luma.gl/docs/tutorials/lighting.mdx
2025-08-17 08:04:23 -04:00

215 lines
5.9 KiB
Plaintext

import {DeviceTabs} from '@site/src/react-luma';
import {LightingExample} from '@site/src/examples';
# Lighting
Add Phong shading to a textured cube using luma.gl's shader module system.
:::caution
Tutorials are maintained on a best-effort basis and may not be fully up to date (contributions welcome).
:::
<DeviceTabs />
<LightingExample />
It is assumed you've set up your development environment as described in [Setup](/docs/tutorials).
The base shaders handle geometry and texture sampling. Lighting calculations are
delegated to shader modules which implement the Phong shading model and a
configurable material. A `ShaderInputs` instance wires module uniforms together
and exposes light and material parameters to JavaScript.
The example below introduces the `lighting` and `phongMaterial` shader modules. A
`ShaderInputs` instance manages uniform blocks and module settings, while the
`Model` is supplied with both WGSL and GLSL shaders for cross-platform rendering.
```typescript
import {NumberArray} from '@luma.gl/core';
import type {AnimationProps} from '@luma.gl/engine';
import {
AnimationLoopTemplate,
Model,
CubeGeometry,
ShaderInputs,
loadImageBitmap,
AsyncTexture
} from '@luma.gl/engine';
import {lighting, phongMaterial, ShaderModule} from '@luma.gl/shadertools';
import {Matrix4} from '@math.gl/core';
import {webgl2Adapter} from '@luma.gl/webgl';
import {webgpuAdapter} from '@luma.gl/webgpu';
const WGSL_SHADER = /* wgsl */ `
struct Uniforms {
modelMatrix : mat4x4<f32>,
mvpMatrix : mat4x4<f32>,
eyePosition : vec3<f32>,
};
@binding(0) @group(0) var<uniform> app : Uniforms;
@group(0) @binding(1) var uTexture : texture_2d<f32>;
@group(0) @binding(2) var uTextureSampler : sampler;
struct VertexInputs {
@location(0) positions : vec3<f32>,
@location(1) normals : vec3<f32>,
@location(2) texCoords : vec2<f32>
};
struct FragmentInputs {
@builtin(position) Position : vec4<f32>,
@location(0) fragUV : vec2<f32>,
@location(1) fragPosition: vec3<f32>,
@location(2) fragNormal: vec3<f32>
}
@vertex
fn vertexMain(inputs: VertexInputs) -> FragmentInputs {
var outputs : FragmentInputs;
outputs.Position = app.mvpMatrix * app.modelMatrix * vec4(inputs.positions, 1.0);
outputs.fragUV = inputs.texCoords;
outputs.fragPosition = (app.modelMatrix * vec4(inputs.positions, 1.0)).xyz;
let mat3 = mat3x3(app.modelMatrix[0].xyz, app.modelMatrix[1].xyz, app.modelMatrix[2].xyz);
outputs.fragNormal = mat3 * inputs.normals;
return outputs;
}
@fragment
fn fragmentMain(inputs: FragmentInputs) -> @location(0) vec4<f32> {
return textureSample(uTexture, uTextureSampler, inputs.fragUV);
}
`;
const VS_GLSL = /* glsl */ `
#version 300 es
in vec3 positions;
in vec3 normals;
in vec2 texCoords;
out vec3 vPosition;
out vec3 vNormal;
out vec2 vUV;
uniform appUniforms {
mat4 modelMatrix;
mat4 mvpMatrix;
vec3 eyePosition;
} app;
void main(void) {
vPosition = (app.modelMatrix * vec4(positions, 1.0)).xyz;
vNormal = mat3(app.modelMatrix) * normals;
vUV = texCoords;
gl_Position = app.mvpMatrix * vec4(positions, 1.0);
}
`;
const FS_GLSL = /* glsl */ `
#version 300 es
precision highp float;
in vec3 vPosition;
in vec3 vNormal;
in vec2 vUV;
uniform sampler2D uTexture;
uniform appUniforms {
mat4 modelMatrix;
mat4 mvpMatrix;
vec3 eyePosition;
} app;
out vec4 fragColor;
void main(void) {
vec3 surfaceColor = texture(uTexture, vec2(vUV.x, 1.0 - vUV.y)).rgb;
surfaceColor = lighting_getLightColor(surfaceColor, app.eyePosition, vPosition, normalize(vNormal));
fragColor = vec4(surfaceColor, 1.0);
}
`;
type AppUniforms = {
modelMatrix: NumberArray;
mvpMatrix: NumberArray;
eyePosition: NumberArray;
};
const app: ShaderModule<AppUniforms, AppUniforms> = {
name: 'app',
uniformTypes: {
modelMatrix: 'mat4x4<f32>',
mvpMatrix: 'mat4x4<f32>',
eyePosition: 'vec3<f32>'
}
};
const eyePosition = [0, 0, 5];
class AppAnimationLoopTemplate extends AnimationLoopTemplate {
model: Model;
shaderInputs = new ShaderInputs<{
app: typeof app.props;
lighting: typeof lighting.props;
phongMaterial: typeof phongMaterial.props;
}>({app, lighting, phongMaterial});
modelMatrix = new Matrix4();
viewMatrix = new Matrix4().lookAt({eye: eyePosition});
mvpMatrix = new Matrix4();
constructor({device}: AnimationProps) {
super();
this.shaderInputs.setProps({
lighting: {
lights: [
{type: 'ambient', color: [255, 255, 255]},
{type: 'point', color: [255, 255, 255], position: [1, 2, 1]}
]
},
phongMaterial: {specularColor: [255, 255, 255], shininess: 100}
});
const texture = new AsyncTexture(device, {data: loadImageBitmap('vis-logo.png')});
this.model = new Model(device, {
source: WGSL_SHADER,
vs: VS_GLSL,
fs: FS_GLSL,
shaderInputs: this.shaderInputs,
geometry: new CubeGeometry(),
bindings: {uTexture: texture},
parameters: {depthWriteEnabled: true, depthCompare: 'less-equal'}
});
}
onFinalize() {
this.model.destroy();
}
onRender({device, aspect, tick}) {
this.modelMatrix.identity().rotateX(tick * 0.01).rotateY(tick * 0.013);
this.mvpMatrix
.perspective({fovy: Math.PI / 3, aspect})
.multiplyRight(this.viewMatrix)
.multiplyRight(this.modelMatrix);
this.shaderInputs.setProps({
app: {modelMatrix: this.modelMatrix, mvpMatrix: this.mvpMatrix, eyePosition}
});
const renderPass = device.beginRenderPass({clearColor: [0, 0, 0, 1], clearDepth: true});
this.model.draw(renderPass);
renderPass.end();
}
}
const animationLoop = makeAnimationLoop(AnimationLoopTemplate, {adapters: [webgpuAdapter, webgl2Adapter]})
animationLoop.start();
```
Each frame the animation loop updates the model and projection matrices, writes
them through `ShaderInputs`, and draws the cube. The lighting module then
computes diffuse and specular contributions so the textured cube appears shaded
under a point light and an ambient light.