/* Copyright 2014-2015 Samsung Electronics Co., Ltd. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ecma-alloc.h" #include "ecma-builtins.h" #include "ecma-gc.h" #include "ecma-globals.h" #include "ecma-helpers.h" #include "ecma-lex-env.h" #include "ecma-stack.h" #include "jrt.h" #include "vm.h" #include "jrt-libc-includes.h" #include "mem-allocator.h" /** * Top (current) interpreter context */ int_data_t *vm_top_context_p = NULL; #define __INIT_OP_FUNC(name, arg1, arg2, arg3) [ __op__idx_##name ] = opfunc_##name, static const opfunc __opfuncs[LAST_OP] = { OP_LIST (INIT_OP_FUNC) }; #undef __INIT_OP_FUNC JERRY_STATIC_ASSERT (sizeof (opcode_t) <= 4); const opcode_t *__program = NULL; #ifdef MEM_STATS #define __OP_FUNC_NAME(name, arg1, arg2, arg3) #name, static const char *__op_names[LAST_OP] = { OP_LIST (OP_FUNC_NAME) }; #undef __OP_FUNC_NAME #define INTERP_MEM_PRINT_INDENTATION_STEP (5) #define INTERP_MEM_PRINT_INDENTATION_MAX (125) static uint32_t interp_mem_stats_print_indentation = 0; static bool interp_mem_stats_enabled = false; static void interp_mem_stats_print_legend (void) { if (likely (!interp_mem_stats_enabled)) { return; } printf ("----- Legend of memory usage trace during interpretation -----\n\n" "\tEntering block = beginning execution of initial (global) scope or function.\n\n" "\tInformation on each value is formatted as following: (p -> n ( [+-]c, local l, peak g), where:\n" "\t p - value just before starting of item's execution;\n" "\t n - value just after end of item's execution;\n" "\t [+-c] - difference between n and p;\n" "\t l - temporary usage of memory during item's execution;\n" "\t g - global peak of the value during program's execution.\n\n" "\tChunks are items allocated in a pool." " If there is no pool with a free chunk upon chunk allocation request,\n" "\tthen new pool is allocated on the heap (that causes increase of number of allocated heap bytes).\n\n"); } static void interp_mem_get_stats (mem_heap_stats_t *out_heap_stats_p, mem_pools_stats_t *out_pool_stats_p, bool reset_peak_before, bool reset_peak_after) { if (likely (!interp_mem_stats_enabled)) { return; } /* Requesting to free as much memory as we currently can */ ecma_try_to_give_back_some_memory (MEM_TRY_GIVE_MEMORY_BACK_SEVERITY_CRITICAL); if (reset_peak_before) { mem_heap_stats_reset_peak (); mem_pools_stats_reset_peak (); } mem_heap_get_stats (out_heap_stats_p); mem_pools_get_stats (out_pool_stats_p); if (reset_peak_after) { mem_heap_stats_reset_peak (); mem_pools_stats_reset_peak (); } } static void interp_mem_stats_context_enter (int_data_t *int_data_p, opcode_counter_t block_position) { if (likely (!interp_mem_stats_enabled)) { return; } const uint32_t indentation = JERRY_MIN (interp_mem_stats_print_indentation, INTERP_MEM_PRINT_INDENTATION_MAX); char indent_prefix[INTERP_MEM_PRINT_INDENTATION_MAX + 2]; memset (indent_prefix, ' ', sizeof (indent_prefix)); indent_prefix[indentation] = '|'; indent_prefix[indentation + 1] = '\0'; int_data_p->context_peak_allocated_heap_bytes = 0; int_data_p->context_peak_waste_heap_bytes = 0; int_data_p->context_peak_pools_count = 0; int_data_p->context_peak_allocated_pool_chunks = 0; interp_mem_get_stats (&int_data_p->heap_stats_context_enter, &int_data_p->pools_stats_context_enter, false, false); printf ("\n%s--- Beginning interpretation of a block at position %u ---\n" "%s Allocated heap bytes: %5u\n" "%s Waste heap bytes: %5u\n" "%s Pools: %5u\n" "%s Allocated pool chunks: %5u\n\n", indent_prefix, (uint32_t) block_position, indent_prefix, (uint32_t) int_data_p->heap_stats_context_enter.allocated_bytes, indent_prefix, (uint32_t) int_data_p->heap_stats_context_enter.waste_bytes, indent_prefix, (uint32_t) int_data_p->pools_stats_context_enter.pools_count, indent_prefix, (uint32_t) int_data_p->pools_stats_context_enter.allocated_chunks); } static void interp_mem_stats_context_exit (int_data_t *int_data_p, opcode_counter_t block_position) { if (likely (!interp_mem_stats_enabled)) { return; } const uint32_t indentation = JERRY_MIN (interp_mem_stats_print_indentation, INTERP_MEM_PRINT_INDENTATION_MAX); char indent_prefix[INTERP_MEM_PRINT_INDENTATION_MAX + 2]; memset (indent_prefix, ' ', sizeof (indent_prefix)); indent_prefix[indentation] = '|'; indent_prefix[indentation + 1] = '\0'; mem_heap_stats_t heap_stats_context_exit; mem_pools_stats_t pools_stats_context_exit; interp_mem_get_stats (&heap_stats_context_exit, &pools_stats_context_exit, false, true); int_data_p->context_peak_allocated_heap_bytes -= JERRY_MAX (int_data_p->heap_stats_context_enter.allocated_bytes, heap_stats_context_exit.allocated_bytes); int_data_p->context_peak_waste_heap_bytes -= JERRY_MAX (int_data_p->heap_stats_context_enter.waste_bytes, heap_stats_context_exit.waste_bytes); int_data_p->context_peak_pools_count -= JERRY_MAX (int_data_p->pools_stats_context_enter.pools_count, pools_stats_context_exit.pools_count); int_data_p->context_peak_allocated_pool_chunks -= JERRY_MAX (int_data_p->pools_stats_context_enter.allocated_chunks, pools_stats_context_exit.allocated_chunks); printf ("%sAllocated heap bytes in the context: %5u -> %5u (%+5d, local %5u, peak %5u)\n", indent_prefix, (uint32_t) int_data_p->heap_stats_context_enter.allocated_bytes, (uint32_t) heap_stats_context_exit.allocated_bytes, (uint32_t) (heap_stats_context_exit.allocated_bytes - int_data_p->heap_stats_context_enter.allocated_bytes), (uint32_t) int_data_p->context_peak_allocated_heap_bytes, (uint32_t) heap_stats_context_exit.global_peak_allocated_bytes); printf ("%sWaste heap bytes in the context: %5u -> %5u (%+5d, local %5u, peak %5u)\n", indent_prefix, (uint32_t) int_data_p->heap_stats_context_enter.waste_bytes, (uint32_t) heap_stats_context_exit.waste_bytes, (uint32_t) (heap_stats_context_exit.waste_bytes - int_data_p->heap_stats_context_enter.waste_bytes), (uint32_t) int_data_p->context_peak_waste_heap_bytes, (uint32_t) heap_stats_context_exit.global_peak_waste_bytes); printf ("%sPools count in the context: %5u -> %5u (%+5d, local %5u, peak %5u)\n", indent_prefix, (uint32_t) int_data_p->pools_stats_context_enter.pools_count, (uint32_t) pools_stats_context_exit.pools_count, (uint32_t) (pools_stats_context_exit.pools_count - int_data_p->pools_stats_context_enter.pools_count), (uint32_t) int_data_p->context_peak_pools_count, (uint32_t) pools_stats_context_exit.global_peak_pools_count); printf ("%sAllocated pool chunks in the context: %5u -> %5u (%+5d, local %5u, peak %5u)\n", indent_prefix, (uint32_t) int_data_p->pools_stats_context_enter.allocated_chunks, (uint32_t) pools_stats_context_exit.allocated_chunks, (uint32_t) (pools_stats_context_exit.allocated_chunks - int_data_p->pools_stats_context_enter.allocated_chunks), (uint32_t) int_data_p->context_peak_allocated_pool_chunks, (uint32_t) pools_stats_context_exit.global_peak_allocated_chunks); printf ("\n%s--- End of interpretation of a block at position %u ---\n\n", indent_prefix, (uint32_t) block_position); } static void interp_mem_stats_opcode_enter (const opcode_t *opcodes_p, opcode_counter_t opcode_position, mem_heap_stats_t *out_heap_stats_p, mem_pools_stats_t *out_pools_stats_p) { if (likely (!interp_mem_stats_enabled)) { return; } const uint32_t indentation = JERRY_MIN (interp_mem_stats_print_indentation, INTERP_MEM_PRINT_INDENTATION_MAX); char indent_prefix[INTERP_MEM_PRINT_INDENTATION_MAX + 2]; memset (indent_prefix, ' ', sizeof (indent_prefix)); indent_prefix[indentation] = '|'; indent_prefix[indentation + 1] = '\0'; interp_mem_get_stats (out_heap_stats_p, out_pools_stats_p, true, false); opcode_t opcode = vm_get_opcode (opcodes_p, opcode_position); printf ("%s-- Opcode: %s (position %u) --\n", indent_prefix, __op_names[opcode.op_idx], (uint32_t) opcode_position); interp_mem_stats_print_indentation += INTERP_MEM_PRINT_INDENTATION_STEP; } static void interp_mem_stats_opcode_exit (int_data_t *int_data_p, opcode_counter_t opcode_position, mem_heap_stats_t *heap_stats_before_p, mem_pools_stats_t *pools_stats_before_p) { if (likely (!interp_mem_stats_enabled)) { return; } interp_mem_stats_print_indentation -= INTERP_MEM_PRINT_INDENTATION_STEP; const uint32_t indentation = JERRY_MIN (interp_mem_stats_print_indentation, INTERP_MEM_PRINT_INDENTATION_MAX); char indent_prefix[INTERP_MEM_PRINT_INDENTATION_MAX + 2]; memset (indent_prefix, ' ', sizeof (indent_prefix)); indent_prefix[indentation] = '|'; indent_prefix[indentation + 1] = '\0'; mem_heap_stats_t heap_stats_after; mem_pools_stats_t pools_stats_after; interp_mem_get_stats (&heap_stats_after, &pools_stats_after, false, true); int_data_p->context_peak_allocated_heap_bytes = JERRY_MAX (int_data_p->context_peak_allocated_heap_bytes, heap_stats_after.allocated_bytes); int_data_p->context_peak_waste_heap_bytes = JERRY_MAX (int_data_p->context_peak_waste_heap_bytes, heap_stats_after.waste_bytes); int_data_p->context_peak_pools_count = JERRY_MAX (int_data_p->context_peak_pools_count, pools_stats_after.pools_count); int_data_p->context_peak_allocated_pool_chunks = JERRY_MAX (int_data_p->context_peak_allocated_pool_chunks, pools_stats_after.allocated_chunks); opcode_t opcode = vm_get_opcode (int_data_p->opcodes_p, opcode_position); printf ("%s Allocated heap bytes: %5u -> %5u (%+5d, local %5u, peak %5u)\n", indent_prefix, (uint32_t) heap_stats_before_p->allocated_bytes, (uint32_t) heap_stats_after.allocated_bytes, (uint32_t) (heap_stats_after.allocated_bytes - heap_stats_before_p->allocated_bytes), (uint32_t) (heap_stats_after.peak_allocated_bytes - JERRY_MAX (heap_stats_before_p->allocated_bytes, heap_stats_after.allocated_bytes)), (uint32_t) heap_stats_after.global_peak_allocated_bytes); if (heap_stats_before_p->waste_bytes != heap_stats_after.waste_bytes) { printf ("%s Waste heap bytes: %5u -> %5u (%+5d, local %5u, peak %5u)\n", indent_prefix, (uint32_t) heap_stats_before_p->waste_bytes, (uint32_t) heap_stats_after.waste_bytes, (uint32_t) (heap_stats_after.waste_bytes - heap_stats_before_p->waste_bytes), (uint32_t) (heap_stats_after.peak_waste_bytes - JERRY_MAX (heap_stats_before_p->waste_bytes, heap_stats_after.waste_bytes)), (uint32_t) heap_stats_after.global_peak_waste_bytes); } if (pools_stats_before_p->pools_count != pools_stats_after.pools_count) { printf ("%s Pools: %5u -> %5u (%+5d, local %5u, peak %5u)\n", indent_prefix, (uint32_t) pools_stats_before_p->pools_count, (uint32_t) pools_stats_after.pools_count, (uint32_t) (pools_stats_after.pools_count - pools_stats_before_p->pools_count), (uint32_t) (pools_stats_after.peak_pools_count - JERRY_MAX (pools_stats_before_p->pools_count, pools_stats_after.pools_count)), (uint32_t) pools_stats_after.global_peak_pools_count); } if (pools_stats_before_p->allocated_chunks != pools_stats_after.allocated_chunks) { printf ("%s Allocated pool chunks: %5u -> %5u (%+5d, local %5u, peak %5u)\n", indent_prefix, (uint32_t) pools_stats_before_p->allocated_chunks, (uint32_t) pools_stats_after.allocated_chunks, (uint32_t) (pools_stats_after.allocated_chunks - pools_stats_before_p->allocated_chunks), (uint32_t) (pools_stats_after.peak_allocated_chunks - JERRY_MAX (pools_stats_before_p->allocated_chunks, pools_stats_after.allocated_chunks)), (uint32_t) pools_stats_after.global_peak_allocated_chunks); } printf ("%s-- End of execution of opcode %s (position %u) --\n\n", indent_prefix, __op_names[opcode.op_idx], opcode_position); } #endif /* MEM_STATS */ /** * Initialize interpreter. */ void vm_init (const opcode_t *program_p, /**< pointer to byte-code program */ bool dump_mem_stats) /** dump per-opcode memory usage change statistics */ { #ifdef MEM_STATS interp_mem_stats_enabled = dump_mem_stats; #else /* MEM_STATS */ JERRY_ASSERT (!dump_mem_stats); #endif /* !MEM_STATS */ JERRY_ASSERT (__program == NULL); __program = program_p; } /* vm_init */ /** * Cleanup interpreter */ void vm_finalize (void) { __program = NULL; } /* vm_finalize */ /** * Run global code */ jerry_completion_code_t vm_run_global (void) { JERRY_ASSERT (__program != NULL); JERRY_ASSERT (vm_top_context_p == NULL); #ifdef MEM_STATS interp_mem_stats_print_legend (); #endif /* MEM_STATS */ bool is_strict = false; opcode_counter_t start_pos = 0; opcode_scope_code_flags_t scope_flags = vm_get_scope_flags (__program, start_pos++); if (scope_flags & OPCODE_SCOPE_CODE_FLAGS_STRICT) { is_strict = true; } ecma_object_t *glob_obj_p = ecma_builtin_get (ECMA_BUILTIN_ID_GLOBAL); ecma_object_t *lex_env_p = ecma_get_global_environment (); ecma_completion_value_t completion = vm_run_from_pos (__program, start_pos, ecma_make_object_value (glob_obj_p), lex_env_p, is_strict, false); jerry_completion_code_t ret_code; if (ecma_is_completion_value_return (completion)) { JERRY_ASSERT (ecma_is_value_undefined (ecma_get_completion_value_value (completion))); ret_code = JERRY_COMPLETION_CODE_OK; } else { JERRY_ASSERT (ecma_is_completion_value_throw (completion)); ret_code = JERRY_COMPLETION_CODE_UNHANDLED_EXCEPTION; } ecma_free_completion_value (completion); ecma_deref_object (glob_obj_p); ecma_deref_object (lex_env_p); JERRY_ASSERT (vm_top_context_p == NULL); return ret_code; } /* vm_run_global */ /** * Run interpreter loop using specified context * * Note: * The interpreter loop stops upon receiving completion value that is normal completion value. * * @return If the received completion value is not meta completion value (ECMA_COMPLETION_TYPE_META), then * the completion value is returned as is; * Otherwise - the completion value is discarded and normal empty completion value is returned. */ ecma_completion_value_t vm_loop (int_data_t *int_data_p, /**< interpreter context */ vm_run_scope_t *run_scope_p) /**< current run scope, * or NULL - if there is no active run scope */ { ecma_completion_value_t completion; #ifdef MEM_STATS mem_heap_stats_t heap_stats_before; mem_pools_stats_t pools_stats_before; memset (&heap_stats_before, 0, sizeof (heap_stats_before)); memset (&pools_stats_before, 0, sizeof (pools_stats_before)); #endif /* MEM_STATS */ while (true) { do { JERRY_ASSERT (run_scope_p == NULL || (run_scope_p->start_oc <= int_data_p->pos && int_data_p->pos <= run_scope_p->end_oc)); const opcode_t *curr = &int_data_p->opcodes_p[int_data_p->pos]; #ifdef MEM_STATS const opcode_counter_t opcode_pos = int_data_p->pos; interp_mem_stats_opcode_enter (int_data_p->opcodes_p, opcode_pos, &heap_stats_before, &pools_stats_before); #endif /* MEM_STATS */ completion = __opfuncs[curr->op_idx] (*curr, int_data_p); #ifdef CONFIG_VM_RUN_GC_AFTER_EACH_OPCODE ecma_gc_run (); #endif /* CONFIG_VM_RUN_GC_AFTER_EACH_OPCODE */ #ifdef MEM_STATS interp_mem_stats_opcode_exit (int_data_p, opcode_pos, &heap_stats_before, &pools_stats_before); #endif /* MEM_STATS */ JERRY_ASSERT (!ecma_is_completion_value_normal (completion) || ecma_is_completion_value_empty (completion)); } while (ecma_is_completion_value_normal (completion)); if (ecma_is_completion_value_jump (completion)) { opcode_counter_t target = ecma_get_jump_target_from_completion_value (completion); /* * TODO: * Implement instantiation of run scopes for global scope, functions and eval scope. * Currently, correctness of jumps without run scope set is guaranteed through byte-code semantics. */ if (run_scope_p == NULL /* if no run scope set */ || (target >= run_scope_p->start_oc /* or target is within the current run scope */ && target <= run_scope_p->end_oc)) { int_data_p->pos = target; continue; } } if (ecma_is_completion_value_meta (completion)) { completion = ecma_make_empty_completion_value (); } return completion; } } /* vm_loop */ /** * Run the code, starting from specified opcode */ ecma_completion_value_t vm_run_from_pos (const opcode_t *opcodes_p, /**< byte-code array */ opcode_counter_t start_pos, /**< identifier of starting opcode */ ecma_value_t this_binding_value, /**< value of 'ThisBinding' */ ecma_object_t *lex_env_p, /**< lexical environment to use */ bool is_strict, /**< is the code is strict mode code (ECMA-262 v5, 10.1.1) */ bool is_eval_code) /**< is the code is eval code (ECMA-262 v5, 10.1) */ { ecma_completion_value_t completion; const opcode_t *curr = &opcodes_p[start_pos]; JERRY_ASSERT (curr->op_idx == __op__idx_reg_var_decl); const idx_t min_reg_num = curr->data.reg_var_decl.min; const idx_t max_reg_num = curr->data.reg_var_decl.max; JERRY_ASSERT (max_reg_num >= min_reg_num); const int32_t regs_num = max_reg_num - min_reg_num + 1; MEM_DEFINE_LOCAL_ARRAY (regs, regs_num, ecma_value_t); int_data_t int_data; int_data.opcodes_p = opcodes_p; int_data.pos = (opcode_counter_t) (start_pos + 1); int_data.this_binding = this_binding_value; int_data.lex_env_p = lex_env_p; int_data.is_strict = is_strict; int_data.is_eval_code = is_eval_code; int_data.is_call_in_direct_eval_form = false; int_data.min_reg_num = min_reg_num; int_data.max_reg_num = max_reg_num; int_data.tmp_num_p = ecma_alloc_number (); ecma_stack_add_frame (&int_data.stack_frame, regs, regs_num); int_data_t *prev_context_p = vm_top_context_p; vm_top_context_p = &int_data; #ifdef MEM_STATS interp_mem_stats_context_enter (&int_data, start_pos); #endif /* MEM_STATS */ completion = vm_loop (&int_data, NULL); JERRY_ASSERT (ecma_is_completion_value_throw (completion) || ecma_is_completion_value_return (completion)); vm_top_context_p = prev_context_p; ecma_stack_free_frame (&int_data.stack_frame); ecma_dealloc_number (int_data.tmp_num_p); #ifdef MEM_STATS interp_mem_stats_context_exit (&int_data, start_pos); #endif /* MEM_STATS */ MEM_FINALIZE_LOCAL_ARRAY (regs); return completion; } /* vm_run_from_pos */ /** * Get specified opcode from the program. */ opcode_t vm_get_opcode (const opcode_t *opcodes_p, /**< byte-code array */ opcode_counter_t counter) /**< opcode counter */ { return opcodes_p[ counter ]; } /* vm_get_opcode */ /** * Get scope code flags from opcode specified by opcode counter * * @return mask of scope code flags */ opcode_scope_code_flags_t vm_get_scope_flags (const opcode_t *opcodes_p, /**< byte-code array */ opcode_counter_t counter) /**< opcode counter */ { opcode_t flags_opcode = vm_get_opcode (opcodes_p, counter); JERRY_ASSERT (flags_opcode.op_idx == __op__idx_meta && flags_opcode.data.meta.type == OPCODE_META_TYPE_SCOPE_CODE_FLAGS); return (opcode_scope_code_flags_t) flags_opcode.data.meta.data_1; } /* vm_get_scope_flags */ /** * Check whether currently executed code is strict mode code * * @return true - current code is executed in strict mode, * false - otherwise. */ bool vm_is_strict_mode (void) { JERRY_ASSERT (vm_top_context_p != NULL); return vm_top_context_p->is_strict; } /* vm_is_strict_mode */ /** * Check whether currently performed call (on top of call-stack) is performed in form, * meeting conditions of 'Direct Call to Eval' (see also: ECMA-262 v5, 15.1.2.1.1) * * Warning: * the function should only be called from implementation * of built-in 'eval' routine of Global object * * @return true - currently performed call is performed through 'eval' identifier, * without 'this' argument, * false - otherwise. */ bool vm_is_direct_eval_form_call (void) { if (vm_top_context_p != NULL) { return vm_top_context_p->is_call_in_direct_eval_form; } else { /* * There is no any interpreter context, so call is performed not from a script. * This implies that the call is indirect. */ return false; } } /* vm_is_direct_eval_form_call */ /** * Get this binding of current execution context * * @return ecma-value */ ecma_value_t vm_get_this_binding (void) { JERRY_ASSERT (vm_top_context_p != NULL); return ecma_copy_value (vm_top_context_p->this_binding, true); } /* vm_get_this_binding */ /** * Get top lexical environment (variable environment) of current execution context * * @return lexical environment */ ecma_object_t* vm_get_lex_env (void) { JERRY_ASSERT (vm_top_context_p != NULL); ecma_ref_object (vm_top_context_p->lex_env_p); return vm_top_context_p->lex_env_p; } /* vm_get_lex_env */