Akos Kiss a72caf1301 Turn simple constants to preprocessor macros
JerryScript-DCO-1.0-Signed-off-by: Akos Kiss akiss@inf.u-szeged.hu
2016-04-06 13:45:22 +02:00

141 lines
4.1 KiB
C

/* @(#)k_tan.c 1.5 04/04/22 */
/*
* ====================================================
* Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __kernel_tan( x, y, k )
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
* Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
*
* Algorithm
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
* [0,0.67434]
* 3 27
* tan(x) ~ x + T1*x + ... + T13*x
* where
*
* |tan(x) 2 4 26 | -59.2
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
* | x |
*
* Note: tan(x+y) = tan(x) + tan'(x)*y
* ~ tan(x) + (1+x*x)*y
* Therefore, for better accuracy in computing tan(x+y), let
* 3 2 2 2 2
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
* then
* 3 2
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
*
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
*/
#include "fdlibm.h"
#define T0 3.33333333333334091986e-01 /* 3FD55555, 55555563 */
#define T1 1.33333333333201242699e-01 /* 3FC11111, 1110FE7A */
#define T2 5.39682539762260521377e-02 /* 3FABA1BA, 1BB341FE */
#define T3 2.18694882948595424599e-02 /* 3F9664F4, 8406D637 */
#define T4 8.86323982359930005737e-03 /* 3F8226E3, E96E8493 */
#define T5 3.59207910759131235356e-03 /* 3F6D6D22, C9560328 */
#define T6 1.45620945432529025516e-03 /* 3F57DBC8, FEE08315 */
#define T7 5.88041240820264096874e-04 /* 3F4344D8, F2F26501 */
#define T8 2.46463134818469906812e-04 /* 3F3026F7, 1A8D1068 */
#define T9 7.81794442939557092300e-05 /* 3F147E88, A03792A6 */
#define T10 7.14072491382608190305e-05 /* 3F12B80F, 32F0A7E9 */
#define T11 -1.85586374855275456654e-05 /* BEF375CB, DB605373 */
#define T12 2.59073051863633712884e-05 /* 3EFB2A70, 74BF7AD4 */
#define one 1.00000000000000000000e+00 /* 3FF00000, 00000000 */
#define pio4 7.85398163397448278999e-01 /* 3FE921FB, 54442D18 */
#define pio4lo 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
double __kernel_tan(double x, double y, int iy)
{
double z, r, v, w, s;
int ix, hx;
hx = __HI(x); /* high word of x */
ix = hx & 0x7fffffff; /* high word of |x| */
if (ix < 0x3e300000) { /* x < 2**-28 */
if ((int) x == 0) { /* generate inexact */
if (((ix | __LO(x)) | (iy + 1)) == 0)
return one / fabs(x);
else {
if (iy == 1)
return x;
else { /* compute -1 / (x+y) carefully */
double a, t;
z = w = x + y;
__LO(z) = 0;
v = y - (z - x);
t = a = -one / w;
__LO(t) = 0;
s = one + t * z;
return t + a * (s + t * v);
}
}
}
}
if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
if (hx < 0) {
x = -x;
y = -y;
}
z = pio4 - x;
w = pio4lo - y;
x = z + w;
y = 0.0;
}
z = x * x;
w = z * z;
/*
* Break x^5*(T[1]+x^2*T[2]+...) into
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
*/
r = T1 + w * (T3 + w * (T5 + w * (T7 + w * (T9 +
w * T11))));
v = z * (T2 + w * (T4 + w * (T6 + w * (T8 + w * (T10 +
w * T12)))));
s = z * x;
r = y + z * (s * (r + v) + y);
r += T0 * s;
w = x + r;
if (ix >= 0x3FE59428) {
v = (double) iy;
return (double) (1 - ((hx >> 30) & 2)) *
(v - 2.0 * (x - (w * w / (w + v) - r)));
}
if (iy == 1)
return w;
else {
/*
* if allow error up to 2 ulp, simply return
* -1.0 / (x+r) here
*/
/* compute -1.0 / (x+r) accurately */
double a, t;
z = w;
__LO(z) = 0;
v = r - (z - x); /* z+v = r+x */
t = a = -1.0 / w; /* a = -1.0/w */
__LO(t) = 0;
s = 1.0 + t * z;
return t + a * (s + t * v);
}
}