Tilmann Scheller 0511091e8a Streamline copyright notices across the codebase. (#1473)
Since the project is now hosted at the JS Foundation we can move to unified copyright notices for the project.

Starting with this commit all future contributions to the project should only carry the following copyright notice (except for third-party code which requires copyright information to be preserved):

"Copyright JS Foundation and other contributors, http://js.foundation" (without the quotes)

This avoids cluttering the codebase with contributor-specific copyright notices which have a higher maintenance overhead and tend to get outdated quickly. Also dropping the year from the copyright notices helps to avoid yearly code changes just to update the copyright notices.

Note that each contributor still retains full copyright ownership of his/her contributions and the respective authorship is tracked very accurately via Git.

JerryScript-DCO-1.0-Signed-off-by: Tilmann Scheller t.scheller@samsung.com
2016-12-08 06:39:11 +01:00

475 lines
12 KiB
C

/* Copyright JS Foundation and other contributors, http://js.foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is based on work under the following copyright and permission
* notice:
*
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
*
* @(#)e_pow.c 1.5 04/04/22
*/
#include "jerry-libm-internal.h"
/* pow(x,y) return x**y
*
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 53-24 = 29 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 0. +1 ** (anything) is 1
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. -1 ** +-INF is 1
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
* Accuracy:
* pow(x,y) returns x**y nearly rounded. In particular
* pow(integer,integer)
* always returns the correct integer provided it is
* representable.
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
static const double bp[] =
{
1.0,
1.5,
};
static const double dp_h[] =
{
0.0,
5.84962487220764160156e-01, /* 0x3FE2B803, 0x40000000 */
};
static const double dp_l[] =
{
0.0,
1.35003920212974897128e-08, /* 0x3E4CFDEB, 0x43CFD006 */
};
#define zero 0.0
#define one 1.0
#define two 2.0
#define two53 9007199254740992.0 /* 0x43400000, 0x00000000 */
#define huge 1.0e300
#define tiny 1.0e-300
/* poly coefs for (3/2) * (log(x) - 2s - 2/3 * s**3 */
#define L1 5.99999999999994648725e-01 /* 0x3FE33333, 0x33333303 */
#define L2 4.28571428578550184252e-01 /* 0x3FDB6DB6, 0xDB6FABFF */
#define L3 3.33333329818377432918e-01 /* 0x3FD55555, 0x518F264D */
#define L4 2.72728123808534006489e-01 /* 0x3FD17460, 0xA91D4101 */
#define L5 2.30660745775561754067e-01 /* 0x3FCD864A, 0x93C9DB65 */
#define L6 2.06975017800338417784e-01 /* 0x3FCA7E28, 0x4A454EEF */
#define P1 1.66666666666666019037e-01 /* 0x3FC55555, 0x5555553E */
#define P2 -2.77777777770155933842e-03 /* 0xBF66C16C, 0x16BEBD93 */
#define P3 6.61375632143793436117e-05 /* 0x3F11566A, 0xAF25DE2C */
#define P4 -1.65339022054652515390e-06 /* 0xBEBBBD41, 0xC5D26BF1 */
#define P5 4.13813679705723846039e-08 /* 0x3E663769, 0x72BEA4D0 */
#define lg2 6.93147180559945286227e-01 /* 0x3FE62E42, 0xFEFA39EF */
#define lg2_h 6.93147182464599609375e-01 /* 0x3FE62E43, 0x00000000 */
#define lg2_l -1.90465429995776804525e-09 /* 0xBE205C61, 0x0CA86C39 */
#define ovt 8.0085662595372944372e-0017 /* -(1024-log2(ovfl+.5ulp)) */
#define cp 9.61796693925975554329e-01 /* 0x3FEEC709, 0xDC3A03FD = 2 / (3 ln2) */
#define cp_h 9.61796700954437255859e-01 /* 0x3FEEC709, 0xE0000000 = (float) cp */
#define cp_l -7.02846165095275826516e-09 /* 0xBE3E2FE0, 0x145B01F5 = tail of cp_h */
#define ivln2 1.44269504088896338700e+00 /* 0x3FF71547, 0x652B82FE = 1 / ln2 */
#define ivln2_h 1.44269502162933349609e+00 /* 0x3FF71547, 0x60000000 = 24b 1 / ln2 */
#define ivln2_l 1.92596299112661746887e-08 /* 0x3E54AE0B, 0xF85DDF44 = 1 / ln2 tail */
double
pow (double x, double y)
{
double z, ax, z_h, z_l, p_h, p_l;
double y1, t1, t2, r, s, t, u, v, w;
int i, j, k, yisint, n;
int hx, hy, ix, iy;
unsigned lx, ly;
hx = __HI (x);
lx = __LO (x);
hy = __HI (y);
ly = __LO (y);
ix = hx & 0x7fffffff;
iy = hy & 0x7fffffff;
/* x == one: 1**y = 1 */
if (((hx - 0x3ff00000) | lx) == 0)
{
return one;
}
/* y == zero: x**0 = 1 */
if ((iy | ly) == 0)
{
return one;
}
/* +-NaN return x + y */
if (ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) || iy > 0x7ff00000 || ((iy == 0x7ff00000) && (ly != 0)))
{
return x + y;
}
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if (hx < 0)
{
if (iy >= 0x43400000) /* even integer y */
{
yisint = 2;
}
else if (iy >= 0x3ff00000)
{
k = (iy >> 20) - 0x3ff; /* exponent */
if (k > 20)
{
j = ly >> (52 - k);
if ((j << (52 - k)) == ly)
{
yisint = 2 - (j & 1);
}
}
else if (ly == 0)
{
j = iy >> (20 - k);
if ((j << (20 - k)) == iy)
{
yisint = 2 - (j & 1);
}
}
}
}
/* special value of y */
if (ly == 0)
{
if (iy == 0x7ff00000) /* y is +-inf */
{
if (((ix - 0x3ff00000) | lx) == 0) /* +-1**+-inf is 1 */
{
return one;
}
else if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */
{
return (hy >= 0) ? y : zero;
}
else /* (|x|<1)**-,+inf = inf,0 */
{
return (hy < 0) ? -y : zero;
}
}
if (iy == 0x3ff00000) /* y is +-1 */
{
if (hy < 0)
{
return one / x;
}
else
{
return x;
}
}
if (hy == 0x40000000) /* y is 2 */
{
return x * x;
}
if (hy == 0x3fe00000) /* y is 0.5 */
{
if (hx >= 0) /* x >= +0 */
{
return sqrt (x);
}
}
}
ax = fabs (x);
/* special value of x */
if (lx == 0)
{
if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000)
{
z = ax; /* x is +-0,+-inf,+-1 */
if (hy < 0)
{
z = one / z; /* z = (1 / |x|) */
}
if (hx < 0)
{
if (((ix - 0x3ff00000) | yisint) == 0)
{
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
}
else if (yisint == 1)
{
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
}
return z;
}
}
n = (hx >> 31) + 1;
/* (x<0)**(non-int) is NaN */
if ((n | yisint) == 0)
{
return (x - x) / (x - x);
}
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
if ((n | (yisint - 1)) == 0)
{
s = -one; /* (-ve)**(odd int) */
}
/* |y| is huge */
if (iy > 0x41e00000) /* if |y| > 2**31 */
{
if (iy > 0x43f00000) /* if |y| > 2**64, must o/uflow */
{
if (ix <= 0x3fefffff)
{
return (hy < 0) ? huge * huge : tiny * tiny;
}
if (ix >= 0x3ff00000)
{
return (hy > 0) ? huge * huge : tiny * tiny;
}
}
/* over/underflow if x is not close to one */
if (ix < 0x3fefffff)
{
return (hy < 0) ? s * huge * huge : s * tiny * tiny;
}
if (ix > 0x3ff00000)
{
return (hy > 0) ? s * huge * huge : s * tiny * tiny;
}
/* now |1 - x| is tiny <= 2**-20, suffice to compute
log(x) by x - x^2 / 2 + x^3 / 3 - x^4 / 4 */
t = ax - one; /* t has 20 trailing zeros */
w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
u = ivln2_h * t; /* ivln2_h has 21 sig. bits */
v = t * ivln2_l - w * ivln2;
t1 = u + v;
__LO (t1) = 0;
t2 = v - (t1 - u);
}
else
{
double ss, s2, s_h, s_l, t_h, t_l;
n = 0;
/* take care subnormal number */
if (ix < 0x00100000)
{
ax *= two53;
n -= 53;
ix = __HI (ax);
}
n += ((ix) >> 20) - 0x3ff;
j = ix & 0x000fffff;
/* determine interval */
ix = j | 0x3ff00000; /* normalize ix */
if (j <= 0x3988E) /* |x| < sqrt(3/2) */
{
k = 0;
}
else if (j < 0xBB67A) /* |x| < sqrt(3) */
{
k = 1;
}
else
{
k = 0;
n += 1;
ix -= 0x00100000;
}
__HI (ax) = ix;
/* compute ss = s_h + s_l = (x - 1) / (x + 1) or (x - 1.5) / (x + 1.5) */
u = ax - bp[k]; /* bp[0] = 1.0, bp[1] = 1.5 */
v = one / (ax + bp[k]);
ss = u * v;
s_h = ss;
__LO (s_h) = 0;
/* t_h = ax + bp[k] High */
t_h = zero;
__HI (t_h) = ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18);
t_l = ax - (t_h - bp[k]);
s_l = v * ((u - s_h * t_h) - s_h * t_l);
/* compute log(ax) */
s2 = ss * ss;
r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
r += s_l * (s_h + ss);
s2 = s_h * s_h;
t_h = 3.0 + s2 + r;
__LO (t_h) = 0;
t_l = r - ((t_h - 3.0) - s2);
/* u + v = ss * (1 + ...) */
u = s_h * t_h;
v = s_l * t_h + t_l * ss;
/* 2 / (3 * log2) * (ss + ...) */
p_h = u + v;
__LO (p_h) = 0;
p_l = v - (p_h - u);
z_h = cp_h * p_h; /* cp_h + cp_l = 2 / (3 * log2) */
z_l = cp_l * p_h + p_l * cp + dp_l[k];
/* log2(ax) = (ss + ...) * 2 / (3 * log2) = n + dp_h + z_h + z_l */
t = (double) n;
t1 = (((z_h + z_l) + dp_h[k]) + t);
__LO (t1) = 0;
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
}
/* split up y into y1 + y2 and compute (y1 + y2) * (t1 + t2) */
y1 = y;
__LO (y1) = 0;
p_l = (y - y1) * t1 + y * t2;
p_h = y1 * t1;
z = p_l + p_h;
j = __HI (z);
i = __LO (z);
if (j >= 0x40900000) /* z >= 1024 */
{
if (((j - 0x40900000) | i) != 0) /* if z > 1024 */
{
return s * huge * huge; /* overflow */
}
else
{
if (p_l + ovt > z - p_h)
{
return s * huge * huge; /* overflow */
}
}
}
else if ((j & 0x7fffffff) >= 0x4090cc00) /* z <= -1075 */
{
if (((j - 0xc090cc00) | i) != 0) /* z < -1075 */
{
return s * tiny * tiny; /* underflow */
}
else
{
if (p_l <= z - p_h)
{
return s * tiny * tiny; /* underflow */
}
}
}
/*
* compute 2**(p_h + p_l)
*/
i = j & 0x7fffffff;
k = (i >> 20) - 0x3ff;
n = 0;
if (i > 0x3fe00000) /* if |z| > 0.5, set n = [z + 0.5] */
{
n = j + (0x00100000 >> (k + 1));
k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
t = zero;
__HI (t) = (n & ~(0x000fffff >> k));
n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
if (j < 0)
{
n = -n;
}
p_h -= t;
}
t = p_l + p_h;
__LO (t) = 0;
u = t * lg2_h;
v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
z = u + v;
w = v - (z - u);
t = z * z;
t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
r = (z * t1) / (t1 - two) - (w + z * w);
z = one - (r - z);
j = __HI (z);
j += (n << 20);
if ((j >> 20) <= 0) /* subnormal output */
{
z = scalbn (z, n);
}
else
{
__HI (z) += (n << 20);
}
return s * z;
} /* pow */
#undef zero
#undef one
#undef two
#undef two53
#undef huge
#undef tiny
#undef L1
#undef L2
#undef L3
#undef L4
#undef L5
#undef L6
#undef P1
#undef P2
#undef P3
#undef P4
#undef P5
#undef lg2
#undef lg2_h
#undef lg2_l
#undef ovt
#undef cp
#undef cp_h
#undef cp_l
#undef ivln2
#undef ivln2_h
#undef ivln2_l