mirror of
https://github.com/maplibre/maplibre-rs.git
synced 2025-12-08 19:05:57 +00:00
391 lines
12 KiB
Rust
391 lines
12 KiB
Rust
use cgmath::{
|
|
ulps_eq, BaseFloat, BaseNum, EuclideanSpace, InnerSpace, Point2, Point3, Vector3, Zero,
|
|
};
|
|
use std::cmp::Ordering;
|
|
use std::fmt;
|
|
|
|
/// A 3-dimensional plane formed from the equation: `A*x + B*y + C*z - D = 0`.
|
|
///
|
|
/// # Fields
|
|
///
|
|
/// - `n`: a unit vector representing the normal of the plane where:
|
|
/// - `n.x`: corresponds to `A` in the plane equation
|
|
/// - `n.y`: corresponds to `B` in the plane equation
|
|
/// - `n.z`: corresponds to `C` in the plane equation
|
|
/// - `d`: the distance value, corresponding to `D` in the plane equation
|
|
///
|
|
/// # Notes
|
|
///
|
|
/// The `A*x + B*y + C*z - D = 0` form is preferred over the other common
|
|
/// alternative, `A*x + B*y + C*z + D = 0`, because it tends to avoid
|
|
/// superfluous negations (see _Real Time Collision Detection_, p. 55).
|
|
///
|
|
/// Copied from: https://github.com/rustgd/collision-rs
|
|
pub struct Plane<S> {
|
|
/// Plane normal
|
|
pub n: Vector3<S>,
|
|
/// Plane distance value
|
|
pub d: S,
|
|
}
|
|
|
|
impl<S: BaseFloat> Plane<S> {
|
|
/// Construct a plane from a normal vector and a scalar distance. The
|
|
/// plane will be perpendicular to `n`, and `d` units offset from the
|
|
/// origin.
|
|
pub fn new(n: Vector3<S>, d: S) -> Plane<S> {
|
|
Plane { n, d }
|
|
}
|
|
|
|
/// Constructs a plane that passes through the the three points `a`, `b` and `c`
|
|
pub fn from_points(a: Point3<S>, b: Point3<S>, c: Point3<S>) -> Option<Plane<S>> {
|
|
// create two vectors that run parallel to the plane
|
|
let v0 = b - a;
|
|
let v1 = c - a;
|
|
|
|
// find the normal vector that is perpendicular to v1 and v2
|
|
let n = v0.cross(v1);
|
|
if ulps_eq!(n, &Vector3::zero()) {
|
|
None
|
|
} else {
|
|
// compute the normal and the distance to the plane
|
|
let n = n.normalize();
|
|
let d = -a.dot(n);
|
|
|
|
Some(Plane::new(n, d))
|
|
}
|
|
}
|
|
|
|
/// Construct a plane from a point and a normal vector.
|
|
/// The plane will contain the point `p` and be perpendicular to `n`.
|
|
pub fn from_point_normal(p: Point3<S>, n: Vector3<S>) -> Plane<S> {
|
|
Plane { n, d: p.dot(n) }
|
|
}
|
|
|
|
fn intersection_distance_ray(
|
|
&self,
|
|
ray_origin: &Vector3<S>,
|
|
ray_direction: &Vector3<S>,
|
|
) -> Option<S> {
|
|
let vd: S =
|
|
self.n.x * ray_direction.x + self.n.y * ray_direction.y + self.n.z * ray_direction.z;
|
|
if vd == S::zero() {
|
|
return None;
|
|
}
|
|
let t: S =
|
|
-(self.n.x * ray_origin.x + self.n.y * ray_origin.y + self.n.z * ray_origin.z + self.d)
|
|
/ vd;
|
|
|
|
Some(t)
|
|
}
|
|
|
|
/// Returns unsorted intersection points with an Aabb3
|
|
/// Adopted from: https://www.asawicki.info/news_1428_finding_polygon_of_plane-aabb_intersection
|
|
/// Inspired by: https://godotengine.org/qa/54688/camera-frustum-intersection-with-plane
|
|
pub fn intersection_points_aabb3(&self, aabb: &Aabb3<S>) -> Vec<Vector3<S>> {
|
|
let mut out_points: Vec<Vector3<S>> = Vec::new();
|
|
let aabb_min: Vector3<S> = aabb.min.to_vec();
|
|
let aabb_max: Vector3<S> = aabb.max.to_vec();
|
|
|
|
// Test edges along X axis, pointing right.
|
|
let mut dir: Vector3<S> = Vector3::new(aabb_max.x - aabb_min.x, S::zero(), S::zero());
|
|
let mut orig = aabb_min;
|
|
if let Some(t) = self.intersection_distance_ray(&orig, &dir) {
|
|
if t >= S::zero() && t <= S::one() {
|
|
out_points.push(orig + dir * t);
|
|
}
|
|
}
|
|
|
|
orig = Vector3::new(aabb_min.x, aabb_max.y, aabb_min.z);
|
|
if let Some(t) = self.intersection_distance_ray(&orig, &dir) {
|
|
if t >= S::zero() && t <= S::one() {
|
|
out_points.push(orig + dir * t);
|
|
}
|
|
}
|
|
|
|
orig = Vector3::new(aabb_min.x, aabb_min.y, aabb_max.z);
|
|
if let Some(t) = self.intersection_distance_ray(&orig, &dir) {
|
|
if t >= S::zero() && t <= S::one() {
|
|
out_points.push(orig + dir * t);
|
|
}
|
|
}
|
|
|
|
orig = Vector3::new(aabb_min.x, aabb_max.y, aabb_max.z);
|
|
if let Some(t) = self.intersection_distance_ray(&orig, &dir) {
|
|
if t >= S::zero() && t <= S::one() {
|
|
out_points.push(orig + dir * t);
|
|
}
|
|
}
|
|
|
|
// Test edges along Y axis, pointing up.
|
|
dir = Vector3::new(S::zero(), aabb_max.y - aabb_min.y, S::zero());
|
|
orig = Vector3::new(aabb_min.x, aabb_min.y, aabb_min.z);
|
|
if let Some(t) = self.intersection_distance_ray(&orig, &dir) {
|
|
if t >= S::zero() && t <= S::one() {
|
|
out_points.push(orig + dir * t);
|
|
}
|
|
}
|
|
|
|
orig = Vector3::new(aabb_max.x, aabb_min.y, aabb_min.z);
|
|
if let Some(t) = self.intersection_distance_ray(&orig, &dir) {
|
|
if t >= S::zero() && t <= S::one() {
|
|
out_points.push(orig + dir * t);
|
|
}
|
|
}
|
|
|
|
orig = Vector3::new(aabb_min.x, aabb_min.y, aabb_max.z);
|
|
if let Some(t) = self.intersection_distance_ray(&orig, &dir) {
|
|
if t >= S::zero() && t <= S::one() {
|
|
out_points.push(orig + dir * t);
|
|
}
|
|
}
|
|
|
|
orig = Vector3::new(aabb_max.x, aabb_min.y, aabb_max.z);
|
|
if let Some(t) = self.intersection_distance_ray(&orig, &dir) {
|
|
if t >= S::zero() && t <= S::one() {
|
|
out_points.push(orig + dir * t);
|
|
}
|
|
}
|
|
|
|
// Test edges along Z axis, pointing forward.
|
|
dir = Vector3::new(S::zero(), S::zero(), aabb_max.z - aabb_min.z);
|
|
orig = Vector3::new(aabb_min.x, aabb_min.y, aabb_min.z);
|
|
if let Some(t) = self.intersection_distance_ray(&orig, &dir) {
|
|
if t >= S::zero() && t <= S::one() {
|
|
out_points.push(orig + dir * t);
|
|
}
|
|
}
|
|
|
|
orig = Vector3::new(aabb_max.x, aabb_min.y, aabb_min.z);
|
|
if let Some(t) = self.intersection_distance_ray(&orig, &dir) {
|
|
if t >= S::zero() && t <= S::one() {
|
|
out_points.push(orig + dir * t);
|
|
}
|
|
}
|
|
|
|
orig = Vector3::new(aabb_min.x, aabb_max.y, aabb_min.z);
|
|
if let Some(t) = self.intersection_distance_ray(&orig, &dir) {
|
|
if t >= S::zero() && t <= S::one() {
|
|
out_points.push(orig + dir * t);
|
|
}
|
|
}
|
|
|
|
orig = Vector3::new(aabb_max.x, aabb_max.y, aabb_min.z);
|
|
if let Some(t) = self.intersection_distance_ray(&orig, &dir) {
|
|
if t >= S::zero() && t <= S::one() {
|
|
out_points.push(orig + dir * t);
|
|
}
|
|
}
|
|
|
|
out_points
|
|
}
|
|
|
|
pub fn intersection_polygon_aabb3(&self, aabb: &Aabb3<S>) -> Vec<Vector3<S>> {
|
|
let mut points = self.intersection_points_aabb3(aabb);
|
|
|
|
if points.is_empty() {
|
|
return points;
|
|
};
|
|
|
|
let plane_normal = Vector3::new(self.n.x, self.n.y, self.n.z);
|
|
let origin = points[0];
|
|
|
|
points.sort_by(|a, b| {
|
|
let cmp = (a - origin).cross(b - origin).dot(plane_normal);
|
|
if cmp < S::zero() {
|
|
Ordering::Less
|
|
} else if cmp == S::zero() {
|
|
Ordering::Equal
|
|
} else {
|
|
Ordering::Greater
|
|
}
|
|
});
|
|
|
|
points
|
|
}
|
|
}
|
|
|
|
impl<S: BaseFloat> fmt::Debug for Plane<S> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(
|
|
f,
|
|
"{:?}x + {:?}y + {:?}z - {:?} = 0",
|
|
self.n.x, self.n.y, self.n.z, self.d
|
|
)
|
|
}
|
|
}
|
|
|
|
pub(crate) fn min<S: PartialOrd + Copy>(lhs: S, rhs: S) -> S {
|
|
match lhs.partial_cmp(&rhs) {
|
|
Some(Ordering::Less) | Some(Ordering::Equal) | None => lhs,
|
|
_ => rhs,
|
|
}
|
|
}
|
|
|
|
pub(crate) fn max<S: PartialOrd + Copy>(lhs: S, rhs: S) -> S {
|
|
match lhs.partial_cmp(&rhs) {
|
|
Some(Ordering::Greater) | Some(Ordering::Equal) | None => lhs,
|
|
_ => rhs,
|
|
}
|
|
}
|
|
|
|
/// A two-dimensional AABB, aka a rectangle.
|
|
pub struct Aabb2<S> {
|
|
/// Minimum point of the AABB
|
|
pub min: Point2<S>,
|
|
/// Maximum point of the AABB
|
|
pub max: Point2<S>,
|
|
}
|
|
|
|
impl<S: BaseNum> Aabb2<S> {
|
|
/// Construct a new axis-aligned bounding box from two points.
|
|
#[inline]
|
|
pub fn new(p1: Point2<S>, p2: Point2<S>) -> Aabb2<S> {
|
|
Aabb2 {
|
|
min: Point2::new(min(p1.x, p2.x), min(p1.y, p2.y)),
|
|
max: Point2::new(max(p1.x, p2.x), max(p1.y, p2.y)),
|
|
}
|
|
}
|
|
|
|
/// Compute corners.
|
|
#[inline]
|
|
pub fn to_corners(&self) -> [Point2<S>; 4] {
|
|
[
|
|
self.min,
|
|
Point2::new(self.max.x, self.min.y),
|
|
Point2::new(self.min.x, self.max.y),
|
|
self.max,
|
|
]
|
|
}
|
|
}
|
|
|
|
impl<S: BaseNum> fmt::Debug for Aabb2<S> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(f, "[{:?} - {:?}]", self.min, self.max)
|
|
}
|
|
}
|
|
|
|
/// A three-dimensional AABB, aka a rectangular prism.
|
|
pub struct Aabb3<S> {
|
|
/// Minimum point of the AABB
|
|
pub min: Point3<S>,
|
|
/// Maximum point of the AABB
|
|
pub max: Point3<S>,
|
|
}
|
|
|
|
impl<S: BaseNum> Aabb3<S> {
|
|
/// Construct a new axis-aligned bounding box from two points.
|
|
#[inline]
|
|
pub fn new(p1: Point3<S>, p2: Point3<S>) -> Aabb3<S> {
|
|
Aabb3 {
|
|
min: Point3::new(min(p1.x, p2.x), min(p1.y, p2.y), min(p1.z, p2.z)),
|
|
max: Point3::new(max(p1.x, p2.x), max(p1.y, p2.y), max(p1.z, p2.z)),
|
|
}
|
|
}
|
|
|
|
/// Compute corners.
|
|
#[inline]
|
|
pub fn to_corners(&self) -> [Point3<S>; 8] {
|
|
[
|
|
self.min,
|
|
Point3::new(self.max.x, self.min.y, self.min.z),
|
|
Point3::new(self.min.x, self.max.y, self.min.z),
|
|
Point3::new(self.max.x, self.max.y, self.min.z),
|
|
Point3::new(self.min.x, self.min.y, self.max.z),
|
|
Point3::new(self.max.x, self.min.y, self.max.z),
|
|
Point3::new(self.min.x, self.max.y, self.max.z),
|
|
self.max,
|
|
]
|
|
}
|
|
}
|
|
|
|
impl<S: BaseNum> fmt::Debug for Aabb3<S> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(f, "[{:?} - {:?}]", self.min, self.max)
|
|
}
|
|
}
|
|
|
|
pub fn bounds_from_points<P, T>(points: impl Iterator<Item = P>) -> Option<([T; 2], [T; 2])>
|
|
where
|
|
P: Into<[T; 2]>,
|
|
T: PartialOrd + Copy,
|
|
{
|
|
let mut min: Option<[T; 2]> = None;
|
|
let mut max: Option<[T; 2]> = None;
|
|
|
|
for point in points {
|
|
let [x, y] = point.into();
|
|
|
|
if let Some([min_x, min_y]) = &mut min {
|
|
if x < *min_x {
|
|
*min_x = x;
|
|
}
|
|
if y < *min_y {
|
|
*min_y = y;
|
|
}
|
|
} else {
|
|
min = Some([x, y])
|
|
}
|
|
|
|
if let Some([max_x, max_y]) = &mut max {
|
|
if x > *max_x {
|
|
*max_x = x;
|
|
}
|
|
if y > *max_y {
|
|
*max_y = y;
|
|
}
|
|
} else {
|
|
max = Some([x, y])
|
|
}
|
|
}
|
|
|
|
if let (Some(min), Some(max)) = (min, max) {
|
|
Some((min, max))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
pub const fn div_away(lhs: i32, rhs: i32) -> i32 {
|
|
if rhs < 0 {
|
|
panic!("rhs must be positive")
|
|
}
|
|
|
|
if lhs < 0 {
|
|
div_floor(lhs, rhs)
|
|
} else {
|
|
div_ceil(lhs, rhs)
|
|
}
|
|
}
|
|
|
|
pub const fn div_ceil(lhs: i32, rhs: i32) -> i32 {
|
|
let d = lhs / rhs;
|
|
let r = lhs % rhs;
|
|
if (r > 0 && rhs > 0) || (r < 0 && rhs < 0) {
|
|
d + 1
|
|
} else {
|
|
d
|
|
}
|
|
}
|
|
|
|
pub const fn div_floor(lhs: i32, rhs: i32) -> i32 {
|
|
let d = lhs / rhs;
|
|
let r = lhs % rhs;
|
|
if (r > 0 && rhs < 0) || (r < 0 && rhs > 0) {
|
|
d - 1
|
|
} else {
|
|
d
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use crate::coords::EXTENT_SINT;
|
|
use crate::util::math::div_ceil;
|
|
|
|
#[test]
|
|
pub fn test_div_floor() {
|
|
assert_eq!(div_ceil(7000, EXTENT_SINT), 2);
|
|
assert_eq!(div_ceil(-7000, EXTENT_SINT), -1);
|
|
}
|
|
}
|