jerryscript/jerry-core/ecma/base/ecma-helpers-conversion.c
rerobika 5d2000c954 Fix for issue #1993 (#1994)
This patch fixes this bug which caused corrupted stack by preventing unnecessary double to ascii conversion even if
the convertible number of digits is higher than allowed.
In addition, improved ecma_double_to_binary_floating_point function by removing a needless buffer.

JerryScript-DCO-1.0-Signed-off-by: Robert Fancsik frobert@inf.u-szeged.hu
2017-11-10 15:13:08 +01:00

1225 lines
33 KiB
C

/* Copyright JS Foundation and other contributors, http://js.foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <math.h>
#include "ecma-globals.h"
#include "ecma-helpers.h"
#include "jrt-libc-includes.h"
#include "lit-char-helpers.h"
#include "lit-magic-strings.h"
/** \addtogroup ecma ECMA
* @{
*
* \addtogroup ecmahelpers Helpers for operations with ECMA data types
* @{
*
* \addtogroup ecmahelpersbigintegers Helpers for operations intermediate 128-bit integers
* @{
*/
/**
* Check that parts of 128-bit integer are 32-bit.
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT(name) \
{ \
JERRY_ASSERT (name[0] <= UINT32_MAX); \
JERRY_ASSERT (name[1] <= UINT32_MAX); \
JERRY_ASSERT (name[2] <= UINT32_MAX); \
JERRY_ASSERT (name[3] <= UINT32_MAX); \
}
/**
* Declare 128-bit integer.
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER(name) uint64_t name[4] = { 0, 0, 0, 0 }
/**
* Declare 128-bit in-out argument integer.
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ARG(name) uint64_t name[4]
/**
* Initialize 128-bit integer with given 32-bit parts
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_INIT(name, high, mid_high, mid_low, low) \
{ \
name[3] = high; \
name[2] = mid_high; \
name[1] = mid_low; \
name[0] = low; \
\
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \
}
/**
* Copy specified 128-bit integer
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_COPY(name_copy_to, name_copy_from) \
{ \
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name_copy_to); \
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name_copy_from); \
\
name_copy_to[0] = name_copy_from[0]; \
name_copy_to[1] = name_copy_from[1]; \
name_copy_to[2] = name_copy_from[2]; \
name_copy_to[3] = name_copy_from[3]; \
}
/**
* Copy high and middle parts of 128-bit integer to specified uint64_t variable
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ROUND_HIGH_AND_MIDDLE_TO_UINT64(name, uint64_var) \
{ \
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \
uint64_var = ((name[3] << 32u) | (name[2])) + (((name[1] >> 31u) != 0 ? 1 : 0)); \
}
/**
* Copy middle and low parts of 128-bit integer to specified uint64_t variable
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ROUND_MIDDLE_AND_LOW_TO_UINT64(name, uint64_var) \
{ \
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \
uint64_var = (name[1] << 32u) | (name[0]); \
}
/**
* Check if specified 128-bit integers are equal
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ARE_EQUAL(name1, name2) \
((name1)[0] == (name2[0]) \
&& (name1)[1] == (name2[1]) \
&& (name1)[2] == (name2[2]) \
&& (name1)[3] == (name2[3]))
/**
* Check if bits [lowest_bit, 128) are zero
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO(name, lowest_bit) \
((lowest_bit) >= 96 ? ((name[3] >> ((lowest_bit) - 96)) == 0) : \
((lowest_bit) >= 64 ? (name[3] == 0 \
&& ((name[2] >> ((lowest_bit) - 64)) == 0)) : \
((lowest_bit) >= 32 ? (name[3] == 0 \
&& name[2] == 0 && ((name[1] >> ((lowest_bit) - 32)) == 0)) : \
(name[3] == 0 && name[2] == 0 && name[1] == 0 && ((name[0] >> (lowest_bit)) == 0)))))
/**
* Check if bits [0, highest_bit] are zero
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_LOW_BIT_MASK_ZERO(name, highest_bit) \
((highest_bit >= 96) ? (name[2] == 0 && name[1] == 0 && name[0] == 0 \
&& (((uint32_t) name[3] << (127 - (highest_bit))) == 0)) : \
((highest_bit >= 64) ? (name[1] == 0 && name[0] == 0 \
&& (((uint32_t) name[2] << (95 - (highest_bit))) == 0)) : \
((highest_bit >= 32) ? (name[0] == 0 \
&& (((uint32_t) name[1] << (63 - (highest_bit))) == 0)) : \
(((uint32_t) name[0] << (31 - (highest_bit))) == 0))))
/**
* Check if 128-bit integer is zero
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_ZERO(name) \
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (name, 0)
/**
* Shift 128-bit integer one bit left
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT(name) \
{ \
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \
\
name[3] = (uint32_t) (name[3] << 1u); \
name[3] |= name[2] >> 31u; \
name[2] = (uint32_t) (name[2] << 1u); \
name[2] |= name[1] >> 31u; \
name[1] = (uint32_t) (name[1] << 1u); \
name[1] |= name[0] >> 31u; \
name[0] = (uint32_t) (name[0] << 1u); \
\
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \
}
/**
* Shift 128-bit integer one bit right
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_RIGHT_SHIFT(name) \
{ \
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \
\
name[0] >>= 1u; \
name[0] |= (uint32_t) (name[1] << 31u); \
name[1] >>= 1u; \
name[1] |= (uint32_t) (name[2] << 31u); \
name[2] >>= 1u; \
name[2] |= (uint32_t) (name[3] << 31u); \
name[3] >>= 1u; \
\
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \
}
/**
* Increment 128-bit integer
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_INC(name) \
{ \
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \
\
name[0] += 1ull; \
name[1] += (name[0] >> 32u); \
name[0] = (uint32_t) name[0]; \
name[2] += (name[1] >> 32u); \
name[1] = (uint32_t) name[1]; \
name[3] += (name[2] >> 32u); \
name[2] = (uint32_t) name[2]; \
\
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \
}
/**
* Add 128-bit integer
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ADD(name_add_to, name_to_add) \
{ \
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name_add_to); \
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name_to_add); \
\
name_add_to[0] += name_to_add[0]; \
name_add_to[1] += name_to_add[1]; \
name_add_to[2] += name_to_add[2]; \
name_add_to[3] += name_to_add[3]; \
\
name_add_to[1] += (name_add_to[0] >> 32u); \
name_add_to[0] = (uint32_t) name_add_to[0]; \
name_add_to[2] += (name_add_to[1] >> 32u); \
name_add_to[1] = (uint32_t) name_add_to[1]; \
name_add_to[3] += (name_add_to[2] >> 32u); \
name_add_to[2] = (uint32_t) name_add_to[2]; \
\
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name_add_to); \
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name_to_add); \
}
/**
* Multiply 128-bit integer by 10
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_MUL_10(name) \
{ \
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \
\
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (name); \
\
ECMA_NUMBER_CONVERSION_128BIT_INTEGER (name ## _tmp); \
\
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_COPY (name ## _tmp, name); \
\
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (name ## _tmp); \
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (name ## _tmp); \
\
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ADD (name, name ## _tmp); \
\
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \
}
/**
* Divide 128-bit integer by 10
*/
#define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_DIV_10(name) \
{ \
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \
\
/* estimation of reciprocal of 10 */ \
const uint64_t div10_p_low = 0x9999999aul; \
const uint64_t div10_p_mid = 0x99999999ul; \
const uint64_t div10_p_high = 0x19999999ul; \
\
uint64_t intermediate[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; \
uint64_t l0, l1, l2, l3, m0, m1, m2, m3, h0, h1, h2, h3; \
l0 = name[0] * div10_p_low; \
l1 = name[1] * div10_p_low; \
l2 = name[2] * div10_p_low; \
l3 = name[3] * div10_p_low; \
m0 = name[0] * div10_p_mid; \
m1 = name[1] * div10_p_mid; \
m2 = name[2] * div10_p_mid; \
m3 = name[3] * div10_p_mid; \
h0 = name[0] * div10_p_high; \
h1 = name[1] * div10_p_high; \
h2 = name[2] * div10_p_high; \
h3 = name[3] * div10_p_high; \
intermediate[0] += (uint32_t) l0; \
intermediate[1] += l0 >> 32u; \
\
intermediate[1] += (uint32_t) l1; \
intermediate[2] += l1 >> 32u; \
intermediate[1] += (uint32_t) m0; \
intermediate[2] += m0 >> 32u; \
\
intermediate[2] += (uint32_t) l2; \
intermediate[3] += l2 >> 32u; \
intermediate[2] += (uint32_t) m1; \
intermediate[3] += m1 >> 32u; \
intermediate[2] += (uint32_t) m0; \
intermediate[3] += m0 >> 32u; \
\
intermediate[3] += (uint32_t) l3; \
intermediate[4] += l3 >> 32u; \
intermediate[3] += (uint32_t) m2; \
intermediate[4] += m2 >> 32u; \
intermediate[3] += (uint32_t) m1; \
intermediate[4] += m1 >> 32u; \
intermediate[3] += (uint32_t) h0; \
intermediate[4] += h0 >> 32u; \
\
intermediate[4] += (uint32_t) m3; \
intermediate[5] += m3 >> 32u; \
intermediate[4] += (uint32_t) m2; \
intermediate[5] += m2 >> 32u; \
intermediate[4] += (uint32_t) h1; \
intermediate[5] += h1 >> 32u; \
\
intermediate[5] += (uint32_t) m3; \
intermediate[6] += m3 >> 32u; \
intermediate[5] += (uint32_t) h2; \
intermediate[6] += h2 >> 32u; \
\
intermediate[6] += (uint32_t) h3; \
intermediate[7] += h3 >> 32u; \
\
intermediate[1] += intermediate[0] >> 32u; \
intermediate[0] = (uint32_t) intermediate[0]; \
intermediate[2] += intermediate[1] >> 32u; \
intermediate[1] = (uint32_t) intermediate[1]; \
intermediate[3] += intermediate[2] >> 32u; \
intermediate[2] = (uint32_t) intermediate[2]; \
intermediate[4] += intermediate[3] >> 32u; \
intermediate[3] = (uint32_t) intermediate[3]; \
intermediate[5] += intermediate[4] >> 32u; \
intermediate[4] = (uint32_t) intermediate[4]; \
intermediate[6] += intermediate[5] >> 32u; \
intermediate[5] = (uint32_t) intermediate[5]; \
intermediate[7] += intermediate[6] >> 32u; \
intermediate[6] = (uint32_t) intermediate[6]; \
\
name[0] = intermediate[4]; \
name[1] = intermediate[5]; \
name[2] = intermediate[6]; \
name[3] = intermediate[7]; \
\
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \
}
#define EPSILON 0.0000001
#if CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT64
/**
* Number.MAX_VALUE and Number.MIN_VALUE exponent parts while using 64 bit float representation
*/
# define NUMBER_MAX_DECIMAL_EXPONENT 308
# define NUMBER_MIN_DECIMAL_EXPONENT -324
#elif CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT32
/**
* Number.MAX_VALUE and Number.MIN_VALUE exponent parts while using 32 bit float representation
*/
# define NUMBER_MAX_DECIMAL_EXPONENT 38
# define NUMBER_MIN_DECIMAL_EXPONENT -45
#endif /* CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT64 */
/**
* @}
*/
/**
* ECMA-defined conversion of string to Number.
*
* See also:
* ECMA-262 v5, 9.3.1
*
* @return ecma-number
*/
ecma_number_t
ecma_utf8_string_to_number (const lit_utf8_byte_t *str_p, /**< utf-8 string */
lit_utf8_size_t str_size) /**< string size */
{
/* TODO: Check license issues */
if (str_size == 0)
{
return ECMA_NUMBER_ZERO;
}
const lit_utf8_byte_t *str_curr_p = str_p;
const lit_utf8_byte_t *str_end_p = str_p + str_size;
ecma_char_t code_unit;
while (str_curr_p < str_end_p)
{
code_unit = lit_utf8_peek_next (str_curr_p);
if (lit_char_is_white_space (code_unit) || lit_char_is_line_terminator (code_unit))
{
lit_utf8_incr (&str_curr_p);
}
else
{
break;
}
}
const lit_utf8_byte_t *begin_p = str_curr_p;
str_curr_p = (lit_utf8_byte_t *) str_end_p;
while (str_curr_p > str_p)
{
code_unit = lit_utf8_peek_prev (str_curr_p);
if (lit_char_is_white_space (code_unit) || lit_char_is_line_terminator (code_unit))
{
lit_utf8_decr (&str_curr_p);
}
else
{
break;
}
}
const lit_utf8_byte_t *end_p = str_curr_p - 1;
if (begin_p > end_p)
{
return ECMA_NUMBER_ZERO;
}
if ((end_p >= begin_p + 2)
&& begin_p[0] == LIT_CHAR_0
&& (begin_p[1] == LIT_CHAR_LOWERCASE_X
|| begin_p[1] == LIT_CHAR_UPPERCASE_X))
{
/* Hex literal handling */
begin_p += 2;
ecma_number_t num = ECMA_NUMBER_ZERO;
for (const lit_utf8_byte_t * iter_p = begin_p;
iter_p <= end_p;
iter_p++)
{
int32_t digit_value;
if (*iter_p >= LIT_CHAR_0
&& *iter_p <= LIT_CHAR_9)
{
digit_value = (*iter_p - LIT_CHAR_0);
}
else if (*iter_p >= LIT_CHAR_LOWERCASE_A
&& *iter_p <= LIT_CHAR_LOWERCASE_F)
{
digit_value = 10 + (*iter_p - LIT_CHAR_LOWERCASE_A);
}
else if (*iter_p >= LIT_CHAR_UPPERCASE_A
&& *iter_p <= LIT_CHAR_UPPERCASE_F)
{
digit_value = 10 + (*iter_p - LIT_CHAR_UPPERCASE_A);
}
else
{
return ecma_number_make_nan ();
}
num = num * 16 + (ecma_number_t) digit_value;
}
return num;
}
bool sign = false; /* positive */
if (*begin_p == LIT_CHAR_PLUS)
{
begin_p++;
}
else if (*begin_p == LIT_CHAR_MINUS)
{
sign = true; /* negative */
begin_p++;
}
if (begin_p > end_p)
{
return ecma_number_make_nan ();
}
/* Checking if significant part of parse string is equal to "Infinity" */
const lit_utf8_byte_t *infinity_zt_str_p = lit_get_magic_string_utf8 (LIT_MAGIC_STRING_INFINITY_UL);
JERRY_ASSERT (strlen ((const char *) infinity_zt_str_p) == 8);
if ((end_p - begin_p) == (8 - 1) && memcmp (infinity_zt_str_p, begin_p, 8) == 0)
{
return ecma_number_make_infinity (sign);
}
uint64_t fraction_uint64 = 0;
uint32_t digits = 0;
int32_t e = 0;
bool digit_seen = false;
/* Parsing digits before dot (or before end of digits part if there is no dot in number) */
while (begin_p <= end_p)
{
int32_t digit_value;
if (*begin_p >= LIT_CHAR_0
&& *begin_p <= LIT_CHAR_9)
{
digit_seen = true;
digit_value = (*begin_p - LIT_CHAR_0);
}
else
{
break;
}
if (digits != 0 || digit_value != 0)
{
if (digits < ECMA_NUMBER_MAX_DIGITS)
{
fraction_uint64 = fraction_uint64 * 10 + (uint32_t) digit_value;
digits++;
}
else
{
e++;
}
}
begin_p++;
}
if (begin_p <= end_p
&& *begin_p == LIT_CHAR_DOT)
{
begin_p++;
if (!digit_seen && begin_p > end_p)
{
return ecma_number_make_nan ();
}
/* Parsing number's part that is placed after dot */
while (begin_p <= end_p)
{
int32_t digit_value;
if (*begin_p >= LIT_CHAR_0
&& *begin_p <= LIT_CHAR_9)
{
digit_seen = true;
digit_value = (*begin_p - LIT_CHAR_0);
}
else
{
break;
}
if (digits < ECMA_NUMBER_MAX_DIGITS)
{
if (digits != 0 || digit_value != 0)
{
fraction_uint64 = fraction_uint64 * 10 + (uint32_t) digit_value;
digits++;
}
e--;
}
begin_p++;
}
}
/* Parsing exponent literal */
int32_t e_in_lit = 0;
bool e_in_lit_sign = false;
if (begin_p <= end_p
&& (*begin_p == LIT_CHAR_LOWERCASE_E
|| *begin_p == LIT_CHAR_UPPERCASE_E))
{
begin_p++;
if (!digit_seen || begin_p > end_p)
{
return ecma_number_make_nan ();
}
if (*begin_p == LIT_CHAR_PLUS)
{
begin_p++;
}
else if (*begin_p == LIT_CHAR_MINUS)
{
e_in_lit_sign = true;
begin_p++;
}
if (begin_p > end_p)
{
return ecma_number_make_nan ();
}
while (begin_p <= end_p)
{
int32_t digit_value;
if (*begin_p >= LIT_CHAR_0
&& *begin_p <= LIT_CHAR_9)
{
digit_value = (*begin_p - LIT_CHAR_0);
}
else
{
return ecma_number_make_nan ();
}
e_in_lit = e_in_lit * 10 + digit_value;
int32_t e_check = e + (int32_t) digits - 1 + (e_in_lit_sign ? -e_in_lit : e_in_lit);
if (e_check > NUMBER_MAX_DECIMAL_EXPONENT)
{
return ecma_number_make_infinity (sign);
}
else if (e_check < NUMBER_MIN_DECIMAL_EXPONENT)
{
return sign ? -ECMA_NUMBER_ZERO : ECMA_NUMBER_ZERO;
}
begin_p++;
}
}
/* Adding value of exponent literal to exponent value */
if (e_in_lit_sign)
{
e -= e_in_lit;
}
else
{
e += e_in_lit;
}
bool e_sign;
if (e < 0)
{
e_sign = true;
e = -e;
}
else
{
e_sign = false;
}
if (begin_p <= end_p)
{
return ecma_number_make_nan ();
}
JERRY_ASSERT (begin_p == end_p + 1);
if (fraction_uint64 == 0)
{
return sign ? -ECMA_NUMBER_ZERO : ECMA_NUMBER_ZERO;
}
#if CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT64
int32_t binary_exponent = 33;
/*
* 128-bit mantissa storage
*
* Normalized: |4 bits zero|124-bit mantissa with highest bit set to 1 if mantissa is non-zero|
*/
ECMA_NUMBER_CONVERSION_128BIT_INTEGER (fraction_uint128);
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_INIT (fraction_uint128,
0ull,
fraction_uint64 >> 32u,
(uint32_t) fraction_uint64,
0ull);
/* Normalizing mantissa */
JERRY_ASSERT (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 124));
while (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 123))
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (fraction_uint128);
binary_exponent--;
JERRY_ASSERT (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_ZERO (fraction_uint128));
}
if (!e_sign)
{
/* positive or zero decimal exponent */
JERRY_ASSERT (e >= 0);
while (e > 0)
{
JERRY_ASSERT (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 124));
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_MUL_10 (fraction_uint128);
e--;
/* Normalizing mantissa */
while (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 124))
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_RIGHT_SHIFT (fraction_uint128);
binary_exponent++;
}
while (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 123))
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (fraction_uint128);
binary_exponent--;
JERRY_ASSERT (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_ZERO (fraction_uint128));
}
}
}
else
{
/* negative decimal exponent */
JERRY_ASSERT (e != 0);
while (e > 0)
{
/* Denormalizing mantissa, moving highest 1 to 95-bit */
while (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 127))
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (fraction_uint128);
binary_exponent--;
JERRY_ASSERT (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_ZERO (fraction_uint128));
}
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_DIV_10 (fraction_uint128);
e--;
}
/* Normalizing mantissa */
while (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 124))
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_RIGHT_SHIFT (fraction_uint128);
binary_exponent++;
}
while (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 123))
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (fraction_uint128);
binary_exponent--;
JERRY_ASSERT (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_ZERO (fraction_uint128));
}
}
JERRY_ASSERT (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_ZERO (fraction_uint128));
JERRY_ASSERT (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 124));
/*
* Preparing mantissa for conversion to 52-bit representation, converting it to:
*
* |12 zero bits|116 mantissa bits|
*/
while (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 116 + 1))
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_RIGHT_SHIFT (fraction_uint128);
binary_exponent++;
}
while (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 116))
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (fraction_uint128);
binary_exponent--;
JERRY_ASSERT (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_ZERO (fraction_uint128));
}
JERRY_ASSERT (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 116 + 1));
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ROUND_HIGH_AND_MIDDLE_TO_UINT64 (fraction_uint128, fraction_uint64);
return ecma_number_make_from_sign_mantissa_and_exponent (sign,
fraction_uint64,
binary_exponent);
#elif CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT32
/* Less precise conversion */
ecma_number_t num = (ecma_number_t) (uint32_t) fraction_uint64;
ecma_number_t m = e_sign ? (ecma_number_t) 0.1 : (ecma_number_t) 10.0;
while (e)
{
if (e % 2)
{
num *= m;
}
m *= m;
e /= 2;
}
return num;
#endif /* CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT64 */
} /* ecma_utf8_string_to_number */
/**
* ECMA-defined conversion of UInt32 to String (zero-terminated).
*
* See also:
* ECMA-262 v5, 9.8.1
*
* @return number of bytes copied to buffer
*/
lit_utf8_size_t
ecma_uint32_to_utf8_string (uint32_t value, /**< value to convert */
lit_utf8_byte_t *out_buffer_p, /**< buffer for string */
lit_utf8_size_t buffer_size) /**< size of buffer */
{
lit_utf8_byte_t *buf_p = out_buffer_p + buffer_size;
do
{
JERRY_ASSERT (buf_p >= out_buffer_p);
buf_p--;
*buf_p = (lit_utf8_byte_t) ((value % 10) + LIT_CHAR_0);
value /= 10;
}
while (value != 0);
JERRY_ASSERT (buf_p >= out_buffer_p);
lit_utf8_size_t bytes_copied = (lit_utf8_size_t) (out_buffer_p + buffer_size - buf_p);
if (likely (buf_p != out_buffer_p))
{
memmove (out_buffer_p, buf_p, bytes_copied);
}
return bytes_copied;
} /* ecma_uint32_to_utf8_string */
/**
* ECMA-defined conversion of Number value to UInt32 value
*
* See also:
* ECMA-262 v5, 9.6
*
* @return 32-bit unsigned integer - result of conversion.
*/
uint32_t
ecma_number_to_uint32 (ecma_number_t num) /**< ecma-number */
{
if (ecma_number_is_nan (num)
|| ecma_number_is_zero (num)
|| ecma_number_is_infinity (num))
{
return 0;
}
const bool sign = ecma_number_is_negative (num);
const ecma_number_t abs_num = sign ? ecma_number_negate (num) : num;
/* 2 ^ 32 */
const uint64_t uint64_2_pow_32 = (1ull << 32);
const ecma_number_t num_2_pow_32 = (float) uint64_2_pow_32;
ecma_number_t num_in_uint32_range;
if (abs_num >= num_2_pow_32)
{
num_in_uint32_range = ecma_number_calc_remainder (abs_num,
num_2_pow_32);
}
else
{
num_in_uint32_range = abs_num;
}
/* Check that the floating point value can be represented with uint32_t. */
JERRY_ASSERT (num_in_uint32_range < uint64_2_pow_32);
uint32_t uint32_num = (uint32_t) num_in_uint32_range;
const uint32_t ret = sign ? -uint32_num : uint32_num;
#ifndef JERRY_NDEBUG
if (sign
&& uint32_num != 0)
{
JERRY_ASSERT (ret == uint64_2_pow_32 - uint32_num);
}
else
{
JERRY_ASSERT (ret == uint32_num);
}
#endif /* !JERRY_NDEBUG */
return ret;
} /* ecma_number_to_uint32 */
/**
* ECMA-defined conversion of Number value to Int32 value
*
* See also:
* ECMA-262 v5, 9.5
*
* @return 32-bit signed integer - result of conversion.
*/
int32_t
ecma_number_to_int32 (ecma_number_t num) /**< ecma-number */
{
uint32_t uint32_num = ecma_number_to_uint32 (num);
/* 2 ^ 32 */
const int64_t int64_2_pow_32 = (1ll << 32);
/* 2 ^ 31 */
const uint32_t uint32_2_pow_31 = (1ull << 31);
int32_t ret;
if (uint32_num >= uint32_2_pow_31)
{
ret = (int32_t) (uint32_num - int64_2_pow_32);
}
else
{
ret = (int32_t) uint32_num;
}
#ifndef JERRY_NDEBUG
int64_t int64_num = uint32_num;
JERRY_ASSERT (int64_num >= 0);
if (int64_num >= uint32_2_pow_31)
{
JERRY_ASSERT (ret == int64_num - int64_2_pow_32);
}
else
{
JERRY_ASSERT (ret == int64_num);
}
#endif /* !JERRY_NDEBUG */
return ret;
} /* ecma_number_to_int32 */
/**
* Perform conversion of ecma-number to decimal representation with decimal exponent
*
* Note:
* The calculated values correspond to s, n, k parameters in ECMA-262 v5, 9.8.1, item 5:
* - parameter out_digits_p corresponds to s, the digits of the number;
* - parameter out_decimal_exp_p corresponds to n, the decimal exponent;
* - return value corresponds to k, the number of digits.
*/
lit_utf8_size_t
ecma_number_to_decimal (ecma_number_t num, /**< ecma-number */
lit_utf8_byte_t *out_digits_p, /**< [out] buffer to fill with digits */
int32_t *out_decimal_exp_p) /**< [out] decimal exponent */
{
JERRY_ASSERT (!ecma_number_is_nan (num));
JERRY_ASSERT (!ecma_number_is_zero (num));
JERRY_ASSERT (!ecma_number_is_infinity (num));
JERRY_ASSERT (!ecma_number_is_negative (num));
return ecma_errol0_dtoa ((double) num, out_digits_p, out_decimal_exp_p);
} /* ecma_number_to_decimal */
/**
* Calculate the number of digits from the given double value whithout franction part
*
* @return number of digits
*/
inline static int32_t __attr_always_inline___
ecma_number_of_digits (double val) /**< ecma number */
{
JERRY_ASSERT (fabs (fmod (val, 1.0)) < EPSILON);
int32_t exponent = 0;
while (val >= 1.0)
{
val /= 10.0;
exponent++;
}
return exponent;
} /* ecma_number_of_digits */
/**
* Convert double value to ASCII
*/
inline static void __attr_always_inline___
ecma_double_to_ascii (double val, /**< ecma number */
lit_utf8_byte_t *buffer_p, /**< buffer to generate digits into */
int32_t num_of_digits, /**< number of digits */
int32_t *exp_p) /**< [out] exponent */
{
int32_t char_cnt = 0;
double divider = 10.0;
double prev_residual;
double mod_res = fmod (val, divider);
buffer_p[num_of_digits - 1 - char_cnt++] = (lit_utf8_byte_t) ((int) mod_res + '0');
divider *= 10.0;
prev_residual = mod_res;
while (char_cnt < num_of_digits)
{
mod_res = fmod (val, divider);
double residual = mod_res - prev_residual;
buffer_p[num_of_digits - 1 - char_cnt++] = (lit_utf8_byte_t) ((int) (residual / (divider / 10.0)) + '0');
divider *= 10.0;
prev_residual = mod_res;
}
*exp_p = char_cnt;
} /* ecma_double_to_ascii */
/**
* Double to binary floating-point number conversion
*
* @return number of generated digits
*/
static inline lit_utf8_size_t __attr_always_inline___
ecma_double_to_binary_floating_point (double val, /**< ecma number */
lit_utf8_byte_t *buffer_p, /**< buffer to generate digits into */
int32_t *exp_p) /**< [out] exponent */
{
int32_t char_cnt = 0;
double integer_part, fraction_part;
fraction_part = fmod (val, 1.0);
integer_part = floor (val);
int32_t num_of_digits = ecma_number_of_digits (integer_part);
if (fabs (integer_part) < EPSILON)
{
buffer_p[0] = '0';
char_cnt++;
}
else if (num_of_digits <= 16) /* Ensure that integer_part is not rounded */
{
while (integer_part > 0.0)
{
buffer_p[num_of_digits - 1 - char_cnt++] = (lit_utf8_byte_t) ((int) fmod (integer_part, 10.0) + '0');
integer_part = floor (integer_part / 10.0);
}
}
else if (num_of_digits <= 21)
{
ecma_double_to_ascii (integer_part, buffer_p, num_of_digits, &char_cnt);
}
else
{
/* According to ECMA-262 v5, 15.7.4.5, step 7: if x >= 10^21, then execution will continue with
* ToString(x) so in this case no further conversions are required. Number 21 in the else if condition
* above must be kept in sync with the number 21 in ecma_builtin_number_prototype_object_to_fixed
* method, step 7. */
*exp_p = num_of_digits;
return 0;
}
*exp_p = char_cnt;
while (fraction_part > 0 && char_cnt < ECMA_MAX_CHARS_IN_STRINGIFIED_NUMBER - 1)
{
fraction_part *= 10;
double tmp = fraction_part;
fraction_part = fmod (fraction_part, 1.0);
integer_part = floor (tmp);
buffer_p[char_cnt++] = (lit_utf8_byte_t) ('0' + (int) integer_part);
}
buffer_p[char_cnt] = '\0';
return (lit_utf8_size_t) (char_cnt - *exp_p);
} /* ecma_double_to_binary_floating_point */
/**
* Perform conversion of ecma-number to equivalent binary floating-point number representation with decimal exponent
*
* Note:
* The calculated values correspond to s, n, k parameters in ECMA-262 v5, 9.8.1, item 5:
* - parameter out_digits_p corresponds to s, the digits of the number;
* - parameter out_decimal_exp_p corresponds to n, the decimal exponent;
* - return value corresponds to k, the number of digits.
*/
lit_utf8_size_t
ecma_number_to_binary_floating_point_number (ecma_number_t num, /**< ecma-number */
lit_utf8_byte_t *out_digits_p, /**< [out] buffer to fill with digits */
int32_t *out_decimal_exp_p) /**< [out] decimal exponent */
{
JERRY_ASSERT (!ecma_number_is_nan (num));
JERRY_ASSERT (!ecma_number_is_zero (num));
JERRY_ASSERT (!ecma_number_is_infinity (num));
JERRY_ASSERT (!ecma_number_is_negative (num));
return ecma_double_to_binary_floating_point ((double) num, out_digits_p, out_decimal_exp_p);
} /* ecma_number_to_binary_floating_point_number */
/**
* Convert ecma-number to zero-terminated string
*
* See also:
* ECMA-262 v5, 9.8.1
*
*
* @return size of utf-8 string
*/
lit_utf8_size_t
ecma_number_to_utf8_string (ecma_number_t num, /**< ecma-number */
lit_utf8_byte_t *buffer_p, /**< buffer for utf-8 string */
lit_utf8_size_t buffer_size) /**< size of buffer */
{
lit_utf8_byte_t *dst_p;
if (ecma_number_is_nan (num))
{
/* 1. */
dst_p = lit_copy_magic_string_to_buffer (LIT_MAGIC_STRING_NAN, buffer_p, buffer_size);
return (lit_utf8_size_t) (dst_p - buffer_p);
}
if (ecma_number_is_zero (num))
{
/* 2. */
*buffer_p = LIT_CHAR_0;
JERRY_ASSERT (1 <= buffer_size);
return 1;
}
dst_p = buffer_p;
if (ecma_number_is_negative (num))
{
/* 3. */
*dst_p++ = LIT_CHAR_MINUS;
num = ecma_number_negate (num);
}
if (ecma_number_is_infinity (num))
{
/* 4. */
dst_p = lit_copy_magic_string_to_buffer (LIT_MAGIC_STRING_INFINITY_UL, dst_p,
(lit_utf8_size_t) (buffer_p + buffer_size - dst_p));
JERRY_ASSERT (dst_p <= buffer_p + buffer_size);
return (lit_utf8_size_t) (dst_p - buffer_p);
}
JERRY_ASSERT (ecma_number_get_next (ecma_number_get_prev (num)) == num);
/* 5. */
uint32_t num_uint32 = ecma_number_to_uint32 (num);
if (((ecma_number_t) num_uint32) == num)
{
dst_p += ecma_uint32_to_utf8_string (num_uint32, dst_p, (lit_utf8_size_t) (buffer_p + buffer_size - dst_p));
JERRY_ASSERT (dst_p <= buffer_p + buffer_size);
return (lit_utf8_size_t) (dst_p - buffer_p);
}
/* decimal exponent */
int32_t n;
/* number of digits in mantissa */
int32_t k;
k = (int32_t) ecma_number_to_decimal (num, dst_p, &n);
if (k <= n && n <= 21)
{
/* 6. */
dst_p += k;
memset (dst_p, LIT_CHAR_0, (size_t) (n - k));
dst_p += n - k;
JERRY_ASSERT (dst_p <= buffer_p + buffer_size);
return (lit_utf8_size_t) (dst_p - buffer_p);
}
if (0 < n && n <= 21)
{
/* 7. */
memmove (dst_p + n + 1, dst_p + n, (size_t) (k - n));
*(dst_p + n) = LIT_CHAR_DOT;
dst_p += k + 1;
JERRY_ASSERT (dst_p <= buffer_p + buffer_size);
return (lit_utf8_size_t) (dst_p - buffer_p);
}
if (-6 < n && n <= 0)
{
/* 8. */
memmove (dst_p + 2 - n, dst_p, (size_t) k);
memset (dst_p + 2, LIT_CHAR_0, (size_t) -n);
*dst_p = LIT_CHAR_0;
*(dst_p + 1) = LIT_CHAR_DOT;
dst_p += k - n + 2;
JERRY_ASSERT (dst_p <= buffer_p + buffer_size);
return (lit_utf8_size_t) (dst_p - buffer_p);
}
if (k == 1)
{
/* 9. */
dst_p++;
}
else
{
/* 10. */
memmove (dst_p + 2, dst_p + 1, (size_t) (k - 1));
*(dst_p + 1) = LIT_CHAR_DOT;
dst_p += k + 1;
}
/* 9., 10. */
*dst_p++ = LIT_CHAR_LOWERCASE_E;
*dst_p++ = (n >= 1) ? LIT_CHAR_PLUS : LIT_CHAR_MINUS;
uint32_t t = (uint32_t) (n >= 1 ? (n - 1) : -(n - 1));
dst_p += ecma_uint32_to_utf8_string (t, dst_p, (lit_utf8_size_t) (buffer_p + buffer_size - dst_p));
JERRY_ASSERT (dst_p <= buffer_p + buffer_size);
return (lit_utf8_size_t) (dst_p - buffer_p);
} /* ecma_number_to_utf8_string */
/**
* @}
* @}
*/