/* Copyright 2014-2015 Samsung Electronics Co., Ltd. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "bytecode-data.h" #include "jsp-mm.h" #include "scopes-tree.h" #define OPCODE(op) (__op__idx_##op) #define HASH_SIZE 128 static hash_table lit_id_to_uid = null_hash; static opcode_counter_t global_oc; static idx_t next_uid; static void assert_tree (scopes_tree t) { JERRY_ASSERT (t != NULL); } static idx_t get_uid (op_meta *op, uint8_t i) { JERRY_ASSERT (i < 4); raw_opcode *raw = (raw_opcode *) &op->op; return raw->uids[i + 1]; } static void set_uid (op_meta *op, uint8_t i, idx_t uid) { JERRY_ASSERT (i < 4); raw_opcode *raw = (raw_opcode *) &op->op; raw->uids[i + 1] = uid; } opcode_counter_t scopes_tree_opcodes_num (scopes_tree t) { assert_tree (t); return t->opcodes_num; } void scopes_tree_add_op_meta (scopes_tree tree, op_meta op) { assert_tree (tree); linked_list_set_element (tree->opcodes, tree->opcodes_num++, &op); } void scopes_tree_set_op_meta (scopes_tree tree, opcode_counter_t oc, op_meta op) { assert_tree (tree); JERRY_ASSERT (oc < tree->opcodes_num); linked_list_set_element (tree->opcodes, oc, &op); } void scopes_tree_set_opcodes_num (scopes_tree tree, opcode_counter_t oc) { assert_tree (tree); JERRY_ASSERT (oc < tree->opcodes_num); tree->opcodes_num = oc; } op_meta scopes_tree_op_meta (scopes_tree tree, opcode_counter_t oc) { assert_tree (tree); JERRY_ASSERT (oc < tree->opcodes_num); return *(op_meta *) linked_list_element (tree->opcodes, oc); } opcode_counter_t scopes_tree_count_opcodes (scopes_tree t) { assert_tree (t); opcode_counter_t res = t->opcodes_num; for (uint8_t i = 0; i < t->t.children_num; i++) { res = (opcode_counter_t) ( res + scopes_tree_count_opcodes ( *(scopes_tree *) linked_list_element (t->t.children, i))); } return res; } static uint16_t lit_id_hash (void * lit_id) { return ((lit_cpointer_t *) lit_id)->packed_value % HASH_SIZE; } static void start_new_block_if_necessary (void) { if (global_oc % BLOCK_SIZE == 0) { next_uid = 0; if (lit_id_to_uid != null_hash) { hash_table_free (lit_id_to_uid); lit_id_to_uid = null_hash; } lit_id_to_uid = hash_table_init (sizeof (lit_cpointer_t), sizeof (idx_t), HASH_SIZE, lit_id_hash); } } static bool is_possible_literal (uint16_t mask, uint8_t index) { int res; switch (index) { case 0: { res = mask >> 8; break; } case 1: { res = (mask & 0xF0) >> 4; break; } default: { JERRY_ASSERT (index = 2); res = mask & 0x0F; } } JERRY_ASSERT (res == 0 || res == 1); return res == 1; } static void change_uid (op_meta *om, lit_id_hash_table *lit_ids, uint16_t mask) { for (uint8_t i = 0; i < 3; i++) { if (is_possible_literal (mask, i)) { if (get_uid (om, i) == LITERAL_TO_REWRITE) { JERRY_ASSERT (om->lit_id[i].packed_value != MEM_CP_NULL); lit_cpointer_t lit_id = om->lit_id[i]; idx_t *uid = (idx_t *) hash_table_lookup (lit_id_to_uid, &lit_id); if (uid == NULL) { hash_table_insert (lit_id_to_uid, &lit_id, &next_uid); lit_id_hash_table_insert (lit_ids, next_uid, global_oc, lit_id); uid = (idx_t *) hash_table_lookup (lit_id_to_uid, &lit_id); JERRY_ASSERT (uid != NULL); JERRY_ASSERT (*uid == next_uid); next_uid++; } set_uid (om, i, *uid); } else { JERRY_ASSERT (om->lit_id[i].packed_value == MEM_CP_NULL); } } else { JERRY_ASSERT (om->lit_id[i].packed_value == MEM_CP_NULL); } } } static void insert_uids_to_lit_id_map (op_meta *om, uint16_t mask) { for (uint8_t i = 0; i < 3; i++) { if (is_possible_literal (mask, i)) { if (get_uid (om, i) == LITERAL_TO_REWRITE) { JERRY_ASSERT (om->lit_id[i].packed_value != MEM_CP_NULL); lit_cpointer_t lit_id = om->lit_id[i]; idx_t *uid = (idx_t *) hash_table_lookup (lit_id_to_uid, &lit_id); if (uid == NULL) { hash_table_insert (lit_id_to_uid, &lit_id, &next_uid); uid = (idx_t *) hash_table_lookup (lit_id_to_uid, &lit_id); JERRY_ASSERT (uid != NULL); JERRY_ASSERT (*uid == next_uid); next_uid++; } } else { JERRY_ASSERT (om->lit_id[i].packed_value == MEM_CP_NULL); } } else { JERRY_ASSERT (om->lit_id[i].packed_value == MEM_CP_NULL); } } } static op_meta * extract_op_meta (scopes_tree tree, opcode_counter_t opc_index) { return (op_meta *) linked_list_element (tree->opcodes, opc_index); } static opcode_t generate_opcode (scopes_tree tree, opcode_counter_t opc_index, lit_id_hash_table *lit_ids) { start_new_block_if_necessary (); op_meta *om = extract_op_meta (tree, opc_index); /* Now we should change uids of opcodes. Since different opcodes has different literals/tmps in different places, we should change only them. For each case possible literal positions are shown as 0xYYY literal, where Y is set to '1' when there is a possible literal in this position, and '0' otherwise. */ switch (om->op.op_idx) { case OPCODE (prop_getter): case OPCODE (prop_setter): case OPCODE (delete_prop): case OPCODE (b_shift_left): case OPCODE (b_shift_right): case OPCODE (b_shift_uright): case OPCODE (b_and): case OPCODE (b_or): case OPCODE (b_xor): case OPCODE (equal_value): case OPCODE (not_equal_value): case OPCODE (equal_value_type): case OPCODE (not_equal_value_type): case OPCODE (less_than): case OPCODE (greater_than): case OPCODE (less_or_equal_than): case OPCODE (greater_or_equal_than): case OPCODE (instanceof): case OPCODE (in): case OPCODE (addition): case OPCODE (substraction): case OPCODE (division): case OPCODE (multiplication): case OPCODE (remainder): { change_uid (om, lit_ids, 0x111); break; } case OPCODE (call_n): case OPCODE (native_call): case OPCODE (construct_n): case OPCODE (func_expr_n): case OPCODE (delete_var): case OPCODE (typeof): case OPCODE (b_not): case OPCODE (logical_not): case OPCODE (post_incr): case OPCODE (post_decr): case OPCODE (pre_incr): case OPCODE (pre_decr): case OPCODE (unary_plus): case OPCODE (unary_minus): { change_uid (om, lit_ids, 0x110); break; } case OPCODE (assignment): { switch (om->op.data.assignment.type_value_right) { case OPCODE_ARG_TYPE_SIMPLE: case OPCODE_ARG_TYPE_SMALLINT: case OPCODE_ARG_TYPE_SMALLINT_NEGATE: { change_uid (om, lit_ids, 0x100); break; } case OPCODE_ARG_TYPE_NUMBER: case OPCODE_ARG_TYPE_NUMBER_NEGATE: case OPCODE_ARG_TYPE_REGEXP: case OPCODE_ARG_TYPE_STRING: case OPCODE_ARG_TYPE_VARIABLE: { change_uid (om, lit_ids, 0x101); break; } } break; } case OPCODE (func_decl_n): case OPCODE (array_decl): case OPCODE (obj_decl): case OPCODE (this_binding): case OPCODE (with): case OPCODE (throw_value): case OPCODE (is_true_jmp_up): case OPCODE (is_true_jmp_down): case OPCODE (is_false_jmp_up): case OPCODE (is_false_jmp_down): case OPCODE (var_decl): case OPCODE (retval): { change_uid (om, lit_ids, 0x100); break; } case OPCODE (exitval): case OPCODE (ret): case OPCODE (try_block): case OPCODE (jmp_up): case OPCODE (jmp_down): case OPCODE (nop): case OPCODE (reg_var_decl): { change_uid (om, lit_ids, 0x000); break; } case OPCODE (meta): { switch (om->op.data.meta.type) { case OPCODE_META_TYPE_VARG_PROP_DATA: case OPCODE_META_TYPE_VARG_PROP_GETTER: case OPCODE_META_TYPE_VARG_PROP_SETTER: { change_uid (om, lit_ids, 0x011); break; } case OPCODE_META_TYPE_VARG: case OPCODE_META_TYPE_CATCH_EXCEPTION_IDENTIFIER: { change_uid (om, lit_ids, 0x010); break; } case OPCODE_META_TYPE_UNDEFINED: case OPCODE_META_TYPE_END_WITH: case OPCODE_META_TYPE_FUNCTION_END: case OPCODE_META_TYPE_CATCH: case OPCODE_META_TYPE_FINALLY: case OPCODE_META_TYPE_END_TRY_CATCH_FINALLY: case OPCODE_META_TYPE_CALL_SITE_INFO: case OPCODE_META_TYPE_SCOPE_CODE_FLAGS: { change_uid (om, lit_ids, 0x000); break; } } break; } } return om->op; } static idx_t count_new_literals_in_opcode (scopes_tree tree, opcode_counter_t opc_index) { start_new_block_if_necessary (); idx_t current_uid = next_uid; op_meta *om = extract_op_meta (tree, opc_index); switch (om->op.op_idx) { case OPCODE (prop_getter): case OPCODE (prop_setter): case OPCODE (delete_prop): case OPCODE (b_shift_left): case OPCODE (b_shift_right): case OPCODE (b_shift_uright): case OPCODE (b_and): case OPCODE (b_or): case OPCODE (b_xor): case OPCODE (equal_value): case OPCODE (not_equal_value): case OPCODE (equal_value_type): case OPCODE (not_equal_value_type): case OPCODE (less_than): case OPCODE (greater_than): case OPCODE (less_or_equal_than): case OPCODE (greater_or_equal_than): case OPCODE (instanceof): case OPCODE (in): case OPCODE (addition): case OPCODE (substraction): case OPCODE (division): case OPCODE (multiplication): case OPCODE (remainder): { insert_uids_to_lit_id_map (om, 0x111); break; } case OPCODE (call_n): case OPCODE (native_call): case OPCODE (construct_n): case OPCODE (func_expr_n): case OPCODE (delete_var): case OPCODE (typeof): case OPCODE (b_not): case OPCODE (logical_not): case OPCODE (post_incr): case OPCODE (post_decr): case OPCODE (pre_incr): case OPCODE (pre_decr): case OPCODE (unary_plus): case OPCODE (unary_minus): { insert_uids_to_lit_id_map (om, 0x110); break; } case OPCODE (assignment): { switch (om->op.data.assignment.type_value_right) { case OPCODE_ARG_TYPE_SIMPLE: case OPCODE_ARG_TYPE_SMALLINT: case OPCODE_ARG_TYPE_SMALLINT_NEGATE: { insert_uids_to_lit_id_map (om, 0x100); break; } case OPCODE_ARG_TYPE_NUMBER: case OPCODE_ARG_TYPE_NUMBER_NEGATE: case OPCODE_ARG_TYPE_REGEXP: case OPCODE_ARG_TYPE_STRING: case OPCODE_ARG_TYPE_VARIABLE: { insert_uids_to_lit_id_map (om, 0x101); break; } } break; } case OPCODE (func_decl_n): case OPCODE (array_decl): case OPCODE (obj_decl): case OPCODE (this_binding): case OPCODE (with): case OPCODE (throw_value): case OPCODE (is_true_jmp_up): case OPCODE (is_true_jmp_down): case OPCODE (is_false_jmp_up): case OPCODE (is_false_jmp_down): case OPCODE (var_decl): case OPCODE (retval): { insert_uids_to_lit_id_map (om, 0x100); break; } case OPCODE (exitval): case OPCODE (ret): case OPCODE (try_block): case OPCODE (jmp_up): case OPCODE (jmp_down): case OPCODE (nop): case OPCODE (reg_var_decl): { insert_uids_to_lit_id_map (om, 0x000); break; } case OPCODE (meta): { switch (om->op.data.meta.type) { case OPCODE_META_TYPE_VARG_PROP_DATA: case OPCODE_META_TYPE_VARG_PROP_GETTER: case OPCODE_META_TYPE_VARG_PROP_SETTER: { insert_uids_to_lit_id_map (om, 0x011); break; } case OPCODE_META_TYPE_VARG: case OPCODE_META_TYPE_CATCH_EXCEPTION_IDENTIFIER: { insert_uids_to_lit_id_map (om, 0x010); break; } case OPCODE_META_TYPE_UNDEFINED: case OPCODE_META_TYPE_END_WITH: case OPCODE_META_TYPE_FUNCTION_END: case OPCODE_META_TYPE_CATCH: case OPCODE_META_TYPE_FINALLY: case OPCODE_META_TYPE_END_TRY_CATCH_FINALLY: case OPCODE_META_TYPE_CALL_SITE_INFO: case OPCODE_META_TYPE_SCOPE_CODE_FLAGS: { insert_uids_to_lit_id_map (om, 0x000); break; } } break; } } return (idx_t) (next_uid - current_uid); } /* Before filling literal indexes 'hash' table we shall initiate it with number of neccesary literal indexes. Since bytecode is divided into blocks and id of the block is a part of hash key, we shall divide bytecode into blocks and count unique literal indexes used in each block. */ size_t scopes_tree_count_literals_in_blocks (scopes_tree tree) { assert_tree (tree); size_t result = 0; if (lit_id_to_uid != null_hash) { hash_table_free (lit_id_to_uid); lit_id_to_uid = null_hash; } next_uid = 0; global_oc = 0; assert_tree (tree); opcode_counter_t opc_index; bool header = true; for (opc_index = 0; opc_index < tree->opcodes_num; opc_index++) { op_meta *om = extract_op_meta (tree, opc_index); if (om->op.op_idx != OPCODE (var_decl) && om->op.op_idx != OPCODE (meta) && !header) { break; } if (om->op.op_idx == OPCODE (reg_var_decl)) { header = false; } result += count_new_literals_in_opcode (tree, opc_index); } for (uint8_t child_id = 0; child_id < tree->t.children_num; child_id++) { result += scopes_tree_count_literals_in_blocks (*(scopes_tree *) linked_list_element (tree->t.children, child_id)); } for (; opc_index < tree->opcodes_num; opc_index++) { result += count_new_literals_in_opcode (tree, opc_index); } return result; } /* This function performs functions hoisting. Each scope consists of four parts: 1) Header with 'use strict' marker and reg_var_decl opcode 2) Variable declarations, dumped by the preparser 3) Function declarations 4) Computational code Header and var_decls are dumped first, then we shall recursively dump function declaration, and finally, other opcodes. For each opcodes block (size of block is defined in bytecode-data.h) literal indexes 'hash' table is filled. */ static void merge_subscopes (scopes_tree tree, opcode_t *data, lit_id_hash_table *lit_ids) { assert_tree (tree); JERRY_ASSERT (data); opcode_counter_t opc_index; bool header = true; for (opc_index = 0; opc_index < tree->opcodes_num; opc_index++) { op_meta *om = extract_op_meta (tree, opc_index); if (om->op.op_idx != OPCODE (var_decl) && om->op.op_idx != OPCODE (meta) && !header) { break; } if (om->op.op_idx == OPCODE (reg_var_decl)) { header = false; } data[global_oc] = generate_opcode (tree, opc_index, lit_ids); global_oc++; } for (uint8_t child_id = 0; child_id < tree->t.children_num; child_id++) { merge_subscopes (*(scopes_tree *) linked_list_element (tree->t.children, child_id), data, lit_ids); } for (; opc_index < tree->opcodes_num; opc_index++) { data[global_oc] = generate_opcode (tree, opc_index, lit_ids); global_oc++; } } /* Postparser. Init literal indexes 'hash' table. Reorder function declarations. Rewrite opcodes' temporary uids with their keys in literal indexes 'hash' table. */ opcode_t * scopes_tree_raw_data (scopes_tree tree, /**< scopes tree to convert to byte-code array */ uint8_t *buffer_p, /**< buffer for byte-code array and literal identifiers hash table */ size_t opcodes_array_size, /**< size of space for byte-code array */ lit_id_hash_table *lit_ids) /**< literal identifiers hash table */ { JERRY_ASSERT (lit_ids); assert_tree (tree); if (lit_id_to_uid != null_hash) { hash_table_free (lit_id_to_uid); lit_id_to_uid = null_hash; } next_uid = 0; global_oc = 0; /* Dump bytecode and fill literal indexes 'hash' table. */ JERRY_ASSERT (opcodes_array_size >= sizeof (opcodes_header_t) + (size_t) (scopes_tree_count_opcodes (tree)) * sizeof (opcode_t)); opcodes_header_t *opcodes_data = (opcodes_header_t *) buffer_p; memset (opcodes_data, 0, opcodes_array_size); opcode_t *opcodes = (opcode_t *)(((uint8_t*) opcodes_data) + sizeof (opcodes_header_t)); merge_subscopes (tree, opcodes, lit_ids); if (lit_id_to_uid != null_hash) { hash_table_free (lit_id_to_uid); lit_id_to_uid = null_hash; } MEM_CP_SET_POINTER (opcodes_data->lit_id_hash_cp, lit_ids); return opcodes; } /* scopes_tree_raw_data */ void scopes_tree_set_strict_mode (scopes_tree tree, bool strict_mode) { assert_tree (tree); tree->strict_mode = strict_mode ? 1 : 0; } bool scopes_tree_strict_mode (scopes_tree tree) { assert_tree (tree); return (bool) tree->strict_mode; } scopes_tree scopes_tree_init (scopes_tree parent) { scopes_tree tree = (scopes_tree) jsp_mm_alloc (sizeof (scopes_tree_int)); memset (tree, 0, sizeof (scopes_tree_int)); tree->t.parent = (tree_header *) parent; tree->t.children = null_list; tree->t.children_num = 0; if (parent != NULL) { if (parent->t.children_num == 0) { parent->t.children = linked_list_init (sizeof (scopes_tree)); } linked_list_set_element (parent->t.children, parent->t.children_num, &tree); void *added = linked_list_element (parent->t.children, parent->t.children_num); JERRY_ASSERT (*(scopes_tree *) added == tree); parent->t.children_num++; } tree->opcodes_num = 0; tree->strict_mode = 0; tree->opcodes = linked_list_init (sizeof (op_meta)); return tree; } void scopes_tree_free (scopes_tree tree) { assert_tree (tree); if (tree->t.children_num != 0) { for (uint8_t i = 0; i < tree->t.children_num; ++i) { scopes_tree_free (*(scopes_tree *) linked_list_element (tree->t.children, i)); } linked_list_free (tree->t.children); } linked_list_free (tree->opcodes); jsp_mm_free (tree); }