/* Copyright 2014-2016 Samsung Electronics Co., Ltd. * Copyright 2016 University of Szeged. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ecma-globals.h" #include "ecma-helpers.h" #include "jrt-libc-includes.h" #include "lit-char-helpers.h" #include "lit-magic-strings.h" /** \addtogroup ecma ECMA * @{ * * \addtogroup ecmahelpers Helpers for operations with ECMA data types * @{ * * \addtogroup ecmahelpersbigintegers Helpers for operations intermediate 128-bit integers * @{ */ /** * Check that parts of 128-bit integer are 32-bit. */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT(name) \ { \ JERRY_ASSERT (name[0] <= UINT32_MAX); \ JERRY_ASSERT (name[1] <= UINT32_MAX); \ JERRY_ASSERT (name[2] <= UINT32_MAX); \ JERRY_ASSERT (name[3] <= UINT32_MAX); \ } /** * Declare 128-bit integer. */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER(name) uint64_t name[4] = { 0, 0, 0, 0 } /** * Declare 128-bit in-out argument integer. */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ARG(name) uint64_t name[4] /** * Initialize 128-bit integer with given 32-bit parts */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_INIT(name, high, mid_high, mid_low, low) \ { \ name[3] = high; \ name[2] = mid_high; \ name[1] = mid_low; \ name[0] = low; \ \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \ } /** * Copy specified 128-bit integer */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_COPY(name_copy_to, name_copy_from) \ { \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name_copy_to); \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name_copy_from); \ \ name_copy_to[0] = name_copy_from[0]; \ name_copy_to[1] = name_copy_from[1]; \ name_copy_to[2] = name_copy_from[2]; \ name_copy_to[3] = name_copy_from[3]; \ } /** * Copy high and middle parts of 128-bit integer to specified uint64_t variable */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ROUND_HIGH_AND_MIDDLE_TO_UINT64(name, uint64_var) \ { \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \ uint64_var = ((name[3] << 32u) | (name[2])) + (((name[1] >> 31u) != 0 ? 1 : 0)); \ } /** * Copy middle and low parts of 128-bit integer to specified uint64_t variable */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ROUND_MIDDLE_AND_LOW_TO_UINT64(name, uint64_var) \ { \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \ uint64_var = (name[1] << 32u) | (name[0]); \ } /** * Check if specified 128-bit integers are equal */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ARE_EQUAL(name1, name2) \ ((name1)[0] == (name2[0]) \ && (name1)[1] == (name2[1]) \ && (name1)[2] == (name2[2]) \ && (name1)[3] == (name2[3])) /** * Check if bits [lowest_bit, 128) are zero */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO(name, lowest_bit) \ ((lowest_bit) >= 96 ? ((name[3] >> ((lowest_bit) - 96)) == 0) : \ ((lowest_bit) >= 64 ? (name[3] == 0 \ && ((name[2] >> ((lowest_bit) - 64)) == 0)) : \ ((lowest_bit) >= 32 ? (name[3] == 0 \ && name[2] == 0 && ((name[1] >> ((lowest_bit) - 32)) == 0)) : \ (name[3] == 0 && name[2] == 0 && name[1] == 0 && ((name[0] >> (lowest_bit)) == 0))))) /** * Check if bits [0, highest_bit] are zero */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_LOW_BIT_MASK_ZERO(name, highest_bit) \ ((highest_bit >= 96) ? (name[2] == 0 && name[1] == 0 && name[0] == 0 \ && (((uint32_t) name[3] << (127 - (highest_bit))) == 0)) : \ ((highest_bit >= 64) ? (name[1] == 0 && name[0] == 0 \ && (((uint32_t) name[2] << (95 - (highest_bit))) == 0)) : \ ((highest_bit >= 32) ? (name[0] == 0 \ && (((uint32_t) name[1] << (63 - (highest_bit))) == 0)) : \ (((uint32_t) name[0] << (31 - (highest_bit))) == 0)))) /** * Check if 128-bit integer is zero */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_ZERO(name) \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (name, 0) /** * Shift 128-bit integer one bit left */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT(name) \ { \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \ \ name[3] = (uint32_t) (name[3] << 1u); \ name[3] |= name[2] >> 31u; \ name[2] = (uint32_t) (name[2] << 1u); \ name[2] |= name[1] >> 31u; \ name[1] = (uint32_t) (name[1] << 1u); \ name[1] |= name[0] >> 31u; \ name[0] = (uint32_t) (name[0] << 1u); \ \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \ } /** * Shift 128-bit integer one bit right */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_RIGHT_SHIFT(name) \ { \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \ \ name[0] >>= 1u; \ name[0] |= (uint32_t) (name[1] << 31u); \ name[1] >>= 1u; \ name[1] |= (uint32_t) (name[2] << 31u); \ name[2] >>= 1u; \ name[2] |= (uint32_t) (name[3] << 31u); \ name[3] >>= 1u; \ \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \ } /** * Increment 128-bit integer */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_INC(name) \ { \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \ \ name[0] += 1ull; \ name[1] += (name[0] >> 32u); \ name[0] = (uint32_t) name[0]; \ name[2] += (name[1] >> 32u); \ name[1] = (uint32_t) name[1]; \ name[3] += (name[2] >> 32u); \ name[2] = (uint32_t) name[2]; \ \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \ } /** * Add 128-bit integer */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ADD(name_add_to, name_to_add) \ { \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name_add_to); \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name_to_add); \ \ name_add_to[0] += name_to_add[0]; \ name_add_to[1] += name_to_add[1]; \ name_add_to[2] += name_to_add[2]; \ name_add_to[3] += name_to_add[3]; \ \ name_add_to[1] += (name_add_to[0] >> 32u); \ name_add_to[0] = (uint32_t) name_add_to[0]; \ name_add_to[2] += (name_add_to[1] >> 32u); \ name_add_to[1] = (uint32_t) name_add_to[1]; \ name_add_to[3] += (name_add_to[2] >> 32u); \ name_add_to[2] = (uint32_t) name_add_to[2]; \ \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name_add_to); \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name_to_add); \ } /** * Multiply 128-bit integer by 10 */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_MUL_10(name) \ { \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \ \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (name); \ \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER (name ## _tmp); \ \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_COPY (name ## _tmp, name); \ \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (name ## _tmp); \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (name ## _tmp); \ \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ADD (name, name ## _tmp); \ \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \ } /** * Divide 128-bit integer by 10 */ #define ECMA_NUMBER_CONVERSION_128BIT_INTEGER_DIV_10(name) \ { \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \ \ /* estimation of reciprocal of 10 */ \ const uint64_t div10_p_low = 0x9999999aul; \ const uint64_t div10_p_mid = 0x99999999ul; \ const uint64_t div10_p_high = 0x19999999ul; \ \ uint64_t intermediate[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; \ uint64_t l0, l1, l2, l3, m0, m1, m2, m3, h0, h1, h2, h3; \ l0 = name[0] * div10_p_low; \ l1 = name[1] * div10_p_low; \ l2 = name[2] * div10_p_low; \ l3 = name[3] * div10_p_low; \ m0 = name[0] * div10_p_mid; \ m1 = name[1] * div10_p_mid; \ m2 = name[2] * div10_p_mid; \ m3 = name[3] * div10_p_mid; \ h0 = name[0] * div10_p_high; \ h1 = name[1] * div10_p_high; \ h2 = name[2] * div10_p_high; \ h3 = name[3] * div10_p_high; \ intermediate[0] += (uint32_t) l0; \ intermediate[1] += l0 >> 32u; \ \ intermediate[1] += (uint32_t) l1; \ intermediate[2] += l1 >> 32u; \ intermediate[1] += (uint32_t) m0; \ intermediate[2] += m0 >> 32u; \ \ intermediate[2] += (uint32_t) l2; \ intermediate[3] += l2 >> 32u; \ intermediate[2] += (uint32_t) m1; \ intermediate[3] += m1 >> 32u; \ intermediate[2] += (uint32_t) m0; \ intermediate[3] += m0 >> 32u; \ \ intermediate[3] += (uint32_t) l3; \ intermediate[4] += l3 >> 32u; \ intermediate[3] += (uint32_t) m2; \ intermediate[4] += m2 >> 32u; \ intermediate[3] += (uint32_t) m1; \ intermediate[4] += m1 >> 32u; \ intermediate[3] += (uint32_t) h0; \ intermediate[4] += h0 >> 32u; \ \ intermediate[4] += (uint32_t) m3; \ intermediate[5] += m3 >> 32u; \ intermediate[4] += (uint32_t) m2; \ intermediate[5] += m2 >> 32u; \ intermediate[4] += (uint32_t) h1; \ intermediate[5] += h1 >> 32u; \ \ intermediate[5] += (uint32_t) m3; \ intermediate[6] += m3 >> 32u; \ intermediate[5] += (uint32_t) h2; \ intermediate[6] += h2 >> 32u; \ \ intermediate[6] += (uint32_t) h3; \ intermediate[7] += h3 >> 32u; \ \ intermediate[1] += intermediate[0] >> 32u; \ intermediate[0] = (uint32_t) intermediate[0]; \ intermediate[2] += intermediate[1] >> 32u; \ intermediate[1] = (uint32_t) intermediate[1]; \ intermediate[3] += intermediate[2] >> 32u; \ intermediate[2] = (uint32_t) intermediate[2]; \ intermediate[4] += intermediate[3] >> 32u; \ intermediate[3] = (uint32_t) intermediate[3]; \ intermediate[5] += intermediate[4] >> 32u; \ intermediate[4] = (uint32_t) intermediate[4]; \ intermediate[6] += intermediate[5] >> 32u; \ intermediate[5] = (uint32_t) intermediate[5]; \ intermediate[7] += intermediate[6] >> 32u; \ intermediate[6] = (uint32_t) intermediate[6]; \ \ name[0] = intermediate[4]; \ name[1] = intermediate[5]; \ name[2] = intermediate[6]; \ name[3] = intermediate[7]; \ \ ECMA_NUMBER_CONVERSION_128BIT_INTEGER_CHECK_PARTS_ARE_32BIT (name); \ } /** * @} */ /** * ECMA-defined conversion of string to Number. * * See also: * ECMA-262 v5, 9.3.1 * * @return ecma-number */ ecma_number_t ecma_utf8_string_to_number (const lit_utf8_byte_t *str_p, /**< utf-8 string */ lit_utf8_size_t str_size) /**< string size */ { /* TODO: Check license issues */ if (str_size == 0) { return ECMA_NUMBER_ZERO; } const lit_utf8_byte_t *str_curr_p = str_p; const lit_utf8_byte_t *str_end_p = str_p + str_size; ecma_char_t code_unit; while (str_curr_p < str_end_p) { code_unit = lit_utf8_peek_next (str_curr_p); if (lit_char_is_white_space (code_unit) || lit_char_is_line_terminator (code_unit)) { lit_utf8_incr (&str_curr_p); } else { break; } } const lit_utf8_byte_t *begin_p = str_curr_p; str_curr_p = (lit_utf8_byte_t *) str_end_p; while (str_curr_p > str_p) { code_unit = lit_utf8_peek_prev (str_curr_p); if (lit_char_is_white_space (code_unit) || lit_char_is_line_terminator (code_unit)) { lit_utf8_decr (&str_curr_p); } else { break; } } const lit_utf8_byte_t *end_p = str_curr_p - 1; if (begin_p > end_p) { return ECMA_NUMBER_ZERO; } if ((end_p >= begin_p + 2) && begin_p[0] == LIT_CHAR_0 && (begin_p[1] == LIT_CHAR_LOWERCASE_X || begin_p[1] == LIT_CHAR_UPPERCASE_X)) { /* Hex literal handling */ begin_p += 2; ecma_number_t num = ECMA_NUMBER_ZERO; for (const lit_utf8_byte_t * iter_p = begin_p; iter_p <= end_p; iter_p++) { int32_t digit_value; if (*iter_p >= LIT_CHAR_0 && *iter_p <= LIT_CHAR_9) { digit_value = (*iter_p - LIT_CHAR_0); } else if (*iter_p >= LIT_CHAR_LOWERCASE_A && *iter_p <= LIT_CHAR_LOWERCASE_F) { digit_value = 10 + (*iter_p - LIT_CHAR_LOWERCASE_A); } else if (*iter_p >= LIT_CHAR_UPPERCASE_A && *iter_p <= LIT_CHAR_UPPERCASE_F) { digit_value = 10 + (*iter_p - LIT_CHAR_UPPERCASE_A); } else { return ecma_number_make_nan (); } num = num * 16 + (ecma_number_t) digit_value; } return num; } bool sign = false; /* positive */ if (*begin_p == LIT_CHAR_PLUS) { begin_p++; } else if (*begin_p == LIT_CHAR_MINUS) { sign = true; /* negative */ begin_p++; } if (begin_p > end_p) { return ecma_number_make_nan (); } /* Checking if significant part of parse string is equal to "Infinity" */ const lit_utf8_byte_t *infinity_zt_str_p = lit_get_magic_string_utf8 (LIT_MAGIC_STRING_INFINITY_UL); for (const lit_utf8_byte_t *iter_p = begin_p, *iter_infinity_p = infinity_zt_str_p; ; iter_infinity_p++, iter_p++) { if (*iter_p != *iter_infinity_p) { break; } if (iter_p == end_p) { return ecma_number_make_infinity (sign); } } uint64_t fraction_uint64 = 0; uint32_t digits = 0; int32_t e = 0; /* Parsing digits before dot (or before end of digits part if there is no dot in number) */ while (begin_p <= end_p) { int32_t digit_value; if (*begin_p >= LIT_CHAR_0 && *begin_p <= LIT_CHAR_9) { digit_value = (*begin_p - LIT_CHAR_0); } else { break; } if (digits != 0 || digit_value != 0) { if (digits < ECMA_NUMBER_MAX_DIGITS) { fraction_uint64 = fraction_uint64 * 10 + (uint32_t) digit_value; digits++; } else if (e <= 100000) /* Some limit to not overflow exponent value (so big exponent anyway will make number rounded to infinity) */ { e++; } } begin_p++; } if (begin_p <= end_p && *begin_p == LIT_CHAR_DOT) { begin_p++; /* Parsing number's part that is placed after dot */ while (begin_p <= end_p) { int32_t digit_value; if (*begin_p >= LIT_CHAR_0 && *begin_p <= LIT_CHAR_9) { digit_value = (*begin_p - LIT_CHAR_0); } else { break; } if (digits < ECMA_NUMBER_MAX_DIGITS) { if (digits != 0 || digit_value != 0) { fraction_uint64 = fraction_uint64 * 10 + (uint32_t) digit_value; digits++; } e--; } begin_p++; } } /* Parsing exponent literal */ int32_t e_in_lit = 0; bool e_in_lit_sign = false; if (begin_p <= end_p && (*begin_p == LIT_CHAR_LOWERCASE_E || *begin_p == LIT_CHAR_UPPERCASE_E)) { begin_p++; if (*begin_p == LIT_CHAR_PLUS) { begin_p++; } else if (*begin_p == LIT_CHAR_MINUS) { e_in_lit_sign = true; begin_p++; } if (begin_p > end_p) { return ecma_number_make_nan (); } while (begin_p <= end_p) { int32_t digit_value; if (*begin_p >= LIT_CHAR_0 && *begin_p <= LIT_CHAR_9) { digit_value = (*begin_p - LIT_CHAR_0); } else { return ecma_number_make_nan (); } e_in_lit = e_in_lit * 10 + digit_value; begin_p++; } } /* Adding value of exponent literal to exponent value */ if (e_in_lit_sign) { e -= e_in_lit; } else { e += e_in_lit; } bool e_sign; if (e < 0) { e_sign = true; e = -e; } else { e_sign = false; } if (begin_p <= end_p) { return ecma_number_make_nan (); } JERRY_ASSERT (begin_p == end_p + 1); if (fraction_uint64 == 0) { return sign ? -ECMA_NUMBER_ZERO : ECMA_NUMBER_ZERO; } #if CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT64 int32_t binary_exponent = 33; /* * 128-bit mantissa storage * * Normalized: |4 bits zero|124-bit mantissa with highest bit set to 1 if mantissa is non-zero| */ ECMA_NUMBER_CONVERSION_128BIT_INTEGER (fraction_uint128); ECMA_NUMBER_CONVERSION_128BIT_INTEGER_INIT (fraction_uint128, 0ull, fraction_uint64 >> 32u, (uint32_t) fraction_uint64, 0ull); /* Normalizing mantissa */ JERRY_ASSERT (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 124)); while (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 123)) { ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (fraction_uint128); binary_exponent--; JERRY_ASSERT (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_ZERO (fraction_uint128)); } if (!e_sign) { /* positive or zero decimal exponent */ JERRY_ASSERT (e >= 0); while (e > 0) { JERRY_ASSERT (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 124)); ECMA_NUMBER_CONVERSION_128BIT_INTEGER_MUL_10 (fraction_uint128); e--; /* Normalizing mantissa */ while (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 124)) { ECMA_NUMBER_CONVERSION_128BIT_INTEGER_RIGHT_SHIFT (fraction_uint128); binary_exponent++; } while (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 123)) { ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (fraction_uint128); binary_exponent--; JERRY_ASSERT (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_ZERO (fraction_uint128)); } } } else { /* negative decimal exponent */ JERRY_ASSERT (e != 0); while (e > 0) { /* Denormalizing mantissa, moving highest 1 to 95-bit */ while (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 127)) { ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (fraction_uint128); binary_exponent--; JERRY_ASSERT (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_ZERO (fraction_uint128)); } ECMA_NUMBER_CONVERSION_128BIT_INTEGER_DIV_10 (fraction_uint128); e--; } /* Normalizing mantissa */ while (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 124)) { ECMA_NUMBER_CONVERSION_128BIT_INTEGER_RIGHT_SHIFT (fraction_uint128); binary_exponent++; } while (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 123)) { ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (fraction_uint128); binary_exponent--; JERRY_ASSERT (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_ZERO (fraction_uint128)); } } JERRY_ASSERT (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_ZERO (fraction_uint128)); JERRY_ASSERT (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 124)); /* * Preparing mantissa for conversion to 52-bit representation, converting it to: * * |12 zero bits|116 mantissa bits| */ while (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 116 + 1)) { ECMA_NUMBER_CONVERSION_128BIT_INTEGER_RIGHT_SHIFT (fraction_uint128); binary_exponent++; } while (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 116)) { ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (fraction_uint128); binary_exponent--; JERRY_ASSERT (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_ZERO (fraction_uint128)); } JERRY_ASSERT (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 116 + 1)); ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ROUND_HIGH_AND_MIDDLE_TO_UINT64 (fraction_uint128, fraction_uint64); return ecma_number_make_from_sign_mantissa_and_exponent (sign, fraction_uint64, binary_exponent); #elif CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT32 /* Less precise conversion */ ecma_number_t num = (ecma_number_t) (uint32_t) fraction_uint64; ecma_number_t m = e_sign ? (ecma_number_t) 0.1 : (ecma_number_t) 10.0; while (e) { if (e % 2) { num *= m; } m *= m; e /= 2; } return num; #endif /* CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT64 */ } /* ecma_utf8_string_to_number */ /** * ECMA-defined conversion of UInt32 to String (zero-terminated). * * See also: * ECMA-262 v5, 9.8.1 * * @return number of bytes copied to buffer */ lit_utf8_size_t ecma_uint32_to_utf8_string (uint32_t value, /**< value to convert */ lit_utf8_byte_t *out_buffer_p, /**< buffer for string */ lit_utf8_size_t buffer_size) /**< size of buffer */ { lit_utf8_byte_t *buf_p = out_buffer_p + buffer_size; do { JERRY_ASSERT (buf_p >= out_buffer_p); buf_p--; *buf_p = (lit_utf8_byte_t) ((value % 10) + LIT_CHAR_0); value /= 10; } while (value != 0); JERRY_ASSERT (buf_p >= out_buffer_p); lit_utf8_size_t bytes_copied = (lit_utf8_size_t) (out_buffer_p + buffer_size - buf_p); if (likely (buf_p != out_buffer_p)) { memmove (out_buffer_p, buf_p, bytes_copied); } return bytes_copied; } /* ecma_uint32_to_utf8_string */ /** * ECMA-defined conversion of Number value to UInt32 value * * See also: * ECMA-262 v5, 9.6 * * @return 32-bit unsigned integer - result of conversion. */ uint32_t ecma_number_to_uint32 (ecma_number_t num) /**< ecma-number */ { if (ecma_number_is_nan (num) || ecma_number_is_zero (num) || ecma_number_is_infinity (num)) { return 0; } const bool sign = ecma_number_is_negative (num); const ecma_number_t abs_num = sign ? ecma_number_negate (num) : num; // 2 ^ 32 const uint64_t uint64_2_pow_32 = (1ull << 32); const ecma_number_t num_2_pow_32 = (float) uint64_2_pow_32; ecma_number_t num_in_uint32_range; if (abs_num >= num_2_pow_32) { num_in_uint32_range = ecma_number_calc_remainder (abs_num, num_2_pow_32); } else { num_in_uint32_range = abs_num; } // Check that the floating point value can be represented with uint32_t JERRY_ASSERT (num_in_uint32_range < uint64_2_pow_32); uint32_t uint32_num = (uint32_t) num_in_uint32_range; const uint32_t ret = sign ? -uint32_num : uint32_num; #ifndef JERRY_NDEBUG if (sign && uint32_num != 0) { JERRY_ASSERT (ret == uint64_2_pow_32 - uint32_num); } else { JERRY_ASSERT (ret == uint32_num); } #endif /* !JERRY_NDEBUG */ return ret; } /* ecma_number_to_uint32 */ /** * ECMA-defined conversion of Number value to Int32 value * * See also: * ECMA-262 v5, 9.5 * * @return 32-bit signed integer - result of conversion. */ int32_t ecma_number_to_int32 (ecma_number_t num) /**< ecma-number */ { uint32_t uint32_num = ecma_number_to_uint32 (num); // 2 ^ 32 const int64_t int64_2_pow_32 = (1ll << 32); // 2 ^ 31 const uint32_t uint32_2_pow_31 = (1ull << 31); int32_t ret; if (uint32_num >= uint32_2_pow_31) { ret = (int32_t) (uint32_num - int64_2_pow_32); } else { ret = (int32_t) uint32_num; } #ifndef JERRY_NDEBUG int64_t int64_num = uint32_num; JERRY_ASSERT (int64_num >= 0); if (int64_num >= uint32_2_pow_31) { JERRY_ASSERT (ret == int64_num - int64_2_pow_32); } else { JERRY_ASSERT (ret == int64_num); } #endif /* !JERRY_NDEBUG */ return ret; } /* ecma_number_to_int32 */ /** * Perform conversion of ecma-number to decimal representation with decimal exponent * * Note: * The calculated values correspond to s, n, k parameters in ECMA-262 v5, 9.8.1, item 5: * - parameter out_digits_p corresponds to s, the digits of the number; * - parameter out_decimal_exp_p corresponds to n, the decimal exponent; * - return value corresponds to k, the number of digits. */ lit_utf8_size_t ecma_number_to_decimal (ecma_number_t num, /**< ecma-number */ lit_utf8_byte_t *out_digits_p, /**< [out] buffer to fill with digits */ int32_t *out_decimal_exp_p) /**< [out] decimal exponent */ { JERRY_ASSERT (!ecma_number_is_nan (num)); JERRY_ASSERT (!ecma_number_is_zero (num)); JERRY_ASSERT (!ecma_number_is_infinity (num)); JERRY_ASSERT (!ecma_number_is_negative (num)); return ecma_errol0_dtoa ((double) num, out_digits_p, out_decimal_exp_p); } /* ecma_number_to_decimal */ /** * Convert ecma-number to zero-terminated string * * See also: * ECMA-262 v5, 9.8.1 * * * @return size of utf-8 string */ lit_utf8_size_t ecma_number_to_utf8_string (ecma_number_t num, /**< ecma-number */ lit_utf8_byte_t *buffer_p, /**< buffer for utf-8 string */ lit_utf8_size_t buffer_size) /**< size of buffer */ { lit_utf8_byte_t *dst_p; if (ecma_number_is_nan (num)) { // 1. dst_p = lit_copy_magic_string_to_buffer (LIT_MAGIC_STRING_NAN, buffer_p, buffer_size); return (lit_utf8_size_t) (dst_p - buffer_p); } if (ecma_number_is_zero (num)) { // 2. *buffer_p = LIT_CHAR_0; JERRY_ASSERT (1 <= buffer_size); return 1; } dst_p = buffer_p; if (ecma_number_is_negative (num)) { // 3. *dst_p++ = LIT_CHAR_MINUS; num = ecma_number_negate (num); } if (ecma_number_is_infinity (num)) { // 4. dst_p = lit_copy_magic_string_to_buffer (LIT_MAGIC_STRING_INFINITY_UL, dst_p, (lit_utf8_size_t) (buffer_p + buffer_size - dst_p)); JERRY_ASSERT (dst_p <= buffer_p + buffer_size); return (lit_utf8_size_t) (dst_p - buffer_p); } JERRY_ASSERT (ecma_number_get_next (ecma_number_get_prev (num)) == num); // 5. uint32_t num_uint32 = ecma_number_to_uint32 (num); if (((ecma_number_t) num_uint32) == num) { dst_p += ecma_uint32_to_utf8_string (num_uint32, dst_p, (lit_utf8_size_t) (buffer_p + buffer_size - dst_p)); JERRY_ASSERT (dst_p <= buffer_p + buffer_size); return (lit_utf8_size_t) (dst_p - buffer_p); } /* decimal exponent */ int32_t n; /* number of digits in mantissa */ int32_t k; k = (int32_t) ecma_number_to_decimal (num, dst_p, &n); if (k <= n && n <= 21) { // 6. dst_p += k; memset (dst_p, LIT_CHAR_0, (size_t) (n - k)); dst_p += n - k; JERRY_ASSERT (dst_p <= buffer_p + buffer_size); return (lit_utf8_size_t) (dst_p - buffer_p); } if (0 < n && n <= 21) { // 7. memmove (dst_p + n + 1, dst_p + n, (size_t) (k - n)); *(dst_p + n) = LIT_CHAR_DOT; dst_p += k + 1; JERRY_ASSERT (dst_p <= buffer_p + buffer_size); return (lit_utf8_size_t) (dst_p - buffer_p); } if (-6 < n && n <= 0) { // 8. memmove (dst_p + 2 - n, dst_p, (size_t) k); memset (dst_p + 2, LIT_CHAR_0, (size_t) -n); *dst_p = LIT_CHAR_0; *(dst_p + 1) = LIT_CHAR_DOT; dst_p += k - n + 2; JERRY_ASSERT (dst_p <= buffer_p + buffer_size); return (lit_utf8_size_t) (dst_p - buffer_p); } if (k == 1) { // 9. dst_p++; } else { // 10. memmove (dst_p + 2, dst_p + 1, (size_t) (k - 1)); *(dst_p + 1) = LIT_CHAR_DOT; dst_p += k + 1; } // 9., 10. *dst_p++ = LIT_CHAR_LOWERCASE_E; *dst_p++ = (n >= 1) ? LIT_CHAR_PLUS : LIT_CHAR_MINUS; uint32_t t = (uint32_t) (n >= 1 ? (n - 1) : -(n - 1)); dst_p += ecma_uint32_to_utf8_string (t, dst_p, (lit_utf8_size_t) (buffer_p + buffer_size - dst_p)); JERRY_ASSERT (dst_p <= buffer_p + buffer_size); return (lit_utf8_size_t) (dst_p - buffer_p); } /* ecma_number_to_utf8_string */ /** * @} * @} */