mirror of
https://github.com/jerryscript-project/jerryscript.git
synced 2025-12-15 16:29:21 +00:00
This patch fixes #2846. JerryScript-DCO-1.0-Signed-off-by: Robert Fancsik frobert@inf.u-szeged.hu
1303 lines
37 KiB
C
1303 lines
37 KiB
C
/* Copyright JS Foundation and other contributors, http://js.foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "ecma-alloc.h"
|
|
#include "ecma-builtins.h"
|
|
#include "ecma-conversion.h"
|
|
#include "ecma-eval.h"
|
|
#include "ecma-exceptions.h"
|
|
#include "ecma-gc.h"
|
|
#include "ecma-globals.h"
|
|
#include "ecma-helpers.h"
|
|
#include "ecma-try-catch-macro.h"
|
|
#include "jrt.h"
|
|
#include "lit-char-helpers.h"
|
|
#include "lit-magic-strings.h"
|
|
#include "lit-strings.h"
|
|
#include "vm.h"
|
|
#include "jcontext.h"
|
|
#include "jrt-libc-includes.h"
|
|
#include "jrt-bit-fields.h"
|
|
|
|
#define ECMA_BUILTINS_INTERNAL
|
|
#include "ecma-builtins-internal.h"
|
|
|
|
/**
|
|
* This object has a custom dispatch function.
|
|
*/
|
|
#define BUILTIN_CUSTOM_DISPATCH
|
|
|
|
/**
|
|
* List of built-in routine identifiers.
|
|
*/
|
|
enum
|
|
{
|
|
ECMA_GLOBAL_ROUTINE_START = ECMA_BUILTIN_ID__COUNT - 1,
|
|
/* Note: these 5 routine ids must be in this order */
|
|
ECMA_GLOBAL_IS_NAN,
|
|
ECMA_GLOBAL_IS_FINITE,
|
|
ECMA_GLOBAL_EVAL,
|
|
ECMA_GLOBAL_PARSE_INT,
|
|
ECMA_GLOBAL_PARSE_FLOAT,
|
|
ECMA_GLOBAL_DECODE_URI,
|
|
ECMA_GLOBAL_DECODE_URI_COMPONENT,
|
|
ECMA_GLOBAL_ENCODE_URI,
|
|
ECMA_GLOBAL_ENCODE_URI_COMPONENT,
|
|
ECMA_GLOBAL_ESCAPE,
|
|
ECMA_GLOBAL_UNESCAPE,
|
|
};
|
|
|
|
#define BUILTIN_INC_HEADER_NAME "ecma-builtin-global.inc.h"
|
|
#define BUILTIN_UNDERSCORED_ID global
|
|
#include "ecma-builtin-internal-routines-template.inc.h"
|
|
|
|
/** \addtogroup ecma ECMA
|
|
* @{
|
|
*
|
|
* \addtogroup ecmabuiltins
|
|
* @{
|
|
*
|
|
* \addtogroup global ECMA Global object built-in
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* The Global object's 'eval' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.1.2.1
|
|
*
|
|
* @return ecma value
|
|
* Returned value must be freed with ecma_free_value.
|
|
*/
|
|
static ecma_value_t
|
|
ecma_builtin_global_object_eval (ecma_value_t x) /**< routine's first argument */
|
|
{
|
|
if (JERRY_UNLIKELY (!ecma_is_value_string (x)))
|
|
{
|
|
/* step 1 */
|
|
return ecma_copy_value (x);
|
|
}
|
|
|
|
uint32_t parse_opts = vm_is_direct_eval_form_call () ? ECMA_PARSE_DIRECT_EVAL : ECMA_PARSE_NO_OPTS;
|
|
|
|
/* See also: ECMA-262 v5, 10.1.1 */
|
|
if (parse_opts && vm_is_strict_mode ())
|
|
{
|
|
JERRY_ASSERT (parse_opts & ECMA_PARSE_DIRECT_EVAL);
|
|
parse_opts |= ECMA_PARSE_STRICT_MODE;
|
|
}
|
|
|
|
#if ENABLED (JERRY_ES2015_CLASS)
|
|
if (vm_is_direct_eval_form_call ())
|
|
{
|
|
parse_opts |= ECMA_GET_SUPER_EVAL_PARSER_OPTS ();
|
|
}
|
|
#endif /* ENABLED (JERRY_ES2015_CLASS) */
|
|
|
|
/* steps 2 to 8 */
|
|
return ecma_op_eval (ecma_get_string_from_value (x), parse_opts);
|
|
} /* ecma_builtin_global_object_eval */
|
|
|
|
/**
|
|
* Helper function for trimming leading whitespaces
|
|
* for the Global object's 'parseInt' and 'parseFloat' routines
|
|
*/
|
|
static void
|
|
ecma_builtin_global_remove_leading_white_spaces (const lit_utf8_byte_t **string_curr_p, /**< [in, out] current string
|
|
* position */
|
|
const lit_utf8_byte_t *string_end_p, /**< end of the string buffer */
|
|
const lit_utf8_byte_t **start_p) /**< [in, out] start position of the
|
|
* trimmed string */
|
|
{
|
|
while (*string_curr_p < string_end_p)
|
|
{
|
|
ecma_char_t current_char = lit_utf8_read_next (string_curr_p);
|
|
|
|
if (!lit_char_is_white_space (current_char)
|
|
&& !lit_char_is_line_terminator (current_char))
|
|
{
|
|
lit_utf8_decr (string_curr_p);
|
|
*start_p = *string_curr_p;
|
|
break;
|
|
}
|
|
}
|
|
} /* ecma_builtin_global_remove_leading_white_spaces */
|
|
|
|
/**
|
|
* The Global object's 'parseInt' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.1.2.2
|
|
*
|
|
* @return ecma value
|
|
* Returned value must be freed with ecma_free_value.
|
|
*/
|
|
static ecma_value_t
|
|
ecma_builtin_global_object_parse_int (const lit_utf8_byte_t *string_buff, /**< routine's first argument's
|
|
* string buffer */
|
|
lit_utf8_size_t string_buff_size, /**< routine's first argument's
|
|
* string buffer's size */
|
|
ecma_value_t radix) /**< routine's second argument */
|
|
{
|
|
if (string_buff_size <= 0)
|
|
{
|
|
return ecma_make_nan_value ();
|
|
}
|
|
|
|
const lit_utf8_byte_t *string_curr_p = string_buff;
|
|
const lit_utf8_byte_t *string_end_p = string_buff + string_buff_size;
|
|
|
|
/* 2. Remove leading whitespace. */
|
|
const lit_utf8_byte_t *start_p = string_end_p;
|
|
const lit_utf8_byte_t *end_p = start_p;
|
|
|
|
ecma_builtin_global_remove_leading_white_spaces (&string_curr_p, string_end_p, &start_p);
|
|
|
|
if (string_curr_p >= string_end_p)
|
|
{
|
|
return ecma_make_nan_value ();
|
|
}
|
|
|
|
/* 3. */
|
|
int sign = 1;
|
|
|
|
/* 4. */
|
|
ecma_char_t current = lit_utf8_read_next (&string_curr_p);
|
|
if (current == LIT_CHAR_MINUS)
|
|
{
|
|
sign = -1;
|
|
}
|
|
|
|
/* 5. */
|
|
if (current == LIT_CHAR_MINUS || current == LIT_CHAR_PLUS)
|
|
{
|
|
start_p = string_curr_p;
|
|
if (string_curr_p < string_end_p)
|
|
{
|
|
current = lit_utf8_read_next (&string_curr_p);
|
|
}
|
|
}
|
|
|
|
/* 6. */
|
|
ecma_number_t radix_num;
|
|
radix = ecma_get_number (radix, &radix_num);
|
|
|
|
if (!ecma_is_value_empty (radix))
|
|
{
|
|
return radix;
|
|
}
|
|
|
|
int32_t rad = ecma_number_to_int32 (radix_num);
|
|
|
|
/* 7.*/
|
|
bool strip_prefix = true;
|
|
|
|
/* 8. */
|
|
if (rad != 0)
|
|
{
|
|
/* 8.a */
|
|
if (rad < 2 || rad > 36)
|
|
{
|
|
return ecma_make_nan_value ();
|
|
}
|
|
/* 8.b */
|
|
else if (rad != 16)
|
|
{
|
|
strip_prefix = false;
|
|
}
|
|
}
|
|
/* 9. */
|
|
else
|
|
{
|
|
rad = 10;
|
|
}
|
|
|
|
/* 10. */
|
|
if (strip_prefix
|
|
&& ((end_p - start_p) >= 2)
|
|
&& (current == LIT_CHAR_0))
|
|
{
|
|
ecma_char_t next = *string_curr_p;
|
|
if (next == LIT_CHAR_LOWERCASE_X || next == LIT_CHAR_UPPERCASE_X)
|
|
{
|
|
/* Skip the 'x' or 'X' characters. */
|
|
start_p = ++string_curr_p;
|
|
rad = 16;
|
|
}
|
|
}
|
|
|
|
/* 11. Check if characters are in [0, Radix - 1]. We also convert them to number values in the process. */
|
|
string_curr_p = start_p;
|
|
while (string_curr_p < string_end_p)
|
|
{
|
|
ecma_char_t current_char = *string_curr_p++;
|
|
int32_t current_number;
|
|
|
|
if ((current_char >= LIT_CHAR_LOWERCASE_A && current_char <= LIT_CHAR_LOWERCASE_Z))
|
|
{
|
|
current_number = current_char - LIT_CHAR_LOWERCASE_A + 10;
|
|
}
|
|
else if ((current_char >= LIT_CHAR_UPPERCASE_A && current_char <= LIT_CHAR_UPPERCASE_Z))
|
|
{
|
|
current_number = current_char - LIT_CHAR_UPPERCASE_A + 10;
|
|
}
|
|
else if (lit_char_is_decimal_digit (current_char))
|
|
{
|
|
current_number = current_char - LIT_CHAR_0;
|
|
}
|
|
else
|
|
{
|
|
/* Not a valid number char, set value to radix so it fails to pass as a valid character. */
|
|
current_number = rad;
|
|
}
|
|
|
|
if (!(current_number < rad))
|
|
{
|
|
end_p = --string_curr_p;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* 12. */
|
|
if (end_p == start_p)
|
|
{
|
|
return ecma_make_nan_value ();
|
|
}
|
|
|
|
ecma_number_t value = ECMA_NUMBER_ZERO;
|
|
ecma_number_t multiplier = 1.0f;
|
|
|
|
/* 13. and 14. */
|
|
string_curr_p = end_p;
|
|
|
|
while (string_curr_p > start_p)
|
|
{
|
|
ecma_char_t current_char = *(--string_curr_p);
|
|
ecma_number_t current_number = ECMA_NUMBER_MINUS_ONE;
|
|
|
|
if ((current_char >= LIT_CHAR_LOWERCASE_A && current_char <= LIT_CHAR_LOWERCASE_Z))
|
|
{
|
|
current_number = (ecma_number_t) current_char - LIT_CHAR_LOWERCASE_A + 10;
|
|
}
|
|
else if ((current_char >= LIT_CHAR_UPPERCASE_A && current_char <= LIT_CHAR_UPPERCASE_Z))
|
|
{
|
|
current_number = (ecma_number_t) current_char - LIT_CHAR_UPPERCASE_A + 10;
|
|
}
|
|
else
|
|
{
|
|
JERRY_ASSERT (lit_char_is_decimal_digit (current_char));
|
|
current_number = (ecma_number_t) current_char - LIT_CHAR_0;
|
|
}
|
|
|
|
value += current_number * multiplier;
|
|
multiplier *= (ecma_number_t) rad;
|
|
}
|
|
|
|
/* 15. */
|
|
if (sign < 0)
|
|
{
|
|
value *= (ecma_number_t) sign;
|
|
}
|
|
|
|
return ecma_make_number_value (value);
|
|
} /* ecma_builtin_global_object_parse_int */
|
|
|
|
/**
|
|
* The Global object's 'parseFloat' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.1.2.3
|
|
*
|
|
* @return ecma value
|
|
* Returned value must be freed with ecma_free_value.
|
|
*/
|
|
static ecma_value_t
|
|
ecma_builtin_global_object_parse_float (const lit_utf8_byte_t *string_buff, /**< routine's first argument's
|
|
* string buffer */
|
|
lit_utf8_size_t string_buff_size) /**< routine's first argument's
|
|
* string buffer's size */
|
|
{
|
|
if (string_buff_size <= 0)
|
|
{
|
|
return ecma_make_nan_value ();
|
|
}
|
|
|
|
const lit_utf8_byte_t *str_curr_p = string_buff;
|
|
const lit_utf8_byte_t *str_end_p = string_buff + string_buff_size;
|
|
|
|
const lit_utf8_byte_t *start_p = str_end_p;
|
|
const lit_utf8_byte_t *end_p = str_end_p;
|
|
|
|
/* 2. Find first non whitespace char and set starting position. */
|
|
ecma_builtin_global_remove_leading_white_spaces (&str_curr_p, str_end_p, &start_p);
|
|
|
|
bool sign = false;
|
|
ecma_char_t current;
|
|
|
|
if (str_curr_p < str_end_p)
|
|
{
|
|
/* Check if sign is present. */
|
|
current = *str_curr_p;
|
|
if (current == LIT_CHAR_MINUS)
|
|
{
|
|
sign = true;
|
|
}
|
|
|
|
if (current == LIT_CHAR_MINUS || current == LIT_CHAR_PLUS)
|
|
{
|
|
/* Set starting position to be after the sign character. */
|
|
start_p = ++str_curr_p;
|
|
}
|
|
}
|
|
|
|
const lit_utf8_byte_t *infinity_str_p = lit_get_magic_string_utf8 (LIT_MAGIC_STRING_INFINITY_UL);
|
|
lit_utf8_byte_t *infinity_str_curr_p = (lit_utf8_byte_t *) infinity_str_p;
|
|
lit_utf8_byte_t *infinity_str_end_p = infinity_str_curr_p + sizeof (*infinity_str_p);
|
|
|
|
/* Check if string is equal to "Infinity". */
|
|
while (str_curr_p < str_end_p
|
|
&& *str_curr_p++ == *infinity_str_curr_p++)
|
|
{
|
|
if (infinity_str_curr_p == infinity_str_end_p)
|
|
{
|
|
/* String matched Infinity. */
|
|
return ecma_make_number_value (ecma_number_make_infinity (sign));
|
|
}
|
|
}
|
|
|
|
/* Reset to starting position. */
|
|
str_curr_p = start_p;
|
|
|
|
/* String ended after sign character, or was empty after removing leading whitespace. */
|
|
if (str_curr_p >= str_end_p)
|
|
{
|
|
return ecma_make_nan_value ();
|
|
}
|
|
|
|
/* Reset to starting position. */
|
|
str_curr_p = start_p;
|
|
|
|
current = *str_curr_p;
|
|
|
|
bool has_whole_part = false;
|
|
bool has_fraction_part = false;
|
|
|
|
/* Check digits of whole part. */
|
|
if (lit_char_is_decimal_digit (current))
|
|
{
|
|
has_whole_part = true;
|
|
str_curr_p++;
|
|
|
|
while (str_curr_p < str_end_p)
|
|
{
|
|
current = *str_curr_p++;
|
|
if (!lit_char_is_decimal_digit (current))
|
|
{
|
|
str_curr_p--;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Set end position to the end of whole part. */
|
|
end_p = str_curr_p;
|
|
if (str_curr_p < str_end_p)
|
|
{
|
|
current = *str_curr_p;
|
|
|
|
/* Check decimal point. */
|
|
if (current == LIT_CHAR_DOT)
|
|
{
|
|
str_curr_p++;
|
|
|
|
if (str_curr_p < str_end_p)
|
|
{
|
|
current = *str_curr_p;
|
|
|
|
if (lit_char_is_decimal_digit (current))
|
|
{
|
|
has_fraction_part = true;
|
|
|
|
/* Check digits of fractional part. */
|
|
while (str_curr_p < str_end_p)
|
|
{
|
|
current = *str_curr_p++;
|
|
if (!lit_char_is_decimal_digit (current))
|
|
{
|
|
str_curr_p--;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Set end position to end of fraction part. */
|
|
end_p = str_curr_p;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (str_curr_p < str_end_p)
|
|
{
|
|
current = *str_curr_p++;
|
|
}
|
|
|
|
/* Check exponent. */
|
|
if ((current == LIT_CHAR_LOWERCASE_E || current == LIT_CHAR_UPPERCASE_E)
|
|
&& (has_whole_part || has_fraction_part)
|
|
&& str_curr_p < str_end_p)
|
|
{
|
|
current = *str_curr_p++;
|
|
|
|
/* Check sign of exponent. */
|
|
if ((current == LIT_CHAR_PLUS || current == LIT_CHAR_MINUS)
|
|
&& str_curr_p < str_end_p)
|
|
{
|
|
current = *str_curr_p++;
|
|
}
|
|
|
|
if (lit_char_is_decimal_digit (current))
|
|
{
|
|
/* Check digits of exponent part. */
|
|
while (str_curr_p < str_end_p)
|
|
{
|
|
current = *str_curr_p++;
|
|
if (!lit_char_is_decimal_digit (current))
|
|
{
|
|
str_curr_p--;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Set end position to end of exponent part. */
|
|
end_p = str_curr_p;
|
|
}
|
|
}
|
|
|
|
/* String did not contain a valid number. */
|
|
if (start_p == end_p)
|
|
{
|
|
return ecma_make_nan_value ();
|
|
}
|
|
|
|
/* 5. */
|
|
ecma_number_t ret_num = ecma_utf8_string_to_number (start_p, (lit_utf8_size_t) (end_p - start_p));
|
|
|
|
if (sign)
|
|
{
|
|
ret_num *= ECMA_NUMBER_MINUS_ONE;
|
|
}
|
|
|
|
return ecma_make_number_value (ret_num);
|
|
} /* ecma_builtin_global_object_parse_float */
|
|
|
|
/**
|
|
* The Global object's 'isNaN' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.1.2.4
|
|
*
|
|
* @return ecma value
|
|
* Returned value must be freed with ecma_free_value.
|
|
*/
|
|
static ecma_value_t
|
|
ecma_builtin_global_object_is_nan (ecma_number_t arg_num) /**< routine's first argument */
|
|
{
|
|
return ecma_make_boolean_value (ecma_number_is_nan (arg_num));
|
|
} /* ecma_builtin_global_object_is_nan */
|
|
|
|
/**
|
|
* The Global object's 'isFinite' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.1.2.5
|
|
*
|
|
* @return ecma value
|
|
* Returned value must be freed with ecma_free_value.
|
|
*/
|
|
static ecma_value_t
|
|
ecma_builtin_global_object_is_finite (ecma_number_t arg_num) /**< routine's first argument */
|
|
{
|
|
bool is_finite = !(ecma_number_is_nan (arg_num)
|
|
|| ecma_number_is_infinity (arg_num));
|
|
|
|
return ecma_make_boolean_value (is_finite);
|
|
} /* ecma_builtin_global_object_is_finite */
|
|
|
|
/**
|
|
* Helper function to check whether a character is in a character bitset.
|
|
*
|
|
* @return true if the character is in the character bitset.
|
|
*/
|
|
static bool
|
|
ecma_builtin_global_object_character_is_in (uint32_t character, /**< character */
|
|
const uint8_t *bitset) /**< character set */
|
|
{
|
|
JERRY_ASSERT (character < 128);
|
|
return (bitset[character >> 3] & (1u << (character & 0x7))) != 0;
|
|
} /* ecma_builtin_global_object_character_is_in */
|
|
|
|
/**
|
|
* Unescaped URI characters bitset:
|
|
* One bit for each character between 0 - 127.
|
|
* Bit is set if the character is in the unescaped URI set.
|
|
*/
|
|
static const uint8_t unescaped_uri_set[16] =
|
|
{
|
|
0x0, 0x0, 0x0, 0x0, 0xda, 0xff, 0xff, 0xaf,
|
|
0xff, 0xff, 0xff, 0x87, 0xfe, 0xff, 0xff, 0x47
|
|
};
|
|
|
|
/**
|
|
* Unescaped URI component characters bitset:
|
|
* One bit for each character between 0 - 127.
|
|
* Bit is set if the character is in the unescaped component URI set.
|
|
*/
|
|
static const uint8_t unescaped_uri_component_set[16] =
|
|
{
|
|
0x0, 0x0, 0x0, 0x0, 0x82, 0x67, 0xff, 0x3,
|
|
0xfe, 0xff, 0xff, 0x87, 0xfe, 0xff, 0xff, 0x47
|
|
};
|
|
|
|
/**
|
|
* Format is a percent sign followed by two hex digits.
|
|
*/
|
|
#define URI_ENCODED_BYTE_SIZE (3)
|
|
|
|
/**
|
|
* The Global object's 'decodeURI' and 'decodeURIComponent' routines
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.1.3.1
|
|
* ECMA-262 v5, 15.1.3.2
|
|
*
|
|
* @return ecma value
|
|
* Returned value must be freed with ecma_free_value.
|
|
*/
|
|
static ecma_value_t
|
|
ecma_builtin_global_object_decode_uri_helper (lit_utf8_byte_t *input_start_p, /**< routine's first argument's
|
|
* string buffer */
|
|
lit_utf8_size_t input_size, /**< routine's first argument's
|
|
* string buffer's size */
|
|
const uint8_t *reserved_uri_bitset) /**< reserved characters bitset */
|
|
{
|
|
lit_utf8_byte_t *input_char_p = input_start_p;
|
|
lit_utf8_byte_t *input_end_p = input_start_p + input_size;
|
|
lit_utf8_size_t output_size = 0;
|
|
/*
|
|
* The URI decoding has two major phases: first we validate the input,
|
|
* and compute the length of the output, then we decode the input.
|
|
*/
|
|
|
|
while (input_char_p < input_end_p)
|
|
{
|
|
/*
|
|
* We expect that the input is a valid UTF-8 sequence,
|
|
* so characters >= 0x80 can be let through.
|
|
*/
|
|
|
|
if (*input_char_p != '%')
|
|
{
|
|
output_size++;
|
|
input_char_p++;
|
|
continue;
|
|
}
|
|
|
|
ecma_char_t decoded_byte;
|
|
|
|
if (!lit_read_code_unit_from_hex (input_char_p + 1, 2, &decoded_byte))
|
|
{
|
|
return ecma_raise_uri_error (ECMA_ERR_MSG ("Invalid hexadecimal value."));
|
|
}
|
|
|
|
input_char_p += URI_ENCODED_BYTE_SIZE;
|
|
|
|
if (decoded_byte <= LIT_UTF8_1_BYTE_CODE_POINT_MAX)
|
|
{
|
|
/*
|
|
* We don't decode those bytes, which are part of reserved_uri_bitset
|
|
* but not part of unescaped_uri_component_set.
|
|
*/
|
|
if (ecma_builtin_global_object_character_is_in (decoded_byte, reserved_uri_bitset)
|
|
&& !ecma_builtin_global_object_character_is_in (decoded_byte, unescaped_uri_component_set))
|
|
{
|
|
output_size += URI_ENCODED_BYTE_SIZE;
|
|
}
|
|
else
|
|
{
|
|
output_size++;
|
|
}
|
|
}
|
|
else if ((decoded_byte & LIT_UTF8_4_BYTE_MASK) == LIT_UTF8_4_BYTE_MARKER)
|
|
{
|
|
output_size += 3;
|
|
}
|
|
else
|
|
{
|
|
output_size++;
|
|
}
|
|
}
|
|
|
|
ecma_value_t ret_value = ECMA_VALUE_EMPTY;
|
|
|
|
JMEM_DEFINE_LOCAL_ARRAY (output_start_p,
|
|
output_size,
|
|
lit_utf8_byte_t);
|
|
|
|
input_char_p = input_start_p;
|
|
lit_utf8_byte_t *output_char_p = output_start_p;
|
|
|
|
while (input_char_p < input_end_p)
|
|
{
|
|
/* Input decode. */
|
|
if (*input_char_p != '%')
|
|
{
|
|
*output_char_p = *input_char_p;
|
|
output_char_p++;
|
|
input_char_p++;
|
|
continue;
|
|
}
|
|
|
|
ecma_char_t decoded_byte;
|
|
|
|
if (!lit_read_code_unit_from_hex (input_char_p + 1, 2, &decoded_byte))
|
|
{
|
|
ret_value = ecma_raise_uri_error (ECMA_ERR_MSG ("Invalid hexadecimal value."));
|
|
break;
|
|
}
|
|
|
|
input_char_p += URI_ENCODED_BYTE_SIZE;
|
|
|
|
if (decoded_byte <= LIT_UTF8_1_BYTE_CODE_POINT_MAX)
|
|
{
|
|
if (ecma_builtin_global_object_character_is_in (decoded_byte, reserved_uri_bitset)
|
|
&& !ecma_builtin_global_object_character_is_in (decoded_byte, unescaped_uri_component_set))
|
|
{
|
|
*output_char_p = '%';
|
|
output_char_p++;
|
|
input_char_p -= 2;
|
|
}
|
|
else
|
|
{
|
|
*output_char_p++ = (lit_utf8_byte_t) decoded_byte;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
uint32_t bytes_count;
|
|
|
|
if ((decoded_byte & LIT_UTF8_2_BYTE_MASK) == LIT_UTF8_2_BYTE_MARKER)
|
|
{
|
|
bytes_count = 2;
|
|
}
|
|
else if ((decoded_byte & LIT_UTF8_3_BYTE_MASK) == LIT_UTF8_3_BYTE_MARKER)
|
|
{
|
|
bytes_count = 3;
|
|
}
|
|
else if ((decoded_byte & LIT_UTF8_4_BYTE_MASK) == LIT_UTF8_4_BYTE_MARKER)
|
|
{
|
|
bytes_count = 4;
|
|
}
|
|
else
|
|
{
|
|
ret_value = ecma_raise_uri_error (ECMA_ERR_MSG ("Invalid UTF8 character."));
|
|
break;
|
|
}
|
|
|
|
lit_utf8_byte_t octets[LIT_UTF8_MAX_BYTES_IN_CODE_POINT];
|
|
octets[0] = (lit_utf8_byte_t) decoded_byte;
|
|
bool is_valid = true;
|
|
|
|
for (uint32_t i = 1; i < bytes_count; i++)
|
|
{
|
|
if (input_char_p >= input_end_p || *input_char_p != '%')
|
|
{
|
|
is_valid = false;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
ecma_char_t chr;
|
|
|
|
if (!lit_read_code_unit_from_hex (input_char_p + 1, 2, &chr)
|
|
|| ((chr & LIT_UTF8_EXTRA_BYTE_MASK) != LIT_UTF8_EXTRA_BYTE_MARKER))
|
|
{
|
|
is_valid = false;
|
|
break;
|
|
}
|
|
|
|
octets[i] = (lit_utf8_byte_t) chr;
|
|
input_char_p += URI_ENCODED_BYTE_SIZE;
|
|
}
|
|
}
|
|
|
|
if (!is_valid
|
|
|| !lit_is_valid_utf8_string (octets, bytes_count))
|
|
{
|
|
ret_value = ecma_raise_uri_error (ECMA_ERR_MSG ("Invalid UTF8 string."));
|
|
break;
|
|
}
|
|
|
|
lit_code_point_t cp;
|
|
lit_read_code_point_from_utf8 (octets, bytes_count, &cp);
|
|
|
|
if (lit_is_code_point_utf16_high_surrogate (cp)
|
|
|| lit_is_code_point_utf16_low_surrogate (cp))
|
|
{
|
|
ret_value = ecma_raise_uri_error (ECMA_ERR_MSG ("Invalid UTF8 codepoint."));
|
|
break;
|
|
}
|
|
|
|
output_char_p += lit_code_point_to_cesu8 (cp, output_char_p);
|
|
}
|
|
}
|
|
|
|
if (ecma_is_value_empty (ret_value))
|
|
{
|
|
JERRY_ASSERT (output_start_p + output_size == output_char_p);
|
|
|
|
if (lit_is_valid_cesu8_string (output_start_p, output_size))
|
|
{
|
|
ecma_string_t *output_string_p = ecma_new_ecma_string_from_utf8 (output_start_p, output_size);
|
|
ret_value = ecma_make_string_value (output_string_p);
|
|
}
|
|
else
|
|
{
|
|
ret_value = ecma_raise_uri_error (ECMA_ERR_MSG ("Invalid CESU8 string."));
|
|
}
|
|
}
|
|
|
|
JMEM_FINALIZE_LOCAL_ARRAY (output_start_p);
|
|
|
|
return ret_value;
|
|
} /* ecma_builtin_global_object_decode_uri_helper */
|
|
|
|
/**
|
|
* Helper function to encode byte as hexadecimal values.
|
|
*/
|
|
static void
|
|
ecma_builtin_global_object_byte_to_hex (lit_utf8_byte_t *dest_p, /**< destination pointer */
|
|
uint32_t byte) /**< value */
|
|
{
|
|
JERRY_ASSERT (byte < 256);
|
|
|
|
dest_p[0] = LIT_CHAR_PERCENT;
|
|
ecma_char_t hex_digit = (ecma_char_t) (byte >> 4);
|
|
dest_p[1] = (lit_utf8_byte_t) ((hex_digit > 9) ? (hex_digit + ('A' - 10)) : (hex_digit + '0'));
|
|
hex_digit = (lit_utf8_byte_t) (byte & 0xf);
|
|
dest_p[2] = (lit_utf8_byte_t) ((hex_digit > 9) ? (hex_digit + ('A' - 10)) : (hex_digit + '0'));
|
|
} /* ecma_builtin_global_object_byte_to_hex */
|
|
|
|
/**
|
|
* The Global object's 'encodeURI' and 'encodeURIComponent' routines
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.1.3.3
|
|
* ECMA-262 v5, 15.1.3.4
|
|
*
|
|
* @return ecma value
|
|
* Returned value must be freed with ecma_free_value.
|
|
*/
|
|
static ecma_value_t
|
|
ecma_builtin_global_object_encode_uri_helper (lit_utf8_byte_t *input_start_p, /**< routine's first argument's
|
|
* string buffer */
|
|
lit_utf8_size_t input_size, /**< routine's first argument's
|
|
* string buffer's size */
|
|
const uint8_t *unescaped_uri_bitset_p) /**< unescaped bitset */
|
|
{
|
|
/*
|
|
* The URI encoding has two major phases: first we validate the input,
|
|
* and compute the length of the output, then we encode the input.
|
|
*/
|
|
|
|
lit_utf8_byte_t *input_char_p = input_start_p;
|
|
const lit_utf8_byte_t *input_end_p = input_start_p + input_size;
|
|
lit_utf8_size_t output_length = 0;
|
|
lit_code_point_t cp;
|
|
ecma_char_t ch;
|
|
lit_utf8_byte_t octets[LIT_UTF8_MAX_BYTES_IN_CODE_POINT];
|
|
memset (octets, LIT_BYTE_NULL, LIT_UTF8_MAX_BYTES_IN_CODE_POINT);
|
|
|
|
while (input_char_p < input_end_p)
|
|
{
|
|
/* Input validation, we need to reject stray surrogates. */
|
|
input_char_p += lit_read_code_unit_from_utf8 (input_char_p, &ch);
|
|
|
|
if (lit_is_code_point_utf16_low_surrogate (ch))
|
|
{
|
|
return ecma_raise_uri_error (ECMA_ERR_MSG ("Unicode surrogate pair missing."));
|
|
}
|
|
|
|
cp = ch;
|
|
|
|
if (lit_is_code_point_utf16_high_surrogate (ch))
|
|
{
|
|
if (input_char_p == input_end_p)
|
|
{
|
|
return ecma_raise_uri_error (ECMA_ERR_MSG ("Unicode surrogate pair missing."));
|
|
}
|
|
|
|
ecma_char_t next_ch;
|
|
lit_utf8_size_t read_size = lit_read_code_unit_from_utf8 (input_char_p, &next_ch);
|
|
|
|
if (lit_is_code_point_utf16_low_surrogate (next_ch))
|
|
{
|
|
cp = lit_convert_surrogate_pair_to_code_point (ch, next_ch);
|
|
input_char_p += read_size;
|
|
}
|
|
else
|
|
{
|
|
return ecma_raise_uri_error (ECMA_ERR_MSG ("Unicode surrogate pair missing."));
|
|
}
|
|
}
|
|
|
|
lit_utf8_size_t utf_size = lit_code_point_to_utf8 (cp, octets);
|
|
|
|
if (utf_size == 1)
|
|
{
|
|
if (ecma_builtin_global_object_character_is_in (octets[0], unescaped_uri_bitset_p))
|
|
{
|
|
output_length++;
|
|
}
|
|
else
|
|
{
|
|
output_length += URI_ENCODED_BYTE_SIZE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
output_length += utf_size * URI_ENCODED_BYTE_SIZE;
|
|
}
|
|
}
|
|
|
|
ecma_value_t ret_value;
|
|
|
|
JMEM_DEFINE_LOCAL_ARRAY (output_start_p,
|
|
output_length,
|
|
lit_utf8_byte_t);
|
|
|
|
lit_utf8_byte_t *output_char_p = output_start_p;
|
|
input_char_p = input_start_p;
|
|
|
|
while (input_char_p < input_end_p)
|
|
{
|
|
/* Input decode. */
|
|
input_char_p += lit_read_code_unit_from_utf8 (input_char_p, &ch);
|
|
cp = ch;
|
|
|
|
if (lit_is_code_point_utf16_high_surrogate (ch))
|
|
{
|
|
ecma_char_t next_ch;
|
|
lit_utf8_size_t read_size = lit_read_code_unit_from_utf8 (input_char_p, &next_ch);
|
|
|
|
if (lit_is_code_point_utf16_low_surrogate (next_ch))
|
|
{
|
|
cp = lit_convert_surrogate_pair_to_code_point (ch, next_ch);
|
|
input_char_p += read_size;
|
|
}
|
|
}
|
|
|
|
lit_utf8_size_t utf_size = lit_code_point_to_utf8 (cp, octets);
|
|
|
|
if (utf_size == 1)
|
|
{
|
|
if (ecma_builtin_global_object_character_is_in (octets[0], unescaped_uri_bitset_p))
|
|
{
|
|
*output_char_p++ = octets[0];
|
|
}
|
|
else
|
|
{
|
|
ecma_builtin_global_object_byte_to_hex (output_char_p, octets[0]);
|
|
output_char_p += URI_ENCODED_BYTE_SIZE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (uint32_t i = 0; i < utf_size; i++)
|
|
{
|
|
ecma_builtin_global_object_byte_to_hex (output_char_p, octets[i]);
|
|
output_char_p += URI_ENCODED_BYTE_SIZE;
|
|
}
|
|
}
|
|
}
|
|
|
|
JERRY_ASSERT (output_start_p + output_length == output_char_p);
|
|
|
|
ecma_string_t *output_string_p = ecma_new_ecma_string_from_utf8 (output_start_p, output_length);
|
|
|
|
ret_value = ecma_make_string_value (output_string_p);
|
|
|
|
JMEM_FINALIZE_LOCAL_ARRAY (output_start_p);
|
|
|
|
return ret_value;
|
|
} /* ecma_builtin_global_object_encode_uri_helper */
|
|
|
|
#if ENABLED (JERRY_BUILTIN_ANNEXB)
|
|
|
|
/**
|
|
* Maximum value of a byte.
|
|
*/
|
|
#define ECMA_ESCAPE_MAXIMUM_BYTE_VALUE (255)
|
|
|
|
/**
|
|
* Format is a percent sign followed by lowercase u and four hex digits.
|
|
*/
|
|
#define ECMA_ESCAPE_ENCODED_UNICODE_CHARACTER_SIZE (6)
|
|
|
|
/**
|
|
* Escape characters bitset:
|
|
* One bit for each character between 0 - 127.
|
|
* Bit is set if the character does not need to be converted to %xx form.
|
|
* These characters are: a-z A-Z 0-9 @ * _ + - . /
|
|
*/
|
|
static const uint8_t ecma_escape_set[16] =
|
|
{
|
|
0x0, 0x0, 0x0, 0x0, 0x0, 0xec, 0xff, 0x3,
|
|
0xff, 0xff, 0xff, 0x87, 0xfe, 0xff, 0xff, 0x7
|
|
};
|
|
|
|
/**
|
|
* The Global object's 'escape' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, B.2.1
|
|
*
|
|
* @return ecma value
|
|
* Returned value must be freed with ecma_free_value.
|
|
*/
|
|
static ecma_value_t
|
|
ecma_builtin_global_object_escape (lit_utf8_byte_t *input_start_p, /**< routine's first argument's
|
|
* string buffer */
|
|
lit_utf8_size_t input_size) /**< routine's first argument's
|
|
* string buffer's size */
|
|
{
|
|
/*
|
|
* The escape routine has two major phases: first we compute
|
|
* the length of the output, then we encode the input.
|
|
*/
|
|
const lit_utf8_byte_t *input_curr_p = input_start_p;
|
|
const lit_utf8_byte_t *input_end_p = input_start_p + input_size;
|
|
lit_utf8_size_t output_length = 0;
|
|
|
|
while (input_curr_p < input_end_p)
|
|
{
|
|
ecma_char_t chr = lit_utf8_read_next (&input_curr_p);
|
|
|
|
if (chr <= LIT_UTF8_1_BYTE_CODE_POINT_MAX)
|
|
{
|
|
if (ecma_builtin_global_object_character_is_in ((uint32_t) chr, ecma_escape_set))
|
|
{
|
|
output_length++;
|
|
}
|
|
else
|
|
{
|
|
output_length += URI_ENCODED_BYTE_SIZE;
|
|
}
|
|
}
|
|
else if (chr > ECMA_ESCAPE_MAXIMUM_BYTE_VALUE)
|
|
{
|
|
output_length += ECMA_ESCAPE_ENCODED_UNICODE_CHARACTER_SIZE;
|
|
}
|
|
else
|
|
{
|
|
output_length += URI_ENCODED_BYTE_SIZE;
|
|
}
|
|
}
|
|
|
|
ecma_value_t ret_value;
|
|
|
|
JMEM_DEFINE_LOCAL_ARRAY (output_start_p,
|
|
output_length,
|
|
lit_utf8_byte_t);
|
|
|
|
lit_utf8_byte_t *output_char_p = output_start_p;
|
|
|
|
input_curr_p = input_start_p;
|
|
|
|
while (input_curr_p < input_end_p)
|
|
{
|
|
ecma_char_t chr = lit_utf8_read_next (&input_curr_p);
|
|
|
|
if (chr <= LIT_UTF8_1_BYTE_CODE_POINT_MAX)
|
|
{
|
|
if (ecma_builtin_global_object_character_is_in ((uint32_t) chr, ecma_escape_set))
|
|
{
|
|
*output_char_p = (lit_utf8_byte_t) chr;
|
|
output_char_p++;
|
|
}
|
|
else
|
|
{
|
|
ecma_builtin_global_object_byte_to_hex (output_char_p, (lit_utf8_byte_t) chr);
|
|
output_char_p += URI_ENCODED_BYTE_SIZE;
|
|
}
|
|
}
|
|
else if (chr > ECMA_ESCAPE_MAXIMUM_BYTE_VALUE)
|
|
{
|
|
/*
|
|
* Although ecma_builtin_global_object_byte_to_hex inserts a percent (%) sign
|
|
* the follow-up changes overwrites it. We call this function twice to
|
|
* produce four hexadecimal characters (%uxxxx format).
|
|
*/
|
|
ecma_builtin_global_object_byte_to_hex (output_char_p + 3, (lit_utf8_byte_t) (chr & 0xff));
|
|
ecma_builtin_global_object_byte_to_hex (output_char_p + 1, (lit_utf8_byte_t) (chr >> JERRY_BITSINBYTE));
|
|
output_char_p[0] = LIT_CHAR_PERCENT;
|
|
output_char_p[1] = LIT_CHAR_LOWERCASE_U;
|
|
output_char_p += ECMA_ESCAPE_ENCODED_UNICODE_CHARACTER_SIZE;
|
|
}
|
|
else
|
|
{
|
|
ecma_builtin_global_object_byte_to_hex (output_char_p, (lit_utf8_byte_t) chr);
|
|
output_char_p += URI_ENCODED_BYTE_SIZE;
|
|
}
|
|
}
|
|
|
|
JERRY_ASSERT (output_start_p + output_length == output_char_p);
|
|
|
|
ecma_string_t *output_string_p = ecma_new_ecma_string_from_utf8 (output_start_p, output_length);
|
|
|
|
ret_value = ecma_make_string_value (output_string_p);
|
|
|
|
JMEM_FINALIZE_LOCAL_ARRAY (output_start_p);
|
|
|
|
return ret_value;
|
|
} /* ecma_builtin_global_object_escape */
|
|
|
|
/**
|
|
* The Global object's 'unescape' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, B.2.2
|
|
*
|
|
* @return ecma value
|
|
* Returned value must be freed with ecma_free_value.
|
|
*/
|
|
static ecma_value_t
|
|
ecma_builtin_global_object_unescape (lit_utf8_byte_t *input_start_p, /**< routine's first argument's
|
|
* string buffer */
|
|
lit_utf8_size_t input_size) /**< routine's first argument's
|
|
* string buffer's size */
|
|
{
|
|
const lit_utf8_byte_t *input_curr_p = input_start_p;
|
|
const lit_utf8_byte_t *input_end_p = input_start_p + input_size;
|
|
/* 4. */
|
|
/* The length of input string is always greater than output string
|
|
* so we re-use the input string buffer.
|
|
* The %xx is three byte long, and the maximum encoded value is 0xff,
|
|
* which maximum encoded length is two byte. Similar to this, the maximum
|
|
* encoded length of %uxxxx is four byte. */
|
|
lit_utf8_byte_t *output_char_p = input_start_p;
|
|
|
|
/* The state of parsing that tells us where we are in an escape pattern.
|
|
* 0 we are outside of pattern,
|
|
* 1 found '%', start of pattern,
|
|
* 2 found first hex digit of '%xy' pattern
|
|
* 3 found valid '%xy' pattern
|
|
* 4 found 'u', start of '%uwxyz' pattern
|
|
* 5-7 found hex digits of '%uwxyz' pattern
|
|
* 8 found valid '%uwxyz' pattern
|
|
*/
|
|
uint8_t status = 0;
|
|
ecma_char_t hex_digits = 0;
|
|
/* 5. */
|
|
while (input_curr_p < input_end_p)
|
|
{
|
|
/* 6. */
|
|
ecma_char_t chr = lit_utf8_read_next (&input_curr_p);
|
|
|
|
/* 7-8. */
|
|
if (status == 0 && chr == LIT_CHAR_PERCENT)
|
|
{
|
|
/* Found '%' char, start of escape sequence. */
|
|
status = 1;
|
|
}
|
|
/* 9-10. */
|
|
else if (status == 1 && chr == LIT_CHAR_LOWERCASE_U)
|
|
{
|
|
/* Found 'u' char after '%'. */
|
|
status = 4;
|
|
}
|
|
else if (status > 0 && lit_char_is_hex_digit (chr))
|
|
{
|
|
/* Found hexadecimal digit in escape sequence. */
|
|
hex_digits = (ecma_char_t) (hex_digits * 16 + (ecma_char_t) lit_char_hex_to_int (chr));
|
|
status++;
|
|
}
|
|
else
|
|
{
|
|
/* Previously found hexadecimal digit in escape sequence but it's not valid '%xy' pattern
|
|
* so essentially it was only a simple character. */
|
|
status = 0;
|
|
}
|
|
|
|
/* 11-17. Found valid '%uwxyz' or '%xy' escape. */
|
|
if (status == 8 || status == 3)
|
|
{
|
|
output_char_p -= (status == 3) ? 2 : 5;
|
|
status = 0;
|
|
chr = hex_digits;
|
|
hex_digits = 0;
|
|
}
|
|
|
|
/* Copying character. */
|
|
lit_utf8_size_t lit_size = lit_code_unit_to_utf8 (chr, output_char_p);
|
|
output_char_p += lit_size;
|
|
JERRY_ASSERT (output_char_p <= input_curr_p);
|
|
}
|
|
|
|
lit_utf8_size_t output_length = (lit_utf8_size_t) (output_char_p - input_start_p);
|
|
ecma_string_t *output_string_p = ecma_new_ecma_string_from_utf8 (input_start_p, output_length);
|
|
return ecma_make_string_value (output_string_p);
|
|
} /* ecma_builtin_global_object_unescape */
|
|
|
|
#endif /* ENABLED (JERRY_BUILTIN_ANNEXB) */
|
|
|
|
/**
|
|
* Dispatcher of the built-in's routines
|
|
*
|
|
* @return ecma value
|
|
* Returned value must be freed with ecma_free_value.
|
|
*/
|
|
ecma_value_t
|
|
ecma_builtin_global_dispatch_routine (uint16_t builtin_routine_id, /**< built-in wide routine identifier */
|
|
ecma_value_t this_arg, /**< 'this' argument value */
|
|
const ecma_value_t arguments_list_p[], /**< list of arguments
|
|
* passed to routine */
|
|
ecma_length_t arguments_number) /**< length of arguments' list */
|
|
{
|
|
JERRY_UNUSED (this_arg);
|
|
JERRY_UNUSED (arguments_list_p);
|
|
JERRY_UNUSED (arguments_number);
|
|
|
|
ecma_value_t routine_arg_1 = arguments_list_p[0];
|
|
|
|
if (builtin_routine_id == ECMA_GLOBAL_EVAL)
|
|
{
|
|
return ecma_builtin_global_object_eval (routine_arg_1);
|
|
}
|
|
|
|
if (builtin_routine_id <= ECMA_GLOBAL_IS_FINITE)
|
|
{
|
|
ecma_number_t arg_num;
|
|
|
|
routine_arg_1 = ecma_get_number (routine_arg_1, &arg_num);
|
|
|
|
if (!ecma_is_value_empty (routine_arg_1))
|
|
{
|
|
return routine_arg_1;
|
|
}
|
|
|
|
if (builtin_routine_id == ECMA_GLOBAL_IS_NAN)
|
|
{
|
|
return ecma_builtin_global_object_is_nan (arg_num);
|
|
}
|
|
|
|
JERRY_ASSERT (builtin_routine_id == ECMA_GLOBAL_IS_FINITE);
|
|
|
|
return ecma_builtin_global_object_is_finite (arg_num);
|
|
}
|
|
|
|
ecma_value_t string_value = ecma_op_to_string (routine_arg_1);
|
|
|
|
if (ECMA_IS_VALUE_ERROR (string_value))
|
|
{
|
|
return string_value;
|
|
}
|
|
|
|
ecma_string_t *str_p = ecma_get_string_from_value (string_value);
|
|
|
|
ecma_value_t ret_value;
|
|
|
|
if (builtin_routine_id <= ECMA_GLOBAL_PARSE_FLOAT)
|
|
{
|
|
ECMA_STRING_TO_UTF8_STRING (str_p, string_buff, string_buff_size);
|
|
|
|
if (builtin_routine_id == ECMA_GLOBAL_PARSE_INT)
|
|
{
|
|
ret_value = ecma_builtin_global_object_parse_int (string_buff,
|
|
string_buff_size,
|
|
arguments_list_p[1]);
|
|
}
|
|
else
|
|
{
|
|
JERRY_ASSERT (builtin_routine_id == ECMA_GLOBAL_PARSE_FLOAT);
|
|
ret_value = ecma_builtin_global_object_parse_float (string_buff,
|
|
string_buff_size);
|
|
}
|
|
|
|
ECMA_FINALIZE_UTF8_STRING (string_buff, string_buff_size);
|
|
ecma_deref_ecma_string (str_p);
|
|
return ret_value;
|
|
}
|
|
|
|
lit_utf8_size_t input_size = ecma_string_get_size (str_p);
|
|
|
|
JMEM_DEFINE_LOCAL_ARRAY (input_start_p,
|
|
input_size + 1,
|
|
lit_utf8_byte_t);
|
|
|
|
ecma_string_to_utf8_bytes (str_p, input_start_p, input_size);
|
|
|
|
input_start_p[input_size] = LIT_BYTE_NULL;
|
|
|
|
switch (builtin_routine_id)
|
|
{
|
|
#if ENABLED (JERRY_BUILTIN_ANNEXB)
|
|
case ECMA_GLOBAL_ESCAPE:
|
|
{
|
|
ret_value = ecma_builtin_global_object_escape (input_start_p, input_size);
|
|
break;
|
|
}
|
|
case ECMA_GLOBAL_UNESCAPE:
|
|
{
|
|
ret_value = ecma_builtin_global_object_unescape (input_start_p, input_size);
|
|
break;
|
|
}
|
|
#endif /* ENABLED (JERRY_BUILTIN_ANNEXB) */
|
|
case ECMA_GLOBAL_DECODE_URI:
|
|
case ECMA_GLOBAL_DECODE_URI_COMPONENT:
|
|
{
|
|
const uint8_t *uri_set = (builtin_routine_id == ECMA_GLOBAL_DECODE_URI ? unescaped_uri_set
|
|
: unescaped_uri_component_set);
|
|
|
|
ret_value = ecma_builtin_global_object_decode_uri_helper (input_start_p, input_size, uri_set);
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
JERRY_ASSERT (builtin_routine_id == ECMA_GLOBAL_ENCODE_URI
|
|
|| builtin_routine_id == ECMA_GLOBAL_ENCODE_URI_COMPONENT);
|
|
|
|
const uint8_t *uri_set = (builtin_routine_id == ECMA_GLOBAL_ENCODE_URI ? unescaped_uri_set
|
|
: unescaped_uri_component_set);
|
|
|
|
ret_value = ecma_builtin_global_object_encode_uri_helper (input_start_p, input_size, uri_set);
|
|
break;
|
|
}
|
|
}
|
|
|
|
JMEM_FINALIZE_LOCAL_ARRAY (input_start_p);
|
|
|
|
ecma_deref_ecma_string (str_p);
|
|
return ret_value;
|
|
} /* ecma_builtin_global_dispatch_routine */
|
|
|
|
/**
|
|
* @}
|
|
* @}
|
|
* @}
|
|
*/
|