2023-09-22 06:19:25 -04:00

201 lines
5.4 KiB
TypeScript

import {Buffer, ShaderLayout, RenderPipelineParameters, glsl} from '@luma.gl/core';
import {AnimationLoopTemplate, AnimationProps, Model, CubeGeometry} from '@luma.gl/engine';
import '@luma.gl/webgpu';
import {Matrix4} from '@math.gl/core';
export const title = 'Two Cubes';
export const description = 'Shows usage of multiple uniform buffers.';
/** TODO - Provide both GLSL and WGSL shaders */
const SHADERS = {
vs: {
glsl: glsl`\
#version 300 es
#define SHADER_NAME cube-vs
uniform uniforms {
mat4 modelViewProjectionMatrix[16];
};
layout(location=0) in vec3 position;
layout(location=1) in vec2 uv;
out vec2 fragUV;
out vec4 fragPosition;
void main() {
gl_Position = modelViewProjectionMatrix[gl_InstanceID] * vec4(position, 1.0);
fragUV = uv;
fragPosition = vec4(position, 1.);
}
`,
wgsl: /* WGSL */`
struct Uniforms {
modelViewProjectionMatrix : @stride(64) array<mat4x4<f32>, 16>;
};
@binding(0) group(0) var<uniform> uniforms : Uniforms;
struct VertexOutput {
@builtin(position) Position : vec4<f32>,
@location(0) fragUV : vec2<f32>,
@location(1) fragPosition: vec4<f32>,
};
@vertex
fn main(@builtin(instance_index) instanceIdx : u32,
@location(0) position : vec4<f32>,
@location(1) uv : vec2<f32>) -> VertexOutput {
var output : VertexOutput;
output.Position = uniforms.modelViewProjectionMatrix[instanceIdx] * position;
output.fragUV = uv;
output.fragPosition = 0.5 * (position + vec4<f32>(1.0, 1.0, 1.0, 1.0));
return output;
}
`
},
fs: {
glsl: glsl`\
#version 300 es
#define SHADER_NAME cube-fs
precision highp float;
in vec2 fragUV;
in vec4 fragPosition;
layout (location=0) out vec4 fragColor;
void main() {
fragColor = fragPosition;
}
`,
wgsl: /* WGSL */`
@fragment
fn main(@location(0) fragUV: vec2<f32>,
@location(1) fragPosition: vec4<f32>) -> @location(0) vec4<f32> {
return fragPosition;
}
`
}
};
const X_COUNT = 4;
const Y_COUNT = 4;
const NUMBER_OF_INSTANCES = X_COUNT * Y_COUNT;
const MATRIX_SIZE = 4 * 4 * 4; // 4x4 (x4 bytes) matrix
const UNIFORM_BUFFER_SIZE = NUMBER_OF_INSTANCES * MATRIX_SIZE; // 4x4 (x4 bytes) matrix
const CUBE_ATTRIBUTE_LAYOUTS: ShaderLayout = {
attributes: [
{name: 'position', location: 0, type: 'vec4<f32>'},
{name: 'uv', location: 1, type: 'vec2<f32>'}
],
bindings: [
{name: 'uniforms', location: 0, type: 'uniform'}
]
};
const CUBE_RENDER_PARAMETERS: RenderPipelineParameters = {
// Enable depth testing so that the fragment closest to the camera
// is rendered in front.
depthWriteEnabled: true,
depthCompare: 'less',
depthFormat: 'depth24plus',
// Backface culling since the cube is solid piece of geometry.
// Faces pointing away from the camera will be occluded by faces
// pointing toward the camera.
cullMode: 'back',
};
export default class AppAnimationLoopTemplate extends AnimationLoopTemplate {
cubeModel: Model;
uniformBuffer: Buffer;
constructor({device}: AnimationProps) {
super();
// Create vertex buffers for the cube data.
const cube = new CubeGeometry({indices: false});
const positionBuffer = device.createBuffer({id: 'cube-positions', data: cube.attributes.POSITION.value});
const uvBuffer = device.createBuffer({id: 'cube-uvs', data: cube.attributes.TEXCOORD_0.value});
this.uniformBuffer = device.createBuffer({
id: 'uniforms',
usage: Buffer.UNIFORM | Buffer.COPY_DST,
byteLength: UNIFORM_BUFFER_SIZE,
});
this.cubeModel = new Model(device, {
id: 'cube',
vs: SHADERS.vs,
fs: SHADERS.fs,
topology: 'triangle-list',
shaderLayout: CUBE_ATTRIBUTE_LAYOUTS,
attributes: {
position: positionBuffer,
uv: uvBuffer
},
bindings: {
uniforms: this.uniformBuffer
},
vertexCount: cube.vertexCount,
instanceCount: NUMBER_OF_INSTANCES,
parameters: CUBE_RENDER_PARAMETERS
});
}
onFinalize(animationProps: AnimationProps): void {
this.uniformBuffer.destroy();
this.cubeModel.destroy();
}
onRender({device}: AnimationProps) {
const projectionMatrix = new Matrix4();
const aspect = device.canvasContext?.getAspect();
const now = Date.now() / 1000;
projectionMatrix.perspective({fovy: (2 * Math.PI) / 5, aspect, near: 1, far: 100.0});
const mvpMatrices = getMVPMatrixArray(projectionMatrix, now);
this.uniformBuffer.write(mvpMatrices);
const renderPass = device.beginRenderPass();
this.cubeModel.draw(renderPass);
renderPass.end();
}
}
// Initialize the matrix data for every instance.
const modelMatrices = [];
const STEP = 4.0;
for (let x = 0; x < X_COUNT; x++) {
for (let y = 0; y < Y_COUNT; y++) {
modelMatrices.push(new Matrix4().translate([STEP * (x - X_COUNT / 2 + 0.5), STEP * (y - Y_COUNT / 2 + 0.5), 0]));
}
}
const mvpMatricesData = new Float32Array(NUMBER_OF_INSTANCES * 16);
// Update the transformation matrix data for each instance.
function getMVPMatrixArray(projectionMatrix: Matrix4, now: number): Float32Array {
const viewMatrix = new Matrix4().translate([0, 0, -12]);
const tmpMat4 = new Matrix4();
let i = 0;
let offset = 0;
for (let x = 0; x < X_COUNT; x++) {
for (let y = 0; y < Y_COUNT; y++) {
tmpMat4.copy(modelMatrices[i]).rotateAxis(1, [Math.sin((x + 0.5) * now), Math.cos((y + 0.5) * now), 0])
.multiplyLeft(viewMatrix).multiplyLeft(projectionMatrix);
mvpMatricesData.set(tmpMat4, offset);
i++;
offset += 16;
}
}
return mvpMatricesData;
}