<value>(), *this);
}
bool is_null() const;
template <typename T>
T convert() const
{
return util::apply_visitor(detail::convert<T>(),*this);
}
value_bool to_bool() const
{
return util::apply_visitor(detail::convert<value_bool>(),*this);
}
std::string to_expression_string(char quote = '\'') const
{
return util::apply_visitor(detail::to_expression_string_impl(quote),*this);
}
std::string to_string() const
{
return util::apply_visitor(detail::convert<std::string>(),*this);
}
value_unicode_string to_unicode() const
{
return util::apply_visitor(detail::to_unicode_impl(),*this);
}
value_double to_double() const
{
return util::apply_visitor(detail::convert<value_double>(),*this);
}
value_integer to_int() const
{
return util::apply_visitor(detail::convert<value_integer>(),*this);
}
};
inline const value operator+(value const& p1,value const& p2)
{
return value(util::apply_visitor(detail::add<value>(),p1, p2));
}
inline const value operator-(value const& p1,value const& p2)
{
return value(util::apply_visitor(detail::sub<value>(),p1, p2));
}
inline const value operator*(value const& p1,value const& p2)
{
return value(util::apply_visitor(detail::mult<value>(),p1, p2));
}
inline const value operator/(value const& p1,value const& p2)
{
return value(util::apply_visitor(detail::div<value>(),p1, p2));
}
inline const value operator%(value const& p1,value const& p2)
{
return value(util::apply_visitor(detail::mod<value>(),p1, p2));
}
template <typename charT, typename traits>
inline std::basic_ostream<charT,traits>&
operator << (std::basic_ostream<charT,traits>& out,
value const& v)
{
out << v.to_string();
return out;
}
// hash function
inline std::size_t hash_value(value const& val)
{
return mapnik_hash_value(val);
}
} // namespace value_adl_barrier
using value_adl_barrier::value;
namespace detail {
struct is_null_visitor
{
bool operator() (value const& val) const
{
return val.is_null();
}
bool operator() (value_null const&) const
{
return true;
}
template <typename T>
bool operator() (T const&) const
{
return false;
}
};
} // namespace detail
inline bool value::is_null() const
{
return util::apply_visitor(mapnik::detail::is_null_visitor(), *this);
}
} // namespace mapnik
// support for std::unordered_xxx
namespace std
{
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmismatched-tags"
template <>
struct hash<mapnik::value>
{
size_t operator()(mapnik::value const& val) const
{
return mapnik::mapnik_hash_value(val);
}
};
#pragma GCC diagnostic pop
}
#endif // MAPNIK_VALUE_HPP