/* Copyright 2015-2016 Samsung Electronics Co., Ltd. * Copyright 2015-2016 University of Szeged. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ecma-exceptions.h" #include "ecma-helpers.h" #include "ecma-regexp-object.h" #include "ecma-try-catch-macro.h" #include "jrt-libc-includes.h" #include "mem-heap.h" #include "re-bytecode.h" #include "re-compiler.h" #include "re-parser.h" #ifndef CONFIG_ECMA_COMPACT_PROFILE_DISABLE_REGEXP_BUILTIN /** \addtogroup parser Parser * @{ * * \addtogroup regexparser Regular expression * @{ * * \addtogroup regexparser_compiler Compiler * @{ */ /** * Callback function of character class generation */ static void re_append_char_class (void *re_ctx_p, /**< RegExp compiler context */ ecma_char_t start, /**< character class range from */ ecma_char_t end) /**< character class range to */ { re_compiler_ctx_t *ctx_p = (re_compiler_ctx_t *) re_ctx_p; re_append_char (ctx_p->bytecode_ctx_p, start); re_append_char (ctx_p->bytecode_ctx_p, end); ctx_p->parser_ctx_p->num_of_classes++; } /* re_append_char_class */ /** * Insert simple atom iterator */ static void re_insert_simple_iterator (re_compiler_ctx_t *re_ctx_p, /**< RegExp compiler context */ uint32_t new_atom_start_offset) /**< atom start offset */ { uint32_t atom_code_length; uint32_t offset; uint32_t qmin, qmax; qmin = re_ctx_p->current_token.qmin; qmax = re_ctx_p->current_token.qmax; JERRY_ASSERT (qmin <= qmax); /* TODO: optimize bytecode length. Store 0 rather than INF */ re_append_opcode (re_ctx_p->bytecode_ctx_p, RE_OP_MATCH); /* complete 'sub atom' */ uint32_t bytecode_length = re_get_bytecode_length (re_ctx_p->bytecode_ctx_p); atom_code_length = (uint32_t) (bytecode_length - new_atom_start_offset); offset = new_atom_start_offset; re_insert_u32 (re_ctx_p->bytecode_ctx_p, offset, atom_code_length); re_insert_u32 (re_ctx_p->bytecode_ctx_p, offset, qmax); re_insert_u32 (re_ctx_p->bytecode_ctx_p, offset, qmin); if (re_ctx_p->current_token.greedy) { re_insert_opcode (re_ctx_p->bytecode_ctx_p, offset, RE_OP_GREEDY_ITERATOR); } else { re_insert_opcode (re_ctx_p->bytecode_ctx_p, offset, RE_OP_NON_GREEDY_ITERATOR); } } /* re_insert_simple_iterator */ /** * Get the type of a group start * * @return RegExp opcode */ static re_opcode_t re_get_start_opcode_type (re_compiler_ctx_t *re_ctx_p, /**< RegExp compiler context */ bool is_capturable) /**< is capturable group */ { if (is_capturable) { if (re_ctx_p->current_token.qmin == 0) { if (re_ctx_p->current_token.greedy) { return RE_OP_CAPTURE_GREEDY_ZERO_GROUP_START; } return RE_OP_CAPTURE_NON_GREEDY_ZERO_GROUP_START; } return RE_OP_CAPTURE_GROUP_START; } if (re_ctx_p->current_token.qmin == 0) { if (re_ctx_p->current_token.greedy) { return RE_OP_NON_CAPTURE_GREEDY_ZERO_GROUP_START; } return RE_OP_NON_CAPTURE_NON_GREEDY_ZERO_GROUP_START; } return RE_OP_NON_CAPTURE_GROUP_START; } /* re_get_start_opcode_type */ /** * Get the type of a group end * * @return RegExp opcode */ static re_opcode_t re_get_end_opcode_type (re_compiler_ctx_t *re_ctx_p, /**< RegExp compiler context */ bool is_capturable) /**< is capturable group */ { if (is_capturable) { if (re_ctx_p->current_token.greedy) { return RE_OP_CAPTURE_GREEDY_GROUP_END; } return RE_OP_CAPTURE_NON_GREEDY_GROUP_END; } if (re_ctx_p->current_token.greedy) { return RE_OP_NON_CAPTURE_GREEDY_GROUP_END; } return RE_OP_NON_CAPTURE_NON_GREEDY_GROUP_END; } /* re_get_end_opcode_type */ /** * Enclose the given bytecode to a group */ static void re_insert_into_group (re_compiler_ctx_t *re_ctx_p, /**< RegExp compiler context */ uint32_t group_start_offset, /**< offset of group start */ uint32_t idx, /**< index of group */ bool is_capturable) /**< is capturable group */ { uint32_t qmin, qmax; re_opcode_t start_opcode = re_get_start_opcode_type (re_ctx_p, is_capturable); re_opcode_t end_opcode = re_get_end_opcode_type (re_ctx_p, is_capturable); uint32_t start_head_offset_len; qmin = re_ctx_p->current_token.qmin; qmax = re_ctx_p->current_token.qmax; JERRY_ASSERT (qmin <= qmax); start_head_offset_len = re_get_bytecode_length (re_ctx_p->bytecode_ctx_p); re_insert_u32 (re_ctx_p->bytecode_ctx_p, group_start_offset, idx); re_insert_opcode (re_ctx_p->bytecode_ctx_p, group_start_offset, start_opcode); start_head_offset_len = re_get_bytecode_length (re_ctx_p->bytecode_ctx_p) - start_head_offset_len; re_append_opcode (re_ctx_p->bytecode_ctx_p, end_opcode); re_append_u32 (re_ctx_p->bytecode_ctx_p, idx); re_append_u32 (re_ctx_p->bytecode_ctx_p, qmin); re_append_u32 (re_ctx_p->bytecode_ctx_p, qmax); group_start_offset += start_head_offset_len; re_append_jump_offset (re_ctx_p->bytecode_ctx_p, re_get_bytecode_length (re_ctx_p->bytecode_ctx_p) - group_start_offset); if (start_opcode != RE_OP_CAPTURE_GROUP_START && start_opcode != RE_OP_NON_CAPTURE_GROUP_START) { re_insert_u32 (re_ctx_p->bytecode_ctx_p, group_start_offset, re_get_bytecode_length (re_ctx_p->bytecode_ctx_p) - group_start_offset); } } /* re_insert_into_group */ /** * Enclose the given bytecode to a group and inster jump value */ static void re_insert_into_group_with_jump (re_compiler_ctx_t *re_ctx_p, /**< RegExp compiler context */ uint32_t group_start_offset, /**< offset of group start */ uint32_t idx, /**< index of group */ bool is_capturable) /**< is capturable group */ { re_insert_u32 (re_ctx_p->bytecode_ctx_p, group_start_offset, re_get_bytecode_length (re_ctx_p->bytecode_ctx_p) - group_start_offset); re_insert_into_group (re_ctx_p, group_start_offset, idx, is_capturable); } /* re_insert_into_group_with_jump */ /** * Parse alternatives * * @return empty ecma value - if alternative was successfully parsed * error ecma value - otherwise * * Returned value must be freed with ecma_free_value */ static ecma_value_t re_parse_alternative (re_compiler_ctx_t *re_ctx_p, /**< RegExp compiler context */ bool expect_eof) /**< expect end of file */ { uint32_t idx; re_bytecode_ctx_t *bc_ctx_p = re_ctx_p->bytecode_ctx_p; ecma_value_t ret_value = ecma_make_simple_value (ECMA_SIMPLE_VALUE_EMPTY); uint32_t alterantive_offset = re_get_bytecode_length (re_ctx_p->bytecode_ctx_p); bool should_loop = true; while (ecma_is_value_empty (ret_value) && should_loop) { ECMA_TRY_CATCH (empty, re_parse_next_token (re_ctx_p->parser_ctx_p, &(re_ctx_p->current_token)), ret_value); uint32_t new_atom_start_offset = re_get_bytecode_length (re_ctx_p->bytecode_ctx_p); switch (re_ctx_p->current_token.type) { case RE_TOK_START_CAPTURE_GROUP: { idx = re_ctx_p->num_of_captures++; JERRY_DDLOG ("Compile a capture group start (idx: %d)\n", idx); ret_value = re_parse_alternative (re_ctx_p, false); if (ecma_is_value_empty (ret_value)) { re_insert_into_group (re_ctx_p, new_atom_start_offset, idx, true); } break; } case RE_TOK_START_NON_CAPTURE_GROUP: { idx = re_ctx_p->num_of_non_captures++; JERRY_DDLOG ("Compile a non-capture group start (idx: %d)\n", idx); ret_value = re_parse_alternative (re_ctx_p, false); if (ecma_is_value_empty (ret_value)) { re_insert_into_group (re_ctx_p, new_atom_start_offset, idx, false); } break; } case RE_TOK_CHAR: { JERRY_DDLOG ("Compile character token: %c, qmin: %d, qmax: %d\n", re_ctx_p->current_token.value, re_ctx_p->current_token.qmin, re_ctx_p->current_token.qmax); re_append_opcode (bc_ctx_p, RE_OP_CHAR); re_append_char (bc_ctx_p, re_canonicalize ((ecma_char_t) re_ctx_p->current_token.value, re_ctx_p->flags & RE_FLAG_IGNORE_CASE)); if ((re_ctx_p->current_token.qmin != 1) || (re_ctx_p->current_token.qmax != 1)) { re_insert_simple_iterator (re_ctx_p, new_atom_start_offset); } break; } case RE_TOK_PERIOD: { JERRY_DDLOG ("Compile a period\n"); re_append_opcode (bc_ctx_p, RE_OP_PERIOD); if ((re_ctx_p->current_token.qmin != 1) || (re_ctx_p->current_token.qmax != 1)) { re_insert_simple_iterator (re_ctx_p, new_atom_start_offset); } break; } case RE_TOK_ALTERNATIVE: { JERRY_DDLOG ("Compile an alternative\n"); re_insert_u32 (bc_ctx_p, alterantive_offset, re_get_bytecode_length (bc_ctx_p) - alterantive_offset); re_append_opcode (bc_ctx_p, RE_OP_ALTERNATIVE); alterantive_offset = re_get_bytecode_length (re_ctx_p->bytecode_ctx_p); break; } case RE_TOK_ASSERT_START: { JERRY_DDLOG ("Compile a start assertion\n"); re_append_opcode (bc_ctx_p, RE_OP_ASSERT_START); break; } case RE_TOK_ASSERT_END: { JERRY_DDLOG ("Compile an end assertion\n"); re_append_opcode (bc_ctx_p, RE_OP_ASSERT_END); break; } case RE_TOK_ASSERT_WORD_BOUNDARY: { JERRY_DDLOG ("Compile a word boundary assertion\n"); re_append_opcode (bc_ctx_p, RE_OP_ASSERT_WORD_BOUNDARY); break; } case RE_TOK_ASSERT_NOT_WORD_BOUNDARY: { JERRY_DDLOG ("Compile a not word boundary assertion\n"); re_append_opcode (bc_ctx_p, RE_OP_ASSERT_NOT_WORD_BOUNDARY); break; } case RE_TOK_ASSERT_START_POS_LOOKAHEAD: { JERRY_DDLOG ("Compile a positive lookahead assertion\n"); idx = re_ctx_p->num_of_non_captures++; re_append_opcode (bc_ctx_p, RE_OP_LOOKAHEAD_POS); ret_value = re_parse_alternative (re_ctx_p, false); if (ecma_is_value_empty (ret_value)) { re_append_opcode (bc_ctx_p, RE_OP_MATCH); re_insert_into_group_with_jump (re_ctx_p, new_atom_start_offset, idx, false); } break; } case RE_TOK_ASSERT_START_NEG_LOOKAHEAD: { JERRY_DDLOG ("Compile a negative lookahead assertion\n"); idx = re_ctx_p->num_of_non_captures++; re_append_opcode (bc_ctx_p, RE_OP_LOOKAHEAD_NEG); ret_value = re_parse_alternative (re_ctx_p, false); if (ecma_is_value_empty (ret_value)) { re_append_opcode (bc_ctx_p, RE_OP_MATCH); re_insert_into_group_with_jump (re_ctx_p, new_atom_start_offset, idx, false); } break; } case RE_TOK_BACKREFERENCE: { uint32_t backref = (uint32_t) re_ctx_p->current_token.value; idx = re_ctx_p->num_of_non_captures++; if (backref > re_ctx_p->highest_backref) { re_ctx_p->highest_backref = backref; } JERRY_DDLOG ("Compile a backreference: %d\n", backref); re_append_opcode (bc_ctx_p, RE_OP_BACKREFERENCE); re_append_u32 (bc_ctx_p, backref); re_insert_into_group_with_jump (re_ctx_p, new_atom_start_offset, idx, false); break; } case RE_TOK_DIGIT: case RE_TOK_NOT_DIGIT: case RE_TOK_WHITE: case RE_TOK_NOT_WHITE: case RE_TOK_WORD_CHAR: case RE_TOK_NOT_WORD_CHAR: case RE_TOK_START_CHAR_CLASS: case RE_TOK_START_INV_CHAR_CLASS: { JERRY_DDLOG ("Compile a character class\n"); re_append_opcode (bc_ctx_p, re_ctx_p->current_token.type == RE_TOK_START_INV_CHAR_CLASS ? RE_OP_INV_CHAR_CLASS : RE_OP_CHAR_CLASS); uint32_t offset = re_get_bytecode_length (re_ctx_p->bytecode_ctx_p); ECMA_TRY_CATCH (empty, re_parse_char_class (re_ctx_p->parser_ctx_p, re_append_char_class, re_ctx_p, &(re_ctx_p->current_token)), ret_value); re_insert_u32 (bc_ctx_p, offset, re_ctx_p->parser_ctx_p->num_of_classes); if ((re_ctx_p->current_token.qmin != 1) || (re_ctx_p->current_token.qmax != 1)) { re_insert_simple_iterator (re_ctx_p, new_atom_start_offset); } ECMA_FINALIZE (empty); break; } case RE_TOK_END_GROUP: { JERRY_DDLOG ("Compile a group end\n"); if (expect_eof) { ret_value = ecma_raise_syntax_error (ECMA_ERR_MSG ("Unexpected end of paren.")); } else { re_insert_u32 (bc_ctx_p, alterantive_offset, re_get_bytecode_length (bc_ctx_p) - alterantive_offset); should_loop = false; } break; } case RE_TOK_EOF: { if (!expect_eof) { ret_value = ecma_raise_syntax_error (ECMA_ERR_MSG ("Unexpected end of pattern.")); } else { re_insert_u32 (bc_ctx_p, alterantive_offset, re_get_bytecode_length (bc_ctx_p) - alterantive_offset); should_loop = false; } break; } default: { ret_value = ecma_raise_syntax_error (ECMA_ERR_MSG ("Unexpected RegExp token.")); break; } } ECMA_FINALIZE (empty); } return ret_value; } /* re_parse_alternative */ static const re_compiled_code_t *re_cache[RE_CACHE_SIZE]; static uint8_t re_cache_idx = RE_CACHE_SIZE; /** * Search for the given pattern in the RegExp cache * * @return index of bytecode in cache - if found * RE_CACHE_SIZE - otherwise */ static uint8_t re_find_bytecode_in_cache (ecma_string_t *pattern_str_p, /**< pattern string */ uint16_t flags) /**< flags */ { uint8_t free_idx = RE_CACHE_SIZE; for (uint8_t idx = 0u; idx < RE_CACHE_SIZE; idx++) { const re_compiled_code_t *cached_bytecode_p = re_cache[idx]; if (cached_bytecode_p != NULL) { ecma_string_t *cached_pattern_str_p; cached_pattern_str_p = ECMA_GET_NON_NULL_POINTER (ecma_string_t, cached_bytecode_p->pattern_cp); if ((cached_bytecode_p->header.status_flags & RE_FLAGS_MASK) == flags && ecma_compare_ecma_strings (cached_pattern_str_p, pattern_str_p)) { JERRY_DDLOG ("RegExp is found in cache\n"); return idx; } } else { /* mark as free, so it can be overridden if the cache is full */ free_idx = idx; } } JERRY_DDLOG ("RegExp is NOT found in cache\n"); return free_idx; } /* re_find_bytecode_in_cache */ /** * Run gerbage collection in RegExp cache */ void re_cache_gc_run () { for (uint32_t i = 0u; i < RE_CACHE_SIZE; i++) { const re_compiled_code_t *cached_bytecode_p = re_cache[i]; if (cached_bytecode_p != NULL && cached_bytecode_p->header.refs == 1) { /* Only the cache has reference for the bytecode */ ecma_bytecode_deref ((ecma_compiled_code_t *) cached_bytecode_p); re_cache[i] = NULL; } } } /* re_cache_gc_run */ /** * Compilation of RegExp bytecode * * @return empty ecma value - if bytecode was compiled successfully * error ecma value - otherwise * * Returned value must be freed with ecma_free_value */ ecma_value_t re_compile_bytecode (const re_compiled_code_t **out_bytecode_p, /**< [out] pointer to bytecode */ ecma_string_t *pattern_str_p, /**< pattern */ uint16_t flags) /**< flags */ { ecma_value_t ret_value = ecma_make_simple_value (ECMA_SIMPLE_VALUE_EMPTY); uint8_t cache_idx = re_find_bytecode_in_cache (pattern_str_p, flags); if (cache_idx < RE_CACHE_SIZE) { *out_bytecode_p = re_cache[cache_idx]; if (*out_bytecode_p != NULL) { ecma_bytecode_ref ((ecma_compiled_code_t *) *out_bytecode_p); return ret_value; } } /* not in the RegExp cache, so compile it */ re_compiler_ctx_t re_ctx; re_ctx.flags = flags; re_ctx.highest_backref = 0; re_ctx.num_of_non_captures = 0; re_bytecode_ctx_t bc_ctx; bc_ctx.block_start_p = NULL; bc_ctx.block_end_p = NULL; bc_ctx.current_p = NULL; re_ctx.bytecode_ctx_p = &bc_ctx; ECMA_STRING_TO_UTF8_STRING (pattern_str_p, pattern_start_p, pattern_start_size); re_parser_ctx_t parser_ctx; parser_ctx.input_start_p = pattern_start_p; parser_ctx.input_curr_p = (lit_utf8_byte_t *) pattern_start_p; parser_ctx.input_end_p = pattern_start_p + pattern_start_size; parser_ctx.num_of_groups = -1; re_ctx.parser_ctx_p = &parser_ctx; /* 1. Parse RegExp pattern */ re_ctx.num_of_captures = 1; re_append_opcode (&bc_ctx, RE_OP_SAVE_AT_START); ECMA_TRY_CATCH (empty, re_parse_alternative (&re_ctx, true), ret_value); /* 2. Check for invalid backreference */ if (re_ctx.highest_backref >= re_ctx.num_of_captures) { ret_value = ecma_raise_syntax_error ("Invalid backreference.\n"); } else { re_append_opcode (&bc_ctx, RE_OP_SAVE_AND_MATCH); re_append_opcode (&bc_ctx, RE_OP_EOF); /* 3. Insert extra informations for bytecode header */ re_compiled_code_t re_compiled_code; re_compiled_code.header.refs = 1; re_compiled_code.header.status_flags = re_ctx.flags; ECMA_SET_NON_NULL_POINTER (re_compiled_code.pattern_cp, ecma_copy_or_ref_ecma_string (pattern_str_p)); re_compiled_code.num_of_captures = re_ctx.num_of_captures * 2; re_compiled_code.num_of_non_captures = re_ctx.num_of_non_captures; re_bytecode_list_insert (&bc_ctx, 0, (uint8_t *) &re_compiled_code, sizeof (re_compiled_code_t)); } ECMA_FINALIZE (empty); ECMA_FINALIZE_UTF8_STRING (pattern_start_p, pattern_start_size); size_t byte_code_size = (size_t) (bc_ctx.block_end_p - bc_ctx.block_start_p); if (!ecma_is_value_empty (ret_value)) { /* Compilation failed, free bytecode. */ JERRY_DDLOG ("RegExp compilation failed!\n"); mem_heap_free_block (bc_ctx.block_start_p, byte_code_size); *out_bytecode_p = NULL; } else { #ifdef JERRY_ENABLE_LOG re_dump_bytecode (&bc_ctx); #endif /* JERRY_ENABLE_LOG */ /* The RegExp bytecode contains at least a RE_OP_SAVE_AT_START opdoce, so it cannot be NULL. */ JERRY_ASSERT (bc_ctx.block_start_p != NULL); *out_bytecode_p = (re_compiled_code_t *) bc_ctx.block_start_p; ((re_compiled_code_t *) bc_ctx.block_start_p)->header.size = (uint16_t) (byte_code_size >> MEM_ALIGNMENT_LOG); if (cache_idx == RE_CACHE_SIZE) { if (re_cache_idx == 0u) { re_cache_idx = RE_CACHE_SIZE; } const re_compiled_code_t *cached_bytecode_p = re_cache[--re_cache_idx]; JERRY_DDLOG ("RegExp cache is full! Remove the element on idx: %d\n", re_cache_idx); if (cached_bytecode_p != NULL) { ecma_bytecode_deref ((ecma_compiled_code_t *) cached_bytecode_p); } cache_idx = re_cache_idx; } JERRY_DDLOG ("Insert bytecode into RegExp cache (idx: %d).\n", cache_idx); ecma_bytecode_ref ((ecma_compiled_code_t *) *out_bytecode_p); re_cache[cache_idx] = *out_bytecode_p; } return ret_value; } /* re_compile_bytecode */ /** * @} * @} * @} */ #endif /* !CONFIG_ECMA_COMPACT_PROFILE_DISABLE_REGEXP_BUILTIN */