# Learning Resources ## WebGPU - [WebGPU Samples](https://webgpu.github.io/webgpu-samples/) - Sample code (some of these samples were adapted to luma.gl) - [Raw WebGPU](https://alain.xyz/blog/raw-webgpu) - A WebGPU tutorial - [WebGPU Fundamentals](https://webgpufundamentals.org/) - Walkthroughs - [WebGPU — All of the cores, none of the canvas](https://surma.dev/things/webgpu/) - About WebGPU compute - [WebGPU specification](https://gpuweb.github.io/gpuweb/) - [WGSL specification](https://gpuweb.github.io/gpuweb/wgsl/) - [Efficiently rendering glTF models](https://toji.dev/webgpu-gltf-case-study/) This superb case study by Brandon Jones contains a substantial amount of information about how WebGPU differs from WebGL. ## WebGL - [WebGL 2 Fundamentals](https://webgl2fundamentals.org/) - Recommended if you are unfamiliar with how to draw with WebGL. - [WebGL 2 Specification](https://registry.khronos.org/webgl/specs/latest/2.0/) - [OpenGL ES 3.0 Specification](https://registry.khronos.org/OpenGL/specs/es/3.0/es_spec_3.0.pdf) - [GLSL ES 3.0 Specification](https://registry.khronos.org/OpenGL/specs/es/3.0/GLSL_ES_Specification_3.00.pdf ## glTF - [glTF 2.0 Specification](https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html) - [Efficiently rendering glTF models](https://toji.dev/webgpu-gltf-case-study/) Again, this case study by Brandon Jones contains a substantial amount of information about how glTF is implemented.