mirror of
https://github.com/jerryscript-project/jerryscript.git
synced 2025-12-15 16:29:21 +00:00
Move RegExp bytecode functions to a separate file. Optimize bytecode lenght on character matching. Implement a basic RegExp cache to optimize memory usage on duplicated RegExp in JS files. Also fix minor style issues and add missing comments. Improve existing comments. JerryScript-DCO-1.0-Signed-off-by: László Langó llango.u-szeged@partner.samsung.com
631 lines
20 KiB
C
631 lines
20 KiB
C
/* Copyright 2015-2016 Samsung Electronics Co., Ltd.
|
|
* Copyright 2015-2016 University of Szeged.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "ecma-exceptions.h"
|
|
#include "ecma-helpers.h"
|
|
#include "ecma-regexp-object.h"
|
|
#include "ecma-try-catch-macro.h"
|
|
#include "jrt-libc-includes.h"
|
|
#include "mem-heap.h"
|
|
#include "re-bytecode.h"
|
|
#include "re-compiler.h"
|
|
#include "re-parser.h"
|
|
|
|
#ifndef CONFIG_ECMA_COMPACT_PROFILE_DISABLE_REGEXP_BUILTIN
|
|
|
|
/** \addtogroup parser Parser
|
|
* @{
|
|
*
|
|
* \addtogroup regexparser Regular expression
|
|
* @{
|
|
*
|
|
* \addtogroup regexparser_compiler Compiler
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* Callback function of character class generation
|
|
*/
|
|
static void
|
|
re_append_char_class (void *re_ctx_p, /**< RegExp compiler context */
|
|
ecma_char_t start, /**< character class range from */
|
|
ecma_char_t end) /**< character class range to */
|
|
{
|
|
re_compiler_ctx_t *ctx_p = (re_compiler_ctx_t *) re_ctx_p;
|
|
re_append_char (ctx_p->bytecode_ctx_p, start);
|
|
re_append_char (ctx_p->bytecode_ctx_p, end);
|
|
ctx_p->parser_ctx_p->num_of_classes++;
|
|
} /* re_append_char_class */
|
|
|
|
/**
|
|
* Insert simple atom iterator
|
|
*/
|
|
static void
|
|
re_insert_simple_iterator (re_compiler_ctx_t *re_ctx_p, /**< RegExp compiler context */
|
|
uint32_t new_atom_start_offset) /**< atom start offset */
|
|
{
|
|
uint32_t atom_code_length;
|
|
uint32_t offset;
|
|
uint32_t qmin, qmax;
|
|
|
|
qmin = re_ctx_p->current_token.qmin;
|
|
qmax = re_ctx_p->current_token.qmax;
|
|
JERRY_ASSERT (qmin <= qmax);
|
|
|
|
/* FIXME: optimize bytecode length. Store 0 rather than INF */
|
|
|
|
re_append_opcode (re_ctx_p->bytecode_ctx_p, RE_OP_MATCH); /* complete 'sub atom' */
|
|
uint32_t bytecode_length = re_get_bytecode_length (re_ctx_p->bytecode_ctx_p);
|
|
atom_code_length = (uint32_t) (bytecode_length - new_atom_start_offset);
|
|
|
|
offset = new_atom_start_offset;
|
|
re_insert_u32 (re_ctx_p->bytecode_ctx_p, offset, atom_code_length);
|
|
re_insert_u32 (re_ctx_p->bytecode_ctx_p, offset, qmax);
|
|
re_insert_u32 (re_ctx_p->bytecode_ctx_p, offset, qmin);
|
|
if (re_ctx_p->current_token.greedy)
|
|
{
|
|
re_insert_opcode (re_ctx_p->bytecode_ctx_p, offset, RE_OP_GREEDY_ITERATOR);
|
|
}
|
|
else
|
|
{
|
|
re_insert_opcode (re_ctx_p->bytecode_ctx_p, offset, RE_OP_NON_GREEDY_ITERATOR);
|
|
}
|
|
} /* re_insert_simple_iterator */
|
|
|
|
/**
|
|
* Get the type of a group start
|
|
*
|
|
* @return RegExp opcode
|
|
*/
|
|
static re_opcode_t
|
|
re_get_start_opcode_type (re_compiler_ctx_t *re_ctx_p, /**< RegExp compiler context */
|
|
bool is_capturable) /**< is capturable group */
|
|
{
|
|
if (is_capturable)
|
|
{
|
|
if (re_ctx_p->current_token.qmin == 0)
|
|
{
|
|
if (re_ctx_p->current_token.greedy)
|
|
{
|
|
return RE_OP_CAPTURE_GREEDY_ZERO_GROUP_START;
|
|
}
|
|
|
|
return RE_OP_CAPTURE_NON_GREEDY_ZERO_GROUP_START;
|
|
}
|
|
|
|
return RE_OP_CAPTURE_GROUP_START;
|
|
}
|
|
|
|
if (re_ctx_p->current_token.qmin == 0)
|
|
{
|
|
if (re_ctx_p->current_token.greedy)
|
|
{
|
|
return RE_OP_NON_CAPTURE_GREEDY_ZERO_GROUP_START;
|
|
}
|
|
|
|
return RE_OP_NON_CAPTURE_NON_GREEDY_ZERO_GROUP_START;
|
|
}
|
|
|
|
return RE_OP_NON_CAPTURE_GROUP_START;
|
|
} /* re_get_start_opcode_type */
|
|
|
|
/**
|
|
* Get the type of a group end
|
|
*
|
|
* @return RegExp opcode
|
|
*/
|
|
static re_opcode_t
|
|
re_get_end_opcode_type (re_compiler_ctx_t *re_ctx_p, /**< RegExp compiler context */
|
|
bool is_capturable) /**< is capturable group */
|
|
{
|
|
if (is_capturable)
|
|
{
|
|
if (re_ctx_p->current_token.greedy)
|
|
{
|
|
return RE_OP_CAPTURE_GREEDY_GROUP_END;
|
|
}
|
|
|
|
return RE_OP_CAPTURE_NON_GREEDY_GROUP_END;
|
|
}
|
|
|
|
if (re_ctx_p->current_token.greedy)
|
|
{
|
|
return RE_OP_NON_CAPTURE_GREEDY_GROUP_END;
|
|
}
|
|
|
|
return RE_OP_NON_CAPTURE_NON_GREEDY_GROUP_END;
|
|
} /* re_get_end_opcode_type */
|
|
|
|
/**
|
|
* Enclose the given bytecode to a group
|
|
*/
|
|
static void
|
|
re_insert_into_group (re_compiler_ctx_t *re_ctx_p, /**< RegExp compiler context */
|
|
uint32_t group_start_offset, /**< offset of group start */
|
|
uint32_t idx, /**< index of group */
|
|
bool is_capturable) /**< is capturable group */
|
|
{
|
|
uint32_t qmin, qmax;
|
|
re_opcode_t start_opcode = re_get_start_opcode_type (re_ctx_p, is_capturable);
|
|
re_opcode_t end_opcode = re_get_end_opcode_type (re_ctx_p, is_capturable);
|
|
uint32_t start_head_offset_len;
|
|
|
|
qmin = re_ctx_p->current_token.qmin;
|
|
qmax = re_ctx_p->current_token.qmax;
|
|
JERRY_ASSERT (qmin <= qmax);
|
|
|
|
start_head_offset_len = re_get_bytecode_length (re_ctx_p->bytecode_ctx_p);
|
|
re_insert_u32 (re_ctx_p->bytecode_ctx_p, group_start_offset, idx);
|
|
re_insert_opcode (re_ctx_p->bytecode_ctx_p, group_start_offset, start_opcode);
|
|
start_head_offset_len = re_get_bytecode_length (re_ctx_p->bytecode_ctx_p) - start_head_offset_len;
|
|
re_append_opcode (re_ctx_p->bytecode_ctx_p, end_opcode);
|
|
re_append_u32 (re_ctx_p->bytecode_ctx_p, idx);
|
|
re_append_u32 (re_ctx_p->bytecode_ctx_p, qmin);
|
|
re_append_u32 (re_ctx_p->bytecode_ctx_p, qmax);
|
|
|
|
group_start_offset += start_head_offset_len;
|
|
re_append_jump_offset (re_ctx_p->bytecode_ctx_p,
|
|
re_get_bytecode_length (re_ctx_p->bytecode_ctx_p) - group_start_offset);
|
|
|
|
if (start_opcode != RE_OP_CAPTURE_GROUP_START && start_opcode != RE_OP_NON_CAPTURE_GROUP_START)
|
|
{
|
|
re_insert_u32 (re_ctx_p->bytecode_ctx_p,
|
|
group_start_offset,
|
|
re_get_bytecode_length (re_ctx_p->bytecode_ctx_p) - group_start_offset);
|
|
}
|
|
} /* re_insert_into_group */
|
|
|
|
/**
|
|
* Enclose the given bytecode to a group and inster jump value
|
|
*/
|
|
static void
|
|
re_insert_into_group_with_jump (re_compiler_ctx_t *re_ctx_p, /**< RegExp compiler context */
|
|
uint32_t group_start_offset, /**< offset of group start */
|
|
uint32_t idx, /**< index of group */
|
|
bool is_capturable) /**< is capturable group */
|
|
{
|
|
re_insert_u32 (re_ctx_p->bytecode_ctx_p,
|
|
group_start_offset,
|
|
re_get_bytecode_length (re_ctx_p->bytecode_ctx_p) - group_start_offset);
|
|
re_insert_into_group (re_ctx_p, group_start_offset, idx, is_capturable);
|
|
} /* re_insert_into_group_with_jump */
|
|
|
|
/**
|
|
* Parse alternatives
|
|
*
|
|
* @return empty ecma value - if alternative was successfully parsed
|
|
* error ecma value - otherwise
|
|
*
|
|
* Returned value must be freed with ecma_free_value
|
|
*/
|
|
static ecma_value_t
|
|
re_parse_alternative (re_compiler_ctx_t *re_ctx_p, /**< RegExp compiler context */
|
|
bool expect_eof) /**< expect end of file */
|
|
{
|
|
uint32_t idx;
|
|
re_bytecode_ctx_t *bc_ctx_p = re_ctx_p->bytecode_ctx_p;
|
|
ecma_value_t ret_value = ecma_make_simple_value (ECMA_SIMPLE_VALUE_EMPTY);
|
|
|
|
uint32_t alterantive_offset = re_get_bytecode_length (re_ctx_p->bytecode_ctx_p);
|
|
bool should_loop = true;
|
|
|
|
while (ecma_is_value_empty (ret_value) && should_loop)
|
|
{
|
|
ECMA_TRY_CATCH (empty,
|
|
re_parse_next_token (re_ctx_p->parser_ctx_p,
|
|
&(re_ctx_p->current_token)),
|
|
ret_value);
|
|
|
|
uint32_t new_atom_start_offset = re_get_bytecode_length (re_ctx_p->bytecode_ctx_p);
|
|
|
|
switch (re_ctx_p->current_token.type)
|
|
{
|
|
case RE_TOK_START_CAPTURE_GROUP:
|
|
{
|
|
idx = re_ctx_p->num_of_captures++;
|
|
JERRY_DDLOG ("Compile a capture group start (idx: %d)\n", idx);
|
|
|
|
ret_value = re_parse_alternative (re_ctx_p, false);
|
|
|
|
if (ecma_is_value_empty (ret_value))
|
|
{
|
|
re_insert_into_group (re_ctx_p, new_atom_start_offset, idx, true);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case RE_TOK_START_NON_CAPTURE_GROUP:
|
|
{
|
|
idx = re_ctx_p->num_of_non_captures++;
|
|
JERRY_DDLOG ("Compile a non-capture group start (idx: %d)\n", idx);
|
|
|
|
ret_value = re_parse_alternative (re_ctx_p, false);
|
|
|
|
if (ecma_is_value_empty (ret_value))
|
|
{
|
|
re_insert_into_group (re_ctx_p, new_atom_start_offset, idx, false);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case RE_TOK_CHAR:
|
|
{
|
|
JERRY_DDLOG ("Compile character token: %c, qmin: %d, qmax: %d\n",
|
|
re_ctx_p->current_token.value, re_ctx_p->current_token.qmin, re_ctx_p->current_token.qmax);
|
|
|
|
re_append_opcode (bc_ctx_p, RE_OP_CHAR);
|
|
re_append_char (bc_ctx_p, re_canonicalize ((ecma_char_t) re_ctx_p->current_token.value,
|
|
re_ctx_p->flags & RE_FLAG_IGNORE_CASE));
|
|
|
|
if ((re_ctx_p->current_token.qmin != 1) || (re_ctx_p->current_token.qmax != 1))
|
|
{
|
|
re_insert_simple_iterator (re_ctx_p, new_atom_start_offset);
|
|
}
|
|
break;
|
|
}
|
|
case RE_TOK_PERIOD:
|
|
{
|
|
JERRY_DDLOG ("Compile a period\n");
|
|
re_append_opcode (bc_ctx_p, RE_OP_PERIOD);
|
|
|
|
if ((re_ctx_p->current_token.qmin != 1) || (re_ctx_p->current_token.qmax != 1))
|
|
{
|
|
re_insert_simple_iterator (re_ctx_p, new_atom_start_offset);
|
|
}
|
|
break;
|
|
}
|
|
case RE_TOK_ALTERNATIVE:
|
|
{
|
|
JERRY_DDLOG ("Compile an alternative\n");
|
|
re_insert_u32 (bc_ctx_p, alterantive_offset, re_get_bytecode_length (bc_ctx_p) - alterantive_offset);
|
|
re_append_opcode (bc_ctx_p, RE_OP_ALTERNATIVE);
|
|
alterantive_offset = re_get_bytecode_length (re_ctx_p->bytecode_ctx_p);
|
|
break;
|
|
}
|
|
case RE_TOK_ASSERT_START:
|
|
{
|
|
JERRY_DDLOG ("Compile a start assertion\n");
|
|
re_append_opcode (bc_ctx_p, RE_OP_ASSERT_START);
|
|
break;
|
|
}
|
|
case RE_TOK_ASSERT_END:
|
|
{
|
|
JERRY_DDLOG ("Compile an end assertion\n");
|
|
re_append_opcode (bc_ctx_p, RE_OP_ASSERT_END);
|
|
break;
|
|
}
|
|
case RE_TOK_ASSERT_WORD_BOUNDARY:
|
|
{
|
|
JERRY_DDLOG ("Compile a word boundary assertion\n");
|
|
re_append_opcode (bc_ctx_p, RE_OP_ASSERT_WORD_BOUNDARY);
|
|
break;
|
|
}
|
|
case RE_TOK_ASSERT_NOT_WORD_BOUNDARY:
|
|
{
|
|
JERRY_DDLOG ("Compile a not word boundary assertion\n");
|
|
re_append_opcode (bc_ctx_p, RE_OP_ASSERT_NOT_WORD_BOUNDARY);
|
|
break;
|
|
}
|
|
case RE_TOK_ASSERT_START_POS_LOOKAHEAD:
|
|
{
|
|
JERRY_DDLOG ("Compile a positive lookahead assertion\n");
|
|
idx = re_ctx_p->num_of_non_captures++;
|
|
re_append_opcode (bc_ctx_p, RE_OP_LOOKAHEAD_POS);
|
|
|
|
ret_value = re_parse_alternative (re_ctx_p, false);
|
|
|
|
if (ecma_is_value_empty (ret_value))
|
|
{
|
|
re_append_opcode (bc_ctx_p, RE_OP_MATCH);
|
|
|
|
re_insert_into_group_with_jump (re_ctx_p, new_atom_start_offset, idx, false);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case RE_TOK_ASSERT_START_NEG_LOOKAHEAD:
|
|
{
|
|
JERRY_DDLOG ("Compile a negative lookahead assertion\n");
|
|
idx = re_ctx_p->num_of_non_captures++;
|
|
re_append_opcode (bc_ctx_p, RE_OP_LOOKAHEAD_NEG);
|
|
|
|
ret_value = re_parse_alternative (re_ctx_p, false);
|
|
|
|
if (ecma_is_value_empty (ret_value))
|
|
{
|
|
re_append_opcode (bc_ctx_p, RE_OP_MATCH);
|
|
|
|
re_insert_into_group_with_jump (re_ctx_p, new_atom_start_offset, idx, false);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case RE_TOK_BACKREFERENCE:
|
|
{
|
|
uint32_t backref = (uint32_t) re_ctx_p->current_token.value;
|
|
idx = re_ctx_p->num_of_non_captures++;
|
|
|
|
if (backref > re_ctx_p->highest_backref)
|
|
{
|
|
re_ctx_p->highest_backref = backref;
|
|
}
|
|
|
|
JERRY_DDLOG ("Compile a backreference: %d\n", backref);
|
|
re_append_opcode (bc_ctx_p, RE_OP_BACKREFERENCE);
|
|
re_append_u32 (bc_ctx_p, backref);
|
|
|
|
re_insert_into_group_with_jump (re_ctx_p, new_atom_start_offset, idx, false);
|
|
break;
|
|
}
|
|
case RE_TOK_DIGIT:
|
|
case RE_TOK_NOT_DIGIT:
|
|
case RE_TOK_WHITE:
|
|
case RE_TOK_NOT_WHITE:
|
|
case RE_TOK_WORD_CHAR:
|
|
case RE_TOK_NOT_WORD_CHAR:
|
|
case RE_TOK_START_CHAR_CLASS:
|
|
case RE_TOK_START_INV_CHAR_CLASS:
|
|
{
|
|
JERRY_DDLOG ("Compile a character class\n");
|
|
re_append_opcode (bc_ctx_p,
|
|
re_ctx_p->current_token.type == RE_TOK_START_INV_CHAR_CLASS
|
|
? RE_OP_INV_CHAR_CLASS
|
|
: RE_OP_CHAR_CLASS);
|
|
uint32_t offset = re_get_bytecode_length (re_ctx_p->bytecode_ctx_p);
|
|
|
|
ECMA_TRY_CATCH (empty,
|
|
re_parse_char_class (re_ctx_p->parser_ctx_p,
|
|
re_append_char_class,
|
|
re_ctx_p,
|
|
&(re_ctx_p->current_token)),
|
|
ret_value);
|
|
re_insert_u32 (bc_ctx_p, offset, re_ctx_p->parser_ctx_p->num_of_classes);
|
|
|
|
if ((re_ctx_p->current_token.qmin != 1) || (re_ctx_p->current_token.qmax != 1))
|
|
{
|
|
re_insert_simple_iterator (re_ctx_p, new_atom_start_offset);
|
|
}
|
|
|
|
ECMA_FINALIZE (empty);
|
|
|
|
break;
|
|
}
|
|
case RE_TOK_END_GROUP:
|
|
{
|
|
JERRY_DDLOG ("Compile a group end\n");
|
|
|
|
if (expect_eof)
|
|
{
|
|
ret_value = ecma_raise_syntax_error ("Unexpected end of paren.");
|
|
}
|
|
else
|
|
{
|
|
re_insert_u32 (bc_ctx_p, alterantive_offset, re_get_bytecode_length (bc_ctx_p) - alterantive_offset);
|
|
should_loop = false;
|
|
}
|
|
break;
|
|
}
|
|
case RE_TOK_EOF:
|
|
{
|
|
if (!expect_eof)
|
|
{
|
|
ret_value = ecma_raise_syntax_error ("Unexpected end of pattern.");
|
|
}
|
|
else
|
|
{
|
|
re_insert_u32 (bc_ctx_p, alterantive_offset, re_get_bytecode_length (bc_ctx_p) - alterantive_offset);
|
|
should_loop = false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
ret_value = ecma_raise_syntax_error ("Unexpected RegExp token.");
|
|
break;
|
|
}
|
|
}
|
|
ECMA_FINALIZE (empty);
|
|
}
|
|
|
|
return ret_value;
|
|
} /* re_parse_alternative */
|
|
|
|
static const re_compiled_code_t *re_cache[RE_CACHE_SIZE];
|
|
|
|
/**
|
|
* Search for the given pattern in the RegExp cache
|
|
*
|
|
* @return compiled bytecode - if found
|
|
* NULL - otherwise
|
|
*/
|
|
re_compiled_code_t *
|
|
re_find_bytecode_in_cache (ecma_string_t *pattern_str_p, /**< pattern string */
|
|
uint16_t flags, /**< flags */
|
|
uint32_t *idx) /**< [out] index */
|
|
{
|
|
uint32_t free_idx = RE_CACHE_SIZE;
|
|
|
|
for (*idx = 0u; *idx < RE_CACHE_SIZE; (*idx)++)
|
|
{
|
|
re_compiled_code_t *cached_bytecode_p = re_cache[*idx];
|
|
|
|
if (cached_bytecode_p != NULL)
|
|
{
|
|
ecma_string_t *cached_pattern_str_p;
|
|
cached_pattern_str_p = ECMA_GET_NON_NULL_POINTER (ecma_string_t, cached_bytecode_p->pattern_cp);
|
|
|
|
if ((cached_bytecode_p->flags & RE_FLAGS_MASK) == flags
|
|
&& ecma_compare_ecma_strings (cached_pattern_str_p, pattern_str_p))
|
|
{
|
|
JERRY_DDLOG ("RegExp is found in cache\n");
|
|
return re_cache[*idx];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* mark as free, so it can be overridden if the cache is full */
|
|
free_idx = *idx;
|
|
}
|
|
}
|
|
|
|
JERRY_DDLOG ("RegExp is NOT found in cache\n");
|
|
*idx = free_idx;
|
|
return NULL;
|
|
} /* re_find_bytecode_in_cache */
|
|
|
|
/**
|
|
* Run gerbage collection in RegExp cache
|
|
*/
|
|
void
|
|
re_cache_gc_run ()
|
|
{
|
|
for (uint32_t i = 0u; i < RE_CACHE_SIZE; i++)
|
|
{
|
|
re_compiled_code_t *cached_bytecode_p = re_cache[i];
|
|
|
|
if (cached_bytecode_p != NULL
|
|
&& (cached_bytecode_p->flags >> ECMA_BYTECODE_REF_SHIFT) == 1)
|
|
{ /* Only the cache has reference for the bytecode */
|
|
|
|
ecma_bytecode_deref (cached_bytecode_p);
|
|
re_cache[i] = NULL;
|
|
}
|
|
}
|
|
} /* re_cache_gc_run */
|
|
|
|
/**
|
|
* Compilation of RegExp bytecode
|
|
*
|
|
* @return empty ecma value - if bytecode was compiled successfully
|
|
* error ecma value - otherwise
|
|
*
|
|
* Returned value must be freed with ecma_free_value
|
|
*/
|
|
ecma_value_t
|
|
re_compile_bytecode (re_compiled_code_t **out_bytecode_p, /**< [out] pointer to bytecode */
|
|
ecma_string_t *pattern_str_p, /**< pattern */
|
|
uint16_t flags) /**< flags */
|
|
{
|
|
ecma_value_t ret_value = ecma_make_simple_value (ECMA_SIMPLE_VALUE_EMPTY);
|
|
re_compiler_ctx_t re_ctx;
|
|
re_ctx.flags = flags;
|
|
re_ctx.highest_backref = 0;
|
|
re_ctx.num_of_non_captures = 0;
|
|
|
|
re_bytecode_ctx_t bc_ctx;
|
|
bc_ctx.block_start_p = NULL;
|
|
bc_ctx.block_end_p = NULL;
|
|
bc_ctx.current_p = NULL;
|
|
|
|
re_ctx.bytecode_ctx_p = &bc_ctx;
|
|
|
|
uint32_t cache_idx;
|
|
*out_bytecode_p = re_find_bytecode_in_cache (pattern_str_p, flags, &cache_idx);
|
|
|
|
if (*out_bytecode_p != NULL)
|
|
{
|
|
ecma_bytecode_ref ((ecma_compiled_code_t *) *out_bytecode_p);
|
|
}
|
|
else
|
|
{ /* not in the RegExp cache, so compile it */
|
|
lit_utf8_size_t pattern_str_size = ecma_string_get_size (pattern_str_p);
|
|
MEM_DEFINE_LOCAL_ARRAY (pattern_start_p, pattern_str_size, lit_utf8_byte_t);
|
|
|
|
ssize_t sz = ecma_string_to_utf8_string (pattern_str_p, pattern_start_p, (ssize_t) pattern_str_size);
|
|
JERRY_ASSERT (sz >= 0);
|
|
|
|
re_parser_ctx_t parser_ctx;
|
|
parser_ctx.input_start_p = pattern_start_p;
|
|
parser_ctx.input_curr_p = pattern_start_p;
|
|
parser_ctx.input_end_p = pattern_start_p + pattern_str_size;
|
|
parser_ctx.num_of_groups = -1;
|
|
re_ctx.parser_ctx_p = &parser_ctx;
|
|
|
|
/* 1. Parse RegExp pattern */
|
|
re_ctx.num_of_captures = 1;
|
|
re_append_opcode (&bc_ctx, RE_OP_SAVE_AT_START);
|
|
|
|
ECMA_TRY_CATCH (empty, re_parse_alternative (&re_ctx, true), ret_value);
|
|
|
|
/* 2. Check for invalid backreference */
|
|
if (re_ctx.highest_backref >= re_ctx.num_of_captures)
|
|
{
|
|
ret_value = ecma_raise_syntax_error ("Invalid backreference.\n");
|
|
}
|
|
else
|
|
{
|
|
re_append_opcode (&bc_ctx, RE_OP_SAVE_AND_MATCH);
|
|
re_append_opcode (&bc_ctx, RE_OP_EOF);
|
|
|
|
/* 3. Insert extra informations for bytecode header */
|
|
re_compiled_code_t re_compiled_code;
|
|
|
|
re_compiled_code.flags = re_ctx.flags | (1u << ECMA_BYTECODE_REF_SHIFT);
|
|
ECMA_SET_NON_NULL_POINTER (re_compiled_code.pattern_cp,
|
|
ecma_copy_or_ref_ecma_string (pattern_str_p));
|
|
re_compiled_code.num_of_captures = re_ctx.num_of_captures * 2;
|
|
re_compiled_code.num_of_non_captures = re_ctx.num_of_non_captures;
|
|
|
|
re_bytecode_list_insert (&bc_ctx,
|
|
0,
|
|
(uint8_t *) &re_compiled_code,
|
|
sizeof (re_compiled_code_t));
|
|
}
|
|
|
|
ECMA_FINALIZE (empty);
|
|
|
|
MEM_FINALIZE_LOCAL_ARRAY (pattern_start_p);
|
|
|
|
if (!ecma_is_value_empty (ret_value))
|
|
{
|
|
/* Compilation failed, free bytecode. */
|
|
mem_heap_free_block_size_stored (bc_ctx.block_start_p);
|
|
*out_bytecode_p = NULL;
|
|
}
|
|
else
|
|
{
|
|
/* The RegExp bytecode contains at least a RE_OP_SAVE_AT_START opdoce, so it cannot be NULL. */
|
|
JERRY_ASSERT (bc_ctx.block_start_p != NULL);
|
|
*out_bytecode_p = (re_compiled_code_t *) bc_ctx.block_start_p;
|
|
|
|
if (cache_idx < RE_CACHE_SIZE)
|
|
{
|
|
ecma_bytecode_ref (*out_bytecode_p);
|
|
re_cache[cache_idx] = *out_bytecode_p;
|
|
}
|
|
else
|
|
{
|
|
JERRY_DDLOG ("RegExp cache is full! Cannot add new bytecode to it.");
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef JERRY_ENABLE_LOG
|
|
re_dump_bytecode (&bc_ctx);
|
|
#endif
|
|
|
|
return ret_value;
|
|
} /* re_compile_bytecode */
|
|
|
|
/**
|
|
* @}
|
|
* @}
|
|
* @}
|
|
*/
|
|
|
|
#endif /* !CONFIG_ECMA_COMPACT_PROFILE_DISABLE_REGEXP_BUILTIN */
|