Csaba Osztrogonác 1bd1a36a81
Bump reference platform to Ubuntu 18.04 LTS (#3037)
Ubuntu 14.04 reached its end of life on April 30m 2019.
Let's bump the reference to the latest LTS, which is 18.04.

Ubuntu 18.04 has newer Pylint and Cppcheck, the necessary
fixes and suppresses are also included in this PR.

JerryScript-DCO-1.0-Signed-off-by: Csaba Osztrogonác oszi@inf.u-szeged.hu
2020-03-30 12:26:56 +02:00

221 lines
6.2 KiB
C

/* Copyright JS Foundation and other contributors, http://js.foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is based on work under the following copyright and permission
* notice:
*
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
*
* @(#)e_exp.c 1.6 04/04/22
*/
#include "jerry-libm-internal.h"
/* exp(x)
* Returns the exponential of x.
*
* Method:
* 1. Argument reduction:
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
* Given x, find r and integer k such that
*
* x = k*ln2 + r, |r| <= 0.5*ln2.
*
* Here r will be represented as r = hi-lo for better
* accuracy.
*
* 2. Approximation of exp(r) by a special rational function on
* the interval [0,0.34658]:
* Write
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
* We use a special Remes algorithm on [0,0.34658] to generate
* a polynomial of degree 5 to approximate R. The maximum error
* of this polynomial approximation is bounded by 2**-59. In
* other words,
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
* (where z=r*r, and the values of P1 to P5 are listed below)
* and
* | 5 | -59
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
* | |
* The computation of exp(r) thus becomes
* 2*r
* exp(r) = 1 + -------
* R - r
* r*R1(r)
* = 1 + r + ----------- (for better accuracy)
* 2 - R1(r)
* where
* 2 4 10
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
*
* 3. Scale back to obtain exp(x):
* From step 1, we have
* exp(x) = 2^k * exp(r)
*
* Special cases:
* exp(INF) is INF, exp(NaN) is NaN;
* exp(-INF) is 0, and
* for finite argument, only exp(0)=1 is exact.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Misc. info:
* For IEEE double
* if x > 7.09782712893383973096e+02 then exp(x) overflow
* if x < -7.45133219101941108420e+02 then exp(x) underflow
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
static const double halF[2] =
{
0.5,
-0.5,
};
static const double ln2HI[2] =
{
6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
-6.93147180369123816490e-01, /* 0xbfe62e42, 0xfee00000 */
};
static const double ln2LO[2] =
{
1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
-1.90821492927058770002e-10, /* 0xbdea39ef, 0x35793c76 */
};
#define one 1.0
#define huge 1.0e+300
#define twom1000 9.33263618503218878990e-302 /* 2**-1000=0x01700000,0 */
#define o_threshold 7.09782712893383973096e+02 /* 0x40862E42, 0xFEFA39EF */
#define u_threshold -7.45133219101941108420e+02 /* 0xc0874910, 0xD52D3051 */
#define invln2 1.44269504088896338700e+00 /* 0x3ff71547, 0x652b82fe */
#define P1 1.66666666666666019037e-01 /* 0x3FC55555, 0x5555553E */
#define P2 -2.77777777770155933842e-03 /* 0xBF66C16C, 0x16BEBD93 */
#define P3 6.61375632143793436117e-05 /* 0x3F11566A, 0xAF25DE2C */
#define P4 -1.65339022054652515390e-06 /* 0xBEBBBD41, 0xC5D26BF1 */
#define P5 4.13813679705723846039e-08 /* 0x3E663769, 0x72BEA4D0 */
double
exp (double x) /* default IEEE double exp */
{
double hi, lo, c, t;
int k = 0, xsb;
unsigned hx;
hx = __HI (x); /* high word of x */
xsb = (hx >> 31) & 1; /* sign bit of x */
hx &= 0x7fffffff; /* high word of |x| */
/* filter out non-finite argument */
if (hx >= 0x40862E42) /* if |x| >= 709.78... */
{
if (hx >= 0x7ff00000)
{
if (((hx & 0xfffff) | __LO (x)) != 0) /* NaN */
{
return x + x;
}
else /* exp(+-inf) = {inf,0} */
{
return (xsb == 0) ? x : 0.0;
}
}
if (x > o_threshold) /* overflow */
{
return huge * huge;
}
if (x < u_threshold) /* underflow */
{
return twom1000 * twom1000;
}
}
/* argument reduction */
if (hx > 0x3fd62e42) /* if |x| > 0.5 ln2 */
{
if (hx < 0x3FF0A2B2) /* and |x| < 1.5 ln2 */
{
hi = x - ln2HI[xsb];
lo = ln2LO[xsb];
k = 1 - xsb - xsb;
}
else
{
k = (int) (invln2 * x + halF[xsb]);
t = k;
hi = x - t * ln2HI[0]; /* t * ln2HI is exact here */
lo = t * ln2LO[0];
}
x = hi - lo;
}
else if (hx < 0x3e300000) /* when |x| < 2**-28 */
{
if (huge + x > one) /* trigger inexact */
{
return one + x;
}
}
else
{
k = 0;
}
double_accessor ret;
/* x is now in primary range */
t = x * x;
c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
if (k == 0)
{
return one - ((x * c) / (c - 2.0) - x);
}
else
{
ret.dbl = one - ((lo - (x * c) / (2.0 - c)) - hi);
}
if (k >= -1021)
{
ret.as_int.hi += (((unsigned int) k) << 20); /* add k to y's exponent */
return ret.dbl;
}
else
{
ret.as_int.hi += ((k + 1000) << 20); /* add k to y's exponent */
return ret.dbl * twom1000;
}
} /* exp */
#undef one
#undef huge
#undef twom1000
#undef o_threshold
#undef u_threshold
#undef invln2
#undef P1
#undef P2
#undef P3
#undef P4
#undef P5