1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
//! Utility for generating a tile pattern which can be used for masking.

use std::{marker::PhantomData, mem::size_of, ops::Range};

use cgmath::Matrix4;

use crate::{
    coords::{ViewRegion, WorldTileCoords, Zoom},
    render::{
        camera::ViewProjection,
        resource::{BackingBufferDescriptor, BufferPool, Queue},
        shaders::{ShaderFeatureStyle, ShaderLayerMetadata, ShaderTileMetadata},
        ShaderVertex,
    },
    tessellation::IndexDataType,
};

pub const DEFAULT_TILE_VIEW_SIZE: wgpu::BufferAddress = 32 * 4;

/// The tile mask pattern assigns each tile a value which can be used for stencil testing.
pub struct TileViewPattern<Q, B> {
    in_view: Vec<TileInView>,
    buffer: BackingBuffer<B>,
    phantom_q: PhantomData<Q>,
}

#[derive(Clone)]
pub struct TileShape {
    pub zoom_factor: f64,

    pub coords: WorldTileCoords,

    pub transform: Matrix4<f64>,
    pub buffer_range: Range<wgpu::BufferAddress>,
}

impl TileShape {
    fn new(coords: WorldTileCoords, zoom: Zoom, index: u64) -> Self {
        const STRIDE: u64 = size_of::<ShaderTileMetadata>() as u64;
        Self {
            coords,
            zoom_factor: zoom.scale_to_tile(&coords),
            transform: coords.transform_for_zoom(zoom),
            buffer_range: index * STRIDE..(index + 1) * STRIDE,
        }
    }
}

#[derive(Clone)]
pub struct TileInView {
    pub shape: TileShape,

    pub fallback: Option<TileShape>,
}

#[derive(Debug)]
struct BackingBuffer<B> {
    /// The internal structure which is used for storage
    inner: B,
    /// The size of the `inner` buffer
    inner_size: wgpu::BufferAddress,
}

impl<B> BackingBuffer<B> {
    fn new(inner: B, inner_size: wgpu::BufferAddress) -> Self {
        Self { inner, inner_size }
    }
}

impl<Q: Queue<B>, B> TileViewPattern<Q, B> {
    pub fn new(buffer: BackingBufferDescriptor<B>) -> Self {
        Self {
            in_view: Vec::with_capacity(64),
            buffer: BackingBuffer::new(buffer.buffer, buffer.inner_size),
            phantom_q: Default::default(),
        }
    }

    #[tracing::instrument(skip_all)]
    pub fn update_pattern(
        &mut self,
        view_region: &ViewRegion,
        buffer_pool: &BufferPool<
            wgpu::Queue,
            wgpu::Buffer,
            ShaderVertex,
            IndexDataType,
            ShaderLayerMetadata,
            ShaderFeatureStyle,
        >,
        zoom: Zoom,
    ) {
        self.in_view.clear();

        let mut index = 0;

        let pool_index = buffer_pool.index();

        for coords in view_region.iter() {
            if coords.build_quad_key().is_none() {
                continue;
            }

            let shape = TileShape::new(coords, zoom, index);

            index += 1;

            let fallback = {
                if !pool_index.has_tile(&coords) {
                    if let Some(fallback_coords) = pool_index.get_tile_coords_fallback(&coords) {
                        tracing::trace!(
                            "Could not find data at {coords}. Falling back to {fallback_coords}"
                        );

                        let shape = TileShape::new(fallback_coords, zoom, index);

                        index += 1;
                        Some(shape)
                    } else {
                        None
                    }
                } else {
                    None
                }
            };

            self.in_view.push(TileInView { shape, fallback });
        }
    }

    pub fn iter(&self) -> impl Iterator<Item = &TileInView> + '_ {
        self.in_view.iter()
    }

    pub fn buffer(&self) -> &B {
        &self.buffer.inner
    }

    #[tracing::instrument(skip_all)]
    pub fn upload_pattern(&self, queue: &Q, view_proj: &ViewProjection) {
        let mut buffer = Vec::with_capacity(self.in_view.len());

        for tile in &self.in_view {
            buffer.push(ShaderTileMetadata {
                // We are casting here from 64bit to 32bit, because 32bit is more performant and is
                // better supported.
                transform: view_proj
                    .to_model_view_projection(tile.shape.transform)
                    .downcast()
                    .into(),
                zoom_factor: tile.shape.zoom_factor as f32,
            });

            if let Some(fallback_shape) = &tile.fallback {
                buffer.push(ShaderTileMetadata {
                    // We are casting here from 64bit to 32bit, because 32bit is more performant and is
                    // better supported.
                    transform: view_proj
                        .to_model_view_projection(fallback_shape.transform)
                        .downcast()
                        .into(),
                    zoom_factor: fallback_shape.zoom_factor as f32,
                });
            }
        }

        let raw_buffer = bytemuck::cast_slice(buffer.as_slice());
        if raw_buffer.len() as wgpu::BufferAddress > self.buffer.inner_size {
            /* TODO: We need to avoid this case by either choosing a proper size
            TODO: (DEFAULT_TILE_VIEW_SIZE), or resizing the buffer */
            panic!("Buffer is too small to store the tile pattern!");
        }
        queue.write_buffer(&self.buffer.inner, 0, raw_buffer);
    }

    pub fn stencil_reference_value(&self, world_coords: &WorldTileCoords) -> u8 {
        match (world_coords.x, world_coords.y) {
            (x, y) if x % 2 == 0 && y % 2 == 0 => 2,
            (x, y) if x % 2 == 0 && y % 2 != 0 => 1,
            (x, y) if x % 2 != 0 && y % 2 == 0 => 4,
            (x, y) if x % 2 != 0 && y % 2 != 0 => 3,
            _ => unreachable!(),
        }
    }
}