jerryscript/jerry-core/parser/js/serializer.cpp
Ruben Ayrapetyan 1fe2817457 Introduce parser-time optimization that moves function's argument values to registers.
For functions with the optimization applied:
 - vm puts arguments values immediately to registers without putting them to variables in lexical environment;
 - number of arguments is extracted from corresponding 'reg_var_decl' instruction's argument;
 - for functions that also don't have local variables, lexical environments are not created.

JerryScript-DCO-1.0-Signed-off-by: Ruben Ayrapetyan r.ayrapetyan@samsung.com
2015-11-02 17:15:13 +03:00

477 lines
17 KiB
C++

/* Copyright 2014-2015 Samsung Electronics Co., Ltd.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lit-id-hash-table.h"
#include "serializer.h"
#include "bytecode-data.h"
#include "pretty-printer.h"
#include "array-list.h"
#include "scopes-tree.h"
static bytecode_data_header_t *first_bytecode_header_p;
static scopes_tree current_scope;
static bool print_instrs;
static void
serializer_print_instrs (const bytecode_data_header_t *);
op_meta
serializer_get_op_meta (vm_instr_counter_t oc)
{
JERRY_ASSERT (current_scope);
return scopes_tree_op_meta (current_scope, oc);
}
/**
* Get byte-code instruction from current scope, or specified byte-code array
*
* @return byte-code instruction
*/
vm_instr_t
serializer_get_instr (const bytecode_data_header_t *bytecode_data_p, /**< pointer to byte-code data (or NULL,
* if instruction should be taken from
* instruction list of current scope) */
vm_instr_counter_t oc) /**< position of the intruction */
{
if (bytecode_data_p == NULL)
{
return serializer_get_op_meta (oc).op;
}
else
{
JERRY_ASSERT (oc < bytecode_data_p->instrs_count);
return bytecode_data_p->instrs_p[oc];
}
} /* serializer_get_instr */
/**
* Convert literal id (operand value of instruction) to compressed pointer to literal
*
* Bytecode is divided into blocks of fixed size and each block has independent encoding of variable names,
* which are represented by 8 bit numbers - ids.
* This function performs conversion from id to literal.
*
* @return compressed pointer to literal
*/
lit_cpointer_t
serializer_get_literal_cp_by_uid (uint8_t id, /**< literal idx */
const bytecode_data_header_t *bytecode_data_p, /**< pointer to bytecode */
vm_instr_counter_t oc) /**< position in the bytecode */
{
lit_id_hash_table *lit_id_hash = null_hash;
if (bytecode_data_p)
{
lit_id_hash = MEM_CP_GET_POINTER (lit_id_hash_table, bytecode_data_p->lit_id_hash_cp);
}
else
{
lit_id_hash = MEM_CP_GET_POINTER (lit_id_hash_table, first_bytecode_header_p->lit_id_hash_cp);
}
if (lit_id_hash == null_hash)
{
return INVALID_LITERAL;
}
return lit_id_hash_table_lookup (lit_id_hash, id, oc);
} /* serializer_get_literal_cp_by_uid */
void
serializer_set_scope (scopes_tree new_scope)
{
current_scope = new_scope;
}
/**
* Dump scope to current scope
*
* NOTE:
* This function is used for processing of function expressions as they should not be hoisted.
* After parsing a function expression, it is immediately dumped to current scope via call of this function.
*/
void
serializer_dump_subscope (scopes_tree tree) /**< scope to dump */
{
JERRY_ASSERT (tree != NULL);
vm_instr_counter_t instr_pos;
bool header = true;
for (instr_pos = 0; instr_pos < tree->instrs_count; instr_pos++)
{
op_meta *om_p = (op_meta *) linked_list_element (tree->instrs, instr_pos);
if (om_p->op.op_idx != VM_OP_VAR_DECL
&& om_p->op.op_idx != VM_OP_META && !header)
{
break;
}
if (om_p->op.op_idx == VM_OP_REG_VAR_DECL)
{
header = false;
}
scopes_tree_add_op_meta (current_scope, *om_p);
}
for (vm_instr_counter_t var_decl_pos = 0;
var_decl_pos < linked_list_get_length (tree->var_decls);
var_decl_pos++)
{
op_meta *om_p = (op_meta *) linked_list_element (tree->var_decls, var_decl_pos);
scopes_tree_add_op_meta (current_scope, *om_p);
}
for (uint8_t child_id = 0; child_id < tree->t.children_num; child_id++)
{
serializer_dump_subscope (*(scopes_tree *) linked_list_element (tree->t.children, child_id));
}
for (; instr_pos < tree->instrs_count; instr_pos++)
{
op_meta *om_p = (op_meta *) linked_list_element (tree->instrs, instr_pos);
scopes_tree_add_op_meta (current_scope, *om_p);
}
} /* serializer_dump_subscope */
/**
* Merge scopes tree into bytecode
*
* @return pointer to generated bytecode
*/
const bytecode_data_header_t *
serializer_merge_scopes_into_bytecode (void)
{
const size_t buckets_count = scopes_tree_count_literals_in_blocks (current_scope);
const vm_instr_counter_t instrs_count = scopes_tree_count_instructions (current_scope);
const size_t blocks_count = JERRY_ALIGNUP (instrs_count, BLOCK_SIZE) / BLOCK_SIZE;
const size_t bytecode_size = JERRY_ALIGNUP (instrs_count * sizeof (vm_instr_t), MEM_ALIGNMENT);
const size_t hash_table_size = lit_id_hash_table_get_size_for_table (buckets_count, blocks_count);
const size_t header_and_hash_table_size = JERRY_ALIGNUP (sizeof (bytecode_data_header_t) + hash_table_size,
MEM_ALIGNMENT);
uint8_t *buffer_p = (uint8_t*) mem_heap_alloc_block (bytecode_size + header_and_hash_table_size,
MEM_HEAP_ALLOC_LONG_TERM);
lit_id_hash_table *lit_id_hash = lit_id_hash_table_init (buffer_p + sizeof (bytecode_data_header_t),
hash_table_size,
buckets_count, blocks_count);
vm_instr_t *bytecode_p = scopes_tree_raw_data (current_scope,
buffer_p + header_and_hash_table_size,
bytecode_size,
lit_id_hash);
bytecode_data_header_t *header_p = (bytecode_data_header_t *) buffer_p;
MEM_CP_SET_POINTER (header_p->lit_id_hash_cp, lit_id_hash);
header_p->instrs_p = bytecode_p;
header_p->instrs_count = instrs_count;
MEM_CP_SET_POINTER (header_p->next_header_cp, first_bytecode_header_p);
first_bytecode_header_p = header_p;
if (print_instrs)
{
lit_dump_literals ();
serializer_print_instrs (header_p);
}
return header_p;
} /* serializer_merge_scopes_into_bytecode */
void
serializer_dump_op_meta (op_meta op)
{
JERRY_ASSERT (scopes_tree_instrs_num (current_scope) < MAX_OPCODES);
scopes_tree_add_op_meta (current_scope, op);
#ifdef JERRY_ENABLE_PRETTY_PRINTER
if (print_instrs)
{
pp_op_meta (NULL, (vm_instr_counter_t) (scopes_tree_instrs_num (current_scope) - 1), op, false);
}
#endif
}
/**
* Dump variable declaration into the current scope
*/
void
serializer_dump_var_decl (op_meta op) /**< variable declaration instruction */
{
JERRY_ASSERT (scopes_tree_instrs_num (current_scope)
+ linked_list_get_length (current_scope->var_decls) < MAX_OPCODES);
scopes_tree_add_var_decl (current_scope, op);
} /* serializer_dump_var_decl */
vm_instr_counter_t
serializer_get_current_instr_counter (void)
{
return scopes_tree_instrs_num (current_scope);
}
vm_instr_counter_t
serializer_count_instrs_in_subscopes (void)
{
return (vm_instr_counter_t) (scopes_tree_count_instructions (current_scope) - scopes_tree_instrs_num (current_scope));
}
void
serializer_set_writing_position (vm_instr_counter_t oc)
{
scopes_tree_set_instrs_num (current_scope, oc);
}
void
serializer_rewrite_op_meta (const vm_instr_counter_t loc, op_meta op)
{
scopes_tree_set_op_meta (current_scope, loc, op);
#ifdef JERRY_ENABLE_PRETTY_PRINTER
if (print_instrs)
{
pp_op_meta (NULL, loc, op, true);
}
#endif
}
static void
serializer_print_instrs (const bytecode_data_header_t *bytecode_data_p)
{
#ifdef JERRY_ENABLE_PRETTY_PRINTER
for (vm_instr_counter_t loc = 0; loc < bytecode_data_p->instrs_count; loc++)
{
op_meta opm;
opm.op = bytecode_data_p->instrs_p[loc];
for (int i = 0; i < 3; i++)
{
opm.lit_id[i] = NOT_A_LITERAL;
}
pp_op_meta (bytecode_data_p, loc, opm, false);
}
#else
(void) bytecode_data_p;
#endif
}
void
serializer_init ()
{
current_scope = NULL;
print_instrs = false;
first_bytecode_header_p = NULL;
lit_init ();
}
void serializer_set_show_instrs (bool show_instrs)
{
print_instrs = show_instrs;
}
/**
* Deletes bytecode and associated hash table
*/
void
serializer_remove_bytecode_data (const bytecode_data_header_t *bytecode_data_p) /**< pointer to bytecode data which
* should be deleted */
{
bytecode_data_header_t *prev_header = NULL;
bytecode_data_header_t *cur_header_p = first_bytecode_header_p;
while (cur_header_p != NULL)
{
if (cur_header_p == bytecode_data_p)
{
if (prev_header)
{
prev_header->next_header_cp = cur_header_p->next_header_cp;
}
else
{
first_bytecode_header_p = MEM_CP_GET_POINTER (bytecode_data_header_t, cur_header_p->next_header_cp);
}
mem_heap_free_block (cur_header_p);
break;
}
prev_header = cur_header_p;
cur_header_p = MEM_CP_GET_POINTER (bytecode_data_header_t, cur_header_p->next_header_cp);
}
} /* serializer_remove_instructions */
void
serializer_free (void)
{
lit_finalize ();
while (first_bytecode_header_p != NULL)
{
bytecode_data_header_t *header_p = first_bytecode_header_p;
first_bytecode_header_p = MEM_CP_GET_POINTER (bytecode_data_header_t, header_p->next_header_cp);
mem_heap_free_block (header_p);
}
}
#ifdef JERRY_ENABLE_SNAPSHOT
/**
* Dump byte-code and idx-to-literal map to snapshot
*
* @return true, upon success (i.e. buffer size is enough),
* false - otherwise.
*/
bool
serializer_dump_bytecode_with_idx_map (uint8_t *buffer_p, /**< buffer to dump to */
size_t buffer_size, /**< buffer size */
size_t *in_out_buffer_offset_p, /**< in-out: buffer write offset */
const bytecode_data_header_t *bytecode_data_p, /**< byte-code data */
const lit_mem_to_snapshot_id_map_entry_t *lit_map_p, /**< map from literal
* identifiers in
* literal storage
* to literal offsets
* in snapshot */
uint32_t literals_num, /**< literals number */
uint32_t *out_bytecode_size_p, /**< out: size of dumped instructions array */
uint32_t *out_idx_to_lit_map_size_p) /**< out: side of dumped
* idx to literals map */
{
JERRY_ASSERT (bytecode_data_p->next_header_cp == MEM_CP_NULL);
vm_instr_counter_t instrs_num = bytecode_data_p->instrs_count;
const size_t instrs_array_size = sizeof (vm_instr_t) * instrs_num;
if (*in_out_buffer_offset_p + instrs_array_size > buffer_size)
{
return false;
}
memcpy (buffer_p + *in_out_buffer_offset_p, bytecode_data_p->instrs_p, instrs_array_size);
*in_out_buffer_offset_p += instrs_array_size;
*out_bytecode_size_p = (uint32_t) (sizeof (vm_instr_t) * instrs_num);
lit_id_hash_table *lit_id_hash_p = MEM_CP_GET_POINTER (lit_id_hash_table, bytecode_data_p->lit_id_hash_cp);
uint32_t idx_to_lit_map_size = lit_id_hash_table_dump_for_snapshot (buffer_p,
buffer_size,
in_out_buffer_offset_p,
lit_id_hash_p,
lit_map_p,
literals_num,
instrs_num);
if (idx_to_lit_map_size == 0)
{
return false;
}
else
{
*out_idx_to_lit_map_size_p = idx_to_lit_map_size;
return true;
}
} /* serializer_dump_bytecode_with_idx_map */
/**
* Register bytecode and idx map from snapshot
*
* NOTE:
* If is_copy flag is set, bytecode is copied from snapshot, else bytecode is referenced directly
* from snapshot
*
* @return pointer to byte-code header, upon success,
* NULL - upon failure (i.e., in case snapshot format is not valid)
*/
const bytecode_data_header_t *
serializer_load_bytecode_with_idx_map (const uint8_t *bytecode_and_idx_map_p, /**< buffer with instructions array
* and idx to literals map from
* snapshot */
uint32_t bytecode_size, /**< size of instructions array */
uint32_t idx_to_lit_map_size, /**< size of the idx to literals map */
const lit_mem_to_snapshot_id_map_entry_t *lit_map_p, /**< map of in-snapshot
* literal offsets
* to literal identifiers,
* created in literal
* storage */
uint32_t literals_num, /**< number of literals */
bool is_copy) /** flag, indicating whether the passed in-snapshot data
* should be copied to engine's memory (true),
* or it can be referenced until engine is stopped
* (i.e. until call to jerry_cleanup) */
{
const uint8_t *idx_to_lit_map_p = bytecode_and_idx_map_p + bytecode_size;
size_t instructions_number = bytecode_size / sizeof (vm_instr_t);
size_t blocks_count = JERRY_ALIGNUP (instructions_number, BLOCK_SIZE) / BLOCK_SIZE;
uint32_t idx_num_total;
size_t idx_to_lit_map_offset = 0;
if (!jrt_read_from_buffer_by_offset (idx_to_lit_map_p,
idx_to_lit_map_size,
&idx_to_lit_map_offset,
&idx_num_total))
{
return NULL;
}
const size_t bytecode_alloc_size = JERRY_ALIGNUP (bytecode_size, MEM_ALIGNMENT);
const size_t hash_table_size = lit_id_hash_table_get_size_for_table (idx_num_total, blocks_count);
const size_t header_and_hash_table_size = JERRY_ALIGNUP (sizeof (bytecode_data_header_t) + hash_table_size,
MEM_ALIGNMENT);
const size_t alloc_size = header_and_hash_table_size + (is_copy ? bytecode_alloc_size : 0);
uint8_t *buffer_p = (uint8_t*) mem_heap_alloc_block (alloc_size, MEM_HEAP_ALLOC_LONG_TERM);
bytecode_data_header_t *header_p = (bytecode_data_header_t *) buffer_p;
vm_instr_t *instrs_p;
vm_instr_t *snapshot_instrs_p = (vm_instr_t *) bytecode_and_idx_map_p;
if (is_copy)
{
instrs_p = (vm_instr_t *) (buffer_p + header_and_hash_table_size);
memcpy (instrs_p, snapshot_instrs_p, bytecode_size);
}
else
{
instrs_p = snapshot_instrs_p;
}
uint8_t *lit_id_hash_table_buffer_p = buffer_p + sizeof (bytecode_data_header_t);
if (lit_id_hash_table_load_from_snapshot (blocks_count,
idx_num_total,
idx_to_lit_map_p + idx_to_lit_map_offset,
idx_to_lit_map_size - idx_to_lit_map_offset,
lit_map_p,
literals_num,
lit_id_hash_table_buffer_p,
hash_table_size)
&& (vm_instr_counter_t) instructions_number == instructions_number)
{
MEM_CP_SET_NON_NULL_POINTER (header_p->lit_id_hash_cp, lit_id_hash_table_buffer_p);
header_p->instrs_p = instrs_p;
header_p->instrs_count = (vm_instr_counter_t) instructions_number;
MEM_CP_SET_POINTER (header_p->next_header_cp, first_bytecode_header_p);
first_bytecode_header_p = header_p;
return header_p;
}
else
{
mem_heap_free_block (buffer_p);
return NULL;
}
} /* serializer_load_bytecode_with_idx_map */
#endif /* JERRY_ENABLE_SNAPSHOT */