Added Math functions

JerryScript-DCO-1.0-Signed-off-by: Tamas Czene tczene.u-szeged@partner.samsung.com
This commit is contained in:
Tamas Czene 2015-05-08 13:49:09 +02:00 committed by Peter Gal
parent 7d703040d0
commit 7dfbc88cc0
44 changed files with 4647 additions and 388 deletions

View File

@ -299,6 +299,9 @@ project (Jerry CXX C ASM)
add_subdirectory(jerry-libc)
endif()
# Jerry's fdlibm
add_subdirectory(third-party/fdlibm)
# Jerry's Core
add_subdirectory(jerry-core)
@ -319,6 +322,7 @@ project (Jerry CXX C ASM)
set(CORE_TARGET_NAME ${CORE_TARGET_NAME}${MODIFIER_SUFFIX_${MODIFIER}})
endforeach()
set(FDLIBM_TARGET_NAME ${CORE_TARGET_NAME}.jerry-fdlibm.${SUFFIX_THIRD_PARTY_LIB})
set(CORE_TARGET_NAME ${CORE_TARGET_NAME}.jerry-core)
set(DEFINES_JERRY )
@ -344,7 +348,7 @@ project (Jerry CXX C ASM)
target_include_directories(${TARGET_NAME} SYSTEM PRIVATE ${INCLUDE_LIBC_INTERFACE})
target_include_directories(${TARGET_NAME} SYSTEM PRIVATE ${INCLUDE_EXTERNAL_LIBS_INTERFACE})
target_link_libraries(${TARGET_NAME} ${PLUGINS_TARGET_NAME} ${CORE_TARGET_NAME} ${LIBC_TARGET_NAME}
${PREFIX_IMPORTED_LIB}libgcc ${PREFIX_IMPORTED_LIB}libgcc_eh)
${FDLIBM_TARGET_NAME} ${PREFIX_IMPORTED_LIB}libgcc ${PREFIX_IMPORTED_LIB}libgcc_eh)
add_cppcheck_target(${TARGET_NAME})
@ -414,6 +418,7 @@ project (Jerry CXX C ASM)
set(TARGET_NAME unit_${TARGET_NAME})
set(CORE_TARGET_NAME unittests.jerry-core)
set(FDLIBM_TARGET_NAME unittests.jerry-fdlibm.${SUFFIX_THIRD_PARTY_LIB})
add_executable(${TARGET_NAME} ${SOURCE_UNIT_TEST_MAIN})
set_property(TARGET ${TARGET_NAME}
@ -421,7 +426,7 @@ project (Jerry CXX C ASM)
set_property(TARGET ${TARGET_NAME}
PROPERTY LINK_FLAGS "${COMPILE_FLAGS_JERRY} ${CXX_FLAGS_JERRY} ${FLAGS_COMMON_UNITTESTS} ${LINKER_FLAGS_COMMON}")
target_include_directories(${TARGET_NAME} PRIVATE ${INCLUDE_CORE_INTERFACE})
target_link_libraries(${TARGET_NAME} ${CORE_TARGET_NAME} ${PREFIX_IMPORTED_LIB}libc
target_link_libraries(${TARGET_NAME} ${CORE_TARGET_NAME} ${FDLIBM_TARGET_NAME} ${PREFIX_IMPORTED_LIB}libc
${PREFIX_IMPORTED_LIB}libgcc ${PREFIX_IMPORTED_LIB}libgcc_eh)
add_cppcheck_target(${TARGET_NAME})

View File

@ -207,6 +207,8 @@ $(BUILD_ALL)_native: $(BUILD_DIRS_NATIVE)
@ mkdir -p $(OUT_DIR)/$@
@ $(MAKE) -C $(BUILD_DIR)/native jerry-libc-all VERBOSE=1 &>$(OUT_DIR)/$@/make.log || \
(echo "Build failed. See $(OUT_DIR)/$@/make.log for details."; exit 1;)
@ $(MAKE) -C $(BUILD_DIR)/native jerry-fdlibm-all VERBOSE=1 &>$(OUT_DIR)/$@/make.log || \
(echo "Build failed. See $(OUT_DIR)/$@/make.log for details."; exit 1;)
@ $(MAKE) -C $(BUILD_DIR)/native plugins-all VERBOSE=1 &>$(OUT_DIR)/$@/make.log || \
(echo "Build failed. See $(OUT_DIR)/$@/make.log for details."; exit 1;)
@ $(MAKE) -C $(BUILD_DIR)/native $(JERRY_LINUX_TARGETS) unittests VERBOSE=1 &>$(OUT_DIR)/$@/make.log || \

View File

@ -159,6 +159,7 @@ project (JerryCore CXX C ASM)
PROPERTY COMPILE_FLAGS "${COMPILE_FLAGS_JERRY} ${CXX_FLAGS_JERRY} ${FLAGS_COMMON_${BUILD_MODE}}")
target_compile_definitions(${TARGET_NAME}.jerry-core PRIVATE ${DEFINES_JERRY})
target_include_directories(${TARGET_NAME}.jerry-core PRIVATE ${INCLUDE_CORE})
target_include_directories(${TARGET_NAME}.jerry-core PRIVATE ${INCLUDE_FDLIBM})
target_include_directories(${TARGET_NAME}.jerry-core SYSTEM PRIVATE ${INCLUDE_LIBC_INTERFACE})
if("${BUILD_MODE}" STREQUAL "UNITTESTS")

View File

@ -566,6 +566,7 @@ typedef uint16_t ecma_char_t;
* Description of an ecma-number
*/
typedef float ecma_number_t;
#define DOUBLE_TO_ECMA_NUMBER_T(value) static_cast<ecma_number_t> (value)
/**
* Maximum number of significant digits that ecma-number can store
@ -576,6 +577,7 @@ typedef float ecma_number_t;
* Description of an ecma-number
*/
typedef double ecma_number_t;
#define DOUBLE_TO_ECMA_NUMBER_T(value) value
/**
* Maximum number of significant digits that ecma-number can store

View File

@ -1,4 +1,5 @@
/* Copyright 2014-2015 Samsung Electronics Co., Ltd.
* Copyright 2015 University of Szeged.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -25,6 +26,7 @@
#include "ecma-objects-general.h"
#include "ecma-try-catch-macro.h"
#include "jrt.h"
#include "fdlibm-math.h"
#ifndef CONFIG_ECMA_COMPACT_PROFILE_DISABLE_MATH_BUILTIN
@ -64,14 +66,7 @@ ecma_builtin_math_object_abs (ecma_value_t this_arg __attr_unused___, /**< 'this
ecma_number_t *num_p = ecma_alloc_number ();
if (ecma_number_is_nan (arg_num))
{
*num_p = arg_num;
}
else
{
*num_p = ecma_number_abs (arg_num);
}
*num_p = DOUBLE_TO_ECMA_NUMBER_T (fabs (arg_num));
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
@ -90,10 +85,20 @@ ecma_builtin_math_object_abs (ecma_value_t this_arg __attr_unused___, /**< 'this
* Returned value must be freed with ecma_free_completion_value.
*/
static ecma_completion_value_t
ecma_builtin_math_object_acos (ecma_value_t this_arg, /**< 'this' argument */
ecma_builtin_math_object_acos (ecma_value_t this_arg __attr_unused___, /**< 'this' argument */
ecma_value_t arg) /**< routine's argument */
{
ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg);
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
ecma_number_t *num_p = ecma_alloc_number ();
*num_p = DOUBLE_TO_ECMA_NUMBER_T (acos (arg_num));
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
return ret_value;
} /* ecma_builtin_math_object_acos */
/**
@ -106,10 +111,20 @@ ecma_builtin_math_object_acos (ecma_value_t this_arg, /**< 'this' argument */
* Returned value must be freed with ecma_free_completion_value.
*/
static ecma_completion_value_t
ecma_builtin_math_object_asin (ecma_value_t this_arg, /**< 'this' argument */
ecma_builtin_math_object_asin (ecma_value_t this_arg __attr_unused___, /**< 'this' argument */
ecma_value_t arg) /**< routine's argument */
{
ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg);
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
ecma_number_t *num_p = ecma_alloc_number ();
*num_p = DOUBLE_TO_ECMA_NUMBER_T (asin (arg_num));
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
return ret_value;
} /* ecma_builtin_math_object_asin */
/**
@ -122,10 +137,20 @@ ecma_builtin_math_object_asin (ecma_value_t this_arg, /**< 'this' argument */
* Returned value must be freed with ecma_free_completion_value.
*/
static ecma_completion_value_t
ecma_builtin_math_object_atan (ecma_value_t this_arg, /**< 'this' argument */
ecma_builtin_math_object_atan (ecma_value_t this_arg __attr_unused___, /**< 'this' argument */
ecma_value_t arg) /**< routine's argument */
{
ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg);
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
ecma_number_t *num_p = ecma_alloc_number ();
*num_p = DOUBLE_TO_ECMA_NUMBER_T (atan (arg_num));
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
return ret_value;
} /* ecma_builtin_math_object_atan */
/**
@ -138,11 +163,23 @@ ecma_builtin_math_object_atan (ecma_value_t this_arg, /**< 'this' argument */
* Returned value must be freed with ecma_free_completion_value.
*/
static ecma_completion_value_t
ecma_builtin_math_object_atan2 (ecma_value_t this_arg, /**< 'this' argument */
ecma_builtin_math_object_atan2 (ecma_value_t this_arg __attr_unused___, /**< 'this' argument */
ecma_value_t arg1, /**< first routine's argument */
ecma_value_t arg2) /**< second routine's argument */
{
ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg1, arg2);
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
ECMA_OP_TO_NUMBER_TRY_CATCH (x, arg1, ret_value);
ECMA_OP_TO_NUMBER_TRY_CATCH (y, arg2, ret_value);
ecma_number_t *num_p = ecma_alloc_number ();
*num_p = DOUBLE_TO_ECMA_NUMBER_T (atan2 (x, y));
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
ECMA_OP_TO_NUMBER_FINALIZE (y);
ECMA_OP_TO_NUMBER_FINALIZE (x);
return ret_value;
} /* ecma_builtin_math_object_atan2 */
/**
@ -155,10 +192,19 @@ ecma_builtin_math_object_atan2 (ecma_value_t this_arg, /**< 'this' argument */
* Returned value must be freed with ecma_free_completion_value.
*/
static ecma_completion_value_t
ecma_builtin_math_object_ceil (ecma_value_t this_arg, /**< 'this' argument */
ecma_builtin_math_object_ceil (ecma_value_t this_arg __attr_unused___, /**< 'this' argument */
ecma_value_t arg) /**< routine's argument */
{
ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg);
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
ecma_number_t *num_p = ecma_alloc_number ();
*num_p = DOUBLE_TO_ECMA_NUMBER_T (ceil (arg_num));
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
return ret_value;
} /* ecma_builtin_math_object_ceil */
/**
@ -179,53 +225,10 @@ ecma_builtin_math_object_cos (ecma_value_t this_arg __attr_unused___, /**< 'this
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
ecma_number_t *num_p = ecma_alloc_number ();
if (ecma_number_is_nan (arg_num)
|| ecma_number_is_infinity (arg_num))
{
*num_p = ecma_number_make_nan ();
}
else if (ecma_number_is_zero (arg_num))
{
*num_p = ECMA_NUMBER_ONE;
}
else
{
/* Taylor series of cos (x) around x = 0 is 1 - x^2/2! + x^4/4! - x^6/6! + ... */
ecma_number_t x = ecma_op_number_remainder (arg_num, 2 * ECMA_NUMBER_PI);
ecma_number_t neg_sqr_x = ecma_number_negate (ecma_number_multiply (x, x));
ecma_number_t sum = ECMA_NUMBER_ZERO;
ecma_number_t next_addendum = ECMA_NUMBER_ONE;
ecma_number_t next_factorial_factor = ECMA_NUMBER_ZERO;
ecma_number_t diff = ecma_number_make_infinity (false);
while ((ecma_number_is_zero (sum) && !ecma_number_is_zero (diff))
|| (!ecma_number_is_zero (sum)
&& ecma_number_abs (ecma_number_divide (diff, sum)) > ecma_number_relative_eps))
{
ecma_number_t next_sum = ecma_number_add (sum, next_addendum);
next_addendum = ecma_number_multiply (next_addendum, neg_sqr_x);
next_factorial_factor = ecma_number_add (next_factorial_factor, ECMA_NUMBER_ONE);
next_addendum = ecma_number_divide (next_addendum, next_factorial_factor);
next_factorial_factor = ecma_number_add (next_factorial_factor, ECMA_NUMBER_ONE);
next_addendum = ecma_number_divide (next_addendum, next_factorial_factor);
diff = ecma_number_abs (ecma_number_substract (sum, next_sum));
sum = next_sum;
}
*num_p = sum;
}
*num_p = DOUBLE_TO_ECMA_NUMBER_T (cos (arg_num));
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
return ret_value;
} /* ecma_builtin_math_object_cos */
@ -248,29 +251,7 @@ ecma_builtin_math_object_exp (ecma_value_t this_arg __attr_unused___, /**< 'this
ecma_number_t *num_p = ecma_alloc_number ();
if (ecma_number_is_nan (arg_num))
{
*num_p = arg_num;
}
else if (ecma_number_is_zero (arg_num))
{
*num_p = ECMA_NUMBER_ONE;
}
else if (ecma_number_is_infinity (arg_num))
{
if (ecma_number_is_negative (arg_num))
{
*num_p = ECMA_NUMBER_ZERO;
}
else
{
*num_p = arg_num;
}
}
else
{
*num_p = ecma_number_exp (arg_num);
}
*num_p = DOUBLE_TO_ECMA_NUMBER_T (exp (arg_num));
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
@ -289,10 +270,19 @@ ecma_builtin_math_object_exp (ecma_value_t this_arg __attr_unused___, /**< 'this
* Returned value must be freed with ecma_free_completion_value.
*/
static ecma_completion_value_t
ecma_builtin_math_object_floor (ecma_value_t this_arg, /**< 'this' argument */
ecma_builtin_math_object_floor (ecma_value_t this_arg __attr_unused___, /**< 'this' argument */
ecma_value_t arg) /**< routine's argument */
{
ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg);
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
ecma_number_t *num_p = ecma_alloc_number ();
*num_p = DOUBLE_TO_ECMA_NUMBER_T (floor (arg_num));
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
return ret_value;
} /* ecma_builtin_math_object_floor */
/**
@ -314,26 +304,7 @@ ecma_builtin_math_object_log (ecma_value_t this_arg __attr_unused___, /**< 'this
ecma_number_t *num_p = ecma_alloc_number ();
if (ecma_number_is_nan (arg_num))
{
*num_p = arg_num;
}
else if (ecma_number_is_zero (arg_num))
{
*num_p = ecma_number_make_infinity (true);
}
else if (ecma_number_is_negative (arg_num))
{
*num_p = ecma_number_make_nan ();
}
else if (ecma_number_is_infinity (arg_num))
{
*num_p = arg_num;
}
else
{
*num_p = ecma_number_ln (arg_num);
}
*num_p = DOUBLE_TO_ECMA_NUMBER_T (log (arg_num));
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
@ -536,212 +507,7 @@ ecma_builtin_math_object_pow (ecma_value_t this_arg __attr_unused___, /**< 'this
ECMA_OP_TO_NUMBER_TRY_CATCH (y, arg2, ret_value);
ecma_number_t *num_p = ecma_alloc_number ();
if (ecma_number_is_nan (y)
|| (ecma_number_is_nan (x)
&& !ecma_number_is_zero (y)))
{
*num_p = ecma_number_make_nan ();
}
else if (ecma_number_is_zero (y))
{
*num_p = ECMA_NUMBER_ONE;
}
else if (ecma_number_is_infinity (y))
{
const ecma_number_t x_abs = ecma_number_abs (x);
if (x_abs == ECMA_NUMBER_ONE)
{
*num_p = ecma_number_make_nan ();
}
else if ((ecma_number_is_negative (y) && x_abs < ECMA_NUMBER_ONE)
|| (!ecma_number_is_negative (y) && x_abs > ECMA_NUMBER_ONE))
{
*num_p = ecma_number_make_infinity (false);
}
else
{
JERRY_ASSERT ((ecma_number_is_negative (y) && x_abs > ECMA_NUMBER_ONE)
|| (!ecma_number_is_negative (y) && x_abs < ECMA_NUMBER_ONE));
*num_p = ECMA_NUMBER_ZERO;
}
}
else
{
const ecma_number_t diff_is_int = ecma_op_number_remainder (y, ECMA_NUMBER_ONE);
const ecma_number_t rel_diff_is_int = ecma_number_abs (ecma_number_divide (diff_is_int,
y));
const ecma_number_t y_int = ecma_number_substract (y, diff_is_int);
const ecma_number_t y_int_half = ecma_number_multiply (y_int, ECMA_NUMBER_HALF);
const ecma_number_t diff_is_odd = ecma_op_number_remainder (y_int_half, ECMA_NUMBER_ONE);
const ecma_number_t rel_diff_is_odd = ecma_number_abs (ecma_number_divide (diff_is_odd,
y_int_half));
const bool is_y_int = (rel_diff_is_int < ecma_number_relative_eps);
const bool is_y_odd = (is_y_int && rel_diff_is_odd > ecma_number_relative_eps);
if (ecma_number_is_infinity (x))
{
if (!ecma_number_is_negative (x))
{
if (y > ECMA_NUMBER_ZERO)
{
*num_p = ecma_number_make_infinity (false);
}
else
{
JERRY_ASSERT (y < ECMA_NUMBER_ZERO);
*num_p = ECMA_NUMBER_ZERO;
}
}
else
{
if (y > ECMA_NUMBER_ZERO)
{
*num_p = ecma_number_make_infinity (is_y_odd);
}
else
{
JERRY_ASSERT (y < ECMA_NUMBER_ZERO);
if (is_y_odd)
{
*num_p = ecma_number_negate (ECMA_NUMBER_ZERO);
}
else
{
*num_p = ECMA_NUMBER_ZERO;
}
}
}
}
else if (ecma_number_is_zero (x))
{
if (!ecma_number_is_negative (x))
{
if (y > ECMA_NUMBER_ZERO)
{
*num_p = ECMA_NUMBER_ZERO;
}
else
{
JERRY_ASSERT (y < ECMA_NUMBER_ZERO);
*num_p = ecma_number_make_infinity (false);
}
}
else
{
if (y > ECMA_NUMBER_ZERO)
{
if (is_y_odd)
{
*num_p = ecma_number_negate (ECMA_NUMBER_ZERO);
}
else
{
*num_p = ECMA_NUMBER_ZERO;
}
}
else
{
*num_p = ecma_number_make_infinity (is_y_odd);
}
}
}
else if (!ecma_number_is_infinity (x)
&& x < ECMA_NUMBER_ZERO
&& !ecma_number_is_infinity (y)
&& !is_y_int)
{
*num_p = ecma_number_make_nan ();
}
else
{
JERRY_ASSERT (!ecma_number_is_infinity (x)
&& !ecma_number_is_zero (x));
JERRY_ASSERT (!ecma_number_is_infinity (y)
&& !ecma_number_is_zero (y));
const bool sign = (x < ECMA_NUMBER_ZERO && is_y_odd);
const bool invert = (y < ECMA_NUMBER_ZERO);
JERRY_ASSERT (is_y_int || !sign);
ecma_number_t positive_x;
ecma_number_t positive_y;
if (x < ECMA_NUMBER_ZERO)
{
JERRY_ASSERT (x < ECMA_NUMBER_ZERO);
positive_x = ecma_number_negate (x);
}
else
{
positive_x = x;
}
if (invert)
{
positive_y = ecma_number_negate (y);
}
else
{
positive_y = y;
}
ecma_number_t ret_num;
if (is_y_int
&& ecma_uint32_to_number (ecma_number_to_uint32 (positive_y)) == positive_y)
{
TODO (/* Check for license issues */);
uint32_t power_uint32 = ecma_number_to_uint32 (positive_y);
ret_num = ECMA_NUMBER_ONE;
ecma_number_t power_accumulator = positive_x;
while (power_uint32 != 0)
{
if (power_uint32 % 2)
{
ret_num = ecma_number_multiply (ret_num, power_accumulator);
power_uint32--;
}
power_accumulator = ecma_number_multiply (power_accumulator, power_accumulator);
power_uint32 /= 2;
}
}
else
{
/* pow (x, y) = exp (y * ln (x)) */
ecma_number_t ln_x = ecma_number_ln (positive_x);
ecma_number_t y_m_ln_x = ecma_number_multiply (positive_y, ln_x);
ret_num = ecma_number_exp (y_m_ln_x);
}
if (sign)
{
ret_num = ecma_number_negate (ret_num);
}
if (invert)
{
ret_num = ecma_number_divide (ECMA_NUMBER_ONE, ret_num);
}
*num_p = ret_num;
}
}
*num_p = DOUBLE_TO_ECMA_NUMBER_T (pow (x, y));
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
ECMA_OP_TO_NUMBER_FINALIZE (y);
@ -863,53 +629,10 @@ ecma_builtin_math_object_sin (ecma_value_t this_arg __attr_unused___, /**< 'this
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
ecma_number_t *num_p = ecma_alloc_number ();
if (ecma_number_is_nan (arg_num)
|| ecma_number_is_infinity (arg_num))
{
*num_p = ecma_number_make_nan ();
}
else if (ecma_number_is_zero (arg_num))
{
*num_p = arg_num;
}
else
{
/* Taylor series of sin (x) around x = 0 is x - x^3/3! + x^5/5! - x^7/7! + ... */
ecma_number_t x = ecma_op_number_remainder (arg_num, 2 * ECMA_NUMBER_PI);
ecma_number_t neg_sqr_x = ecma_number_negate (ecma_number_multiply (x, x));
ecma_number_t sum = ECMA_NUMBER_ZERO;
ecma_number_t next_addendum = ecma_number_divide (x, ECMA_NUMBER_ONE);
ecma_number_t next_factorial_factor = ECMA_NUMBER_ONE;
ecma_number_t diff = ecma_number_make_infinity (false);
while ((ecma_number_is_zero (sum) && !ecma_number_is_zero (diff))
|| (!ecma_number_is_zero (sum)
&& ecma_number_abs (ecma_number_divide (diff, sum)) > ecma_number_relative_eps))
{
ecma_number_t next_sum = ecma_number_add (sum, next_addendum);
next_addendum = ecma_number_multiply (next_addendum, neg_sqr_x);
next_factorial_factor = ecma_number_add (next_factorial_factor, ECMA_NUMBER_ONE);
next_addendum = ecma_number_divide (next_addendum, next_factorial_factor);
next_factorial_factor = ecma_number_add (next_factorial_factor, ECMA_NUMBER_ONE);
next_addendum = ecma_number_divide (next_addendum, next_factorial_factor);
diff = ecma_number_abs (ecma_number_substract (sum, next_sum));
sum = next_sum;
}
*num_p = sum;
}
*num_p = DOUBLE_TO_ECMA_NUMBER_T (sin (arg_num));
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
return ret_value;
} /* ecma_builtin_math_object_sin */
@ -930,36 +653,11 @@ ecma_builtin_math_object_sqrt (ecma_value_t this_arg __attr_unused___, /**< 'thi
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
ecma_number_t ret_num;
if (ecma_number_is_nan (arg_num)
|| (!ecma_number_is_zero (arg_num)
&& ecma_number_is_negative (arg_num)))
{
ret_num = ecma_number_make_nan ();
}
else if (ecma_number_is_zero (arg_num))
{
ret_num = arg_num;
}
else if (ecma_number_is_infinity (arg_num))
{
JERRY_ASSERT (!ecma_number_is_negative (arg_num));
ret_num = arg_num;
}
else
{
ret_num = ecma_number_sqrt (arg_num);
}
ecma_number_t *num_p = ecma_alloc_number ();
*num_p = ret_num;
*num_p = DOUBLE_TO_ECMA_NUMBER_T (sqrt (arg_num));
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
return ret_value;
} /* ecma_builtin_math_object_sqrt */
@ -973,10 +671,20 @@ ecma_builtin_math_object_sqrt (ecma_value_t this_arg __attr_unused___, /**< 'thi
* Returned value must be freed with ecma_free_completion_value.
*/
static ecma_completion_value_t
ecma_builtin_math_object_tan (ecma_value_t this_arg, /**< 'this' argument */
ecma_builtin_math_object_tan (ecma_value_t this_arg __attr_unused___, /**< 'this' argument */
ecma_value_t arg) /**< routine's argument */
{
ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg);
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
ecma_number_t *num_p = ecma_alloc_number ();
*num_p = DOUBLE_TO_ECMA_NUMBER_T (tan (arg_num));
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
return ret_value;
} /* ecma_builtin_math_object_tan */
/**

69
third-party/fdlibm/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,69 @@
# Copyright 2015 Samsung Electronics Co., Ltd.
# Copyright 2015 University of Szeged.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
cmake_minimum_required (VERSION 2.8.12)
project (jerry_fdlibm C)
# Compiler / linker flags
set(COMPILE_FLAGS_FDLIBM "${COMPILE_FLAGS_JERRY} ${C_FLAGS_JERRY}")
set(COMPILE_FLAGS_FDLIBM "${COMPILE_FLAGS_FDLIBM} -Wno-error=parentheses")
set(COMPILE_FLAGS_FDLIBM "${COMPILE_FLAGS_FDLIBM} -Wno-error=sign-compare")
set(COMPILE_FLAGS_FDLIBM "${COMPILE_FLAGS_FDLIBM} -Wno-error=sign-conversion")
set(COMPILE_FLAGS_FDLIBM "${COMPILE_FLAGS_FDLIBM} -Wno-error=strict-aliasing")
set(COMPILE_FLAGS_FDLIBM "${COMPILE_FLAGS_FDLIBM} -Wno-error=unknown-pragmas")
set(COMPILE_FLAGS_FDLIBM "${COMPILE_FLAGS_FDLIBM} -Wno-error=missing-declarations")
set(COMPILE_FLAGS_FDLIBM "${COMPILE_FLAGS_FDLIBM} -Wno-error=maybe-uninitialized")
set(COMPILE_FLAGS_FDLIBM "${COMPILE_FLAGS_FDLIBM} -Wno-error=unused-but-set-variable")
set(COMPILE_FLAGS_FDLIBM "${COMPILE_FLAGS_FDLIBM} -Wno-error=unused-variable")
set(COMPILE_FLAGS_FDLIBM "${COMPILE_FLAGS_FDLIBM} -Wno-error=conversion")
# Include directories
set(INCLUDE_FDLIBM ${CMAKE_SOURCE_DIR}/third-party/fdlibm/include)
set(INCLUDE_FDLIBM ${INCLUDE_FDLIBM} PARENT_SCOPE)
# Source directories
file(GLOB SOURCE_FDLIBM *.c)
add_custom_target (jerry-fdlibm-all)
# Targets declaration
function(declare_targets_for_build_mode BUILD_MODE)
set(TARGET_NAME ${BUILD_MODE_PREFIX_${BUILD_MODE}})
function(declare_target_with_modifiers ) # modifiers are passed in ARGN implicit argument
foreach(MODIFIER ${ARGN})
set(TARGET_NAME ${TARGET_NAME}${MODIFIER_SUFFIX_${MODIFIER}})
endforeach()
add_library(${TARGET_NAME}.jerry-fdlibm.${SUFFIX_THIRD_PARTY_LIB} STATIC ${SOURCE_FDLIBM})
set_property(TARGET ${TARGET_NAME}.jerry-fdlibm.${SUFFIX_THIRD_PARTY_LIB}
PROPERTY COMPILE_FLAGS "${COMPILE_FLAGS_FDLIBM}")
target_include_directories(${TARGET_NAME}.jerry-fdlibm.${SUFFIX_THIRD_PARTY_LIB} PRIVATE ${INCLUDE_FDLIBM})
if("${BUILD_MODE}" STREQUAL "UNITTESTS")
target_include_directories(${TARGET_NAME}.jerry-fdlibm.${SUFFIX_THIRD_PARTY_LIB} INTERFACE ${INCLUDE_FDLIBM})
endif()
endfunction()
foreach(MODIFIERS_LIST ${MODIFIERS_LISTS})
separate_arguments(MODIFIERS_LIST)
declare_target_with_modifiers(${MODIFIERS_LIST})
endforeach()
endfunction()
declare_targets_for_build_mode(DEBUG)
declare_targets_for_build_mode(RELEASE)
declare_targets_for_build_mode(UNITTESTS)

105
third-party/fdlibm/e_acos.c vendored Normal file
View File

@ -0,0 +1,105 @@
/* @(#)e_acos.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_acos(x)
* Method :
* acos(x) = pi/2 - asin(x)
* acos(-x) = pi/2 + asin(x)
* For |x|<=0.5
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
* For x>0.5
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
* = 2asin(sqrt((1-x)/2))
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
* = 2f + (2c + 2s*z*R(z))
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
* for f so that f+c ~ sqrt(z).
* For x<-0.5
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
* Function needed: sqrt
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
#ifdef __STDC__
double __ieee754_acos(double x)
#else
double __ieee754_acos(x)
double x;
#endif
{
double z,p,q,r,w,s,c,df;
int hx,ix;
hx = __HI(x);
ix = hx&0x7fffffff;
if(ix>=0x3ff00000) { /* |x| >= 1 */
if(((ix-0x3ff00000)|__LO(x))==0) { /* |x|==1 */
if(hx>0) return 0.0; /* acos(1) = 0 */
else return pi+2.0*pio2_lo; /* acos(-1)= pi */
}
return (x-x)/(x-x); /* acos(|x|>1) is NaN */
}
if(ix<0x3fe00000) { /* |x| < 0.5 */
if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
z = x*x;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
r = p/q;
return pio2_hi - (x - (pio2_lo-x*r));
} else if (hx<0) { /* x < -0.5 */
z = (one+x)*0.5;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
s = sqrt(z);
r = p/q;
w = r*s-pio2_lo;
return pi - 2.0*(s+w);
} else { /* x > 0.5 */
z = (one-x)*0.5;
s = sqrt(z);
df = s;
__LO(df) = 0;
c = (z-df*df)/(s+df);
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
r = p/q;
w = r*s+c;
return 2.0*(df+w);
}
}

114
third-party/fdlibm/e_asin.c vendored Normal file
View File

@ -0,0 +1,114 @@
/* @(#)e_asin.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_asin(x)
* Method :
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
* we approximate asin(x) on [0,0.5] by
* asin(x) = x + x*x^2*R(x^2)
* where
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
* and its remez error is bounded by
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
*
* For x in [0.5,1]
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
* then for x>0.98
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
* For x<=0.98, let pio4_hi = pio2_hi/2, then
* f = hi part of s;
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
* and
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
huge = 1.000e+300,
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
/* coefficient for R(x^2) */
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
#ifdef __STDC__
double __ieee754_asin(double x)
#else
double __ieee754_asin(x)
double x;
#endif
{
double t = 0,w,p,q,c,r,s;
int hx,ix;
hx = __HI(x);
ix = hx&0x7fffffff;
if(ix>= 0x3ff00000) { /* |x|>= 1 */
if(((ix-0x3ff00000)|__LO(x))==0)
/* asin(1)=+-pi/2 with inexact */
return x*pio2_hi+x*pio2_lo;
return (x-x)/(x-x); /* asin(|x|>1) is NaN */
} else if (ix<0x3fe00000) { /* |x|<0.5 */
if(ix<0x3e400000) { /* if |x| < 2**-27 */
if(huge+x>one) return x;/* return x with inexact if x!=0*/
} else
t = x*x;
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
w = p/q;
return x+x*w;
}
/* 1> |x|>= 0.5 */
w = one-fabs(x);
t = w*0.5;
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
s = sqrt(t);
if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
w = p/q;
t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
} else {
w = s;
__LO(w) = 0;
c = (t-w*w)/(s+w);
r = p/q;
p = 2.0*s*r-(pio2_lo-2.0*c);
q = pio4_hi-2.0*w;
t = pio4_hi-(p-q);
}
if(hx>0) return t; else return -t;
}

123
third-party/fdlibm/e_atan2.c vendored Normal file
View File

@ -0,0 +1,123 @@
/* @(#)e_atan2.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_atan2(y,x)
* Method :
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
* 2. Reduce x to positive by (if x and y are unexceptional):
* ARG (x+iy) = arctan(y/x) ... if x > 0,
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
*
* Special cases:
*
* ATAN2((anything), NaN ) is NaN;
* ATAN2(NAN , (anything) ) is NaN;
* ATAN2(+-0, +(anything but NaN)) is +-0 ;
* ATAN2(+-0, -(anything but NaN)) is +-pi ;
* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
* ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
* ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
* ATAN2(+-INF,+INF ) is +-pi/4 ;
* ATAN2(+-INF,-INF ) is +-3pi/4;
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
tiny = 1.0e-300,
zero = 0.0,
pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
#ifdef __STDC__
double __ieee754_atan2(double y, double x)
#else
double __ieee754_atan2(y,x)
double y,x;
#endif
{
double z;
int k,m,hx,hy,ix,iy;
unsigned lx,ly;
hx = __HI(x); ix = hx&0x7fffffff;
lx = __LO(x);
hy = __HI(y); iy = hy&0x7fffffff;
ly = __LO(y);
if(((ix|((lx|-lx)>>31))>0x7ff00000)||
((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */
return x+y;
if((hx-0x3ff00000|lx)==0) return atan(y); /* x=1.0 */
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
/* when y = 0 */
if((iy|ly)==0) {
switch(m) {
case 0:
case 1: return y; /* atan(+-0,+anything)=+-0 */
case 2: return pi+tiny;/* atan(+0,-anything) = pi */
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
}
}
/* when x = 0 */
if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
/* when x is INF */
if(ix==0x7ff00000) {
if(iy==0x7ff00000) {
switch(m) {
case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
}
} else {
switch(m) {
case 0: return zero ; /* atan(+...,+INF) */
case 1: return -zero ; /* atan(-...,+INF) */
case 2: return pi+tiny ; /* atan(+...,-INF) */
case 3: return -pi-tiny ; /* atan(-...,-INF) */
}
}
}
/* when y is INF */
if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
/* compute y/x */
k = (iy-ix)>>20;
if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */
else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */
else z=atan(fabs(y/x)); /* safe to do y/x */
switch (m) {
case 0: return z ; /* atan(+,+) */
case 1: __HI(z) ^= 0x80000000;
return z ; /* atan(-,+) */
case 2: return pi-(z-pi_lo);/* atan(+,-) */
default: /* case 3 */
return (z-pi_lo)-pi;/* atan(-,-) */
}
}

156
third-party/fdlibm/e_exp.c vendored Normal file
View File

@ -0,0 +1,156 @@
/* @(#)e_exp.c 1.6 04/04/22 */
/*
* ====================================================
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_exp(x)
* Returns the exponential of x.
*
* Method
* 1. Argument reduction:
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
* Given x, find r and integer k such that
*
* x = k*ln2 + r, |r| <= 0.5*ln2.
*
* Here r will be represented as r = hi-lo for better
* accuracy.
*
* 2. Approximation of exp(r) by a special rational function on
* the interval [0,0.34658]:
* Write
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
* We use a special Remes algorithm on [0,0.34658] to generate
* a polynomial of degree 5 to approximate R. The maximum error
* of this polynomial approximation is bounded by 2**-59. In
* other words,
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
* (where z=r*r, and the values of P1 to P5 are listed below)
* and
* | 5 | -59
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
* | |
* The computation of exp(r) thus becomes
* 2*r
* exp(r) = 1 + -------
* R - r
* r*R1(r)
* = 1 + r + ----------- (for better accuracy)
* 2 - R1(r)
* where
* 2 4 10
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
*
* 3. Scale back to obtain exp(x):
* From step 1, we have
* exp(x) = 2^k * exp(r)
*
* Special cases:
* exp(INF) is INF, exp(NaN) is NaN;
* exp(-INF) is 0, and
* for finite argument, only exp(0)=1 is exact.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Misc. info.
* For IEEE double
* if x > 7.09782712893383973096e+02 then exp(x) overflow
* if x < -7.45133219101941108420e+02 then exp(x) underflow
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.0,
halF[2] = {0.5,-0.5,},
huge = 1.0e+300,
twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
-6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
-1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
#ifdef __STDC__
double __ieee754_exp(double x) /* default IEEE double exp */
#else
double __ieee754_exp(x) /* default IEEE double exp */
double x;
#endif
{
double y,hi,lo,c,t;
int k = 0,xsb;
unsigned hx;
hx = __HI(x); /* high word of x */
xsb = (hx>>31)&1; /* sign bit of x */
hx &= 0x7fffffff; /* high word of |x| */
/* filter out non-finite argument */
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
if(hx>=0x7ff00000) {
if(((hx&0xfffff)|__LO(x))!=0)
return x+x; /* NaN */
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
}
if(x > o_threshold) return huge*huge; /* overflow */
if(x < u_threshold) return twom1000*twom1000; /* underflow */
}
/* argument reduction */
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
} else {
k = (int)(invln2*x+halF[xsb]);
t = k;
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
lo = t*ln2LO[0];
}
x = hi - lo;
}
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
if(huge+x>one) return one+x;/* trigger inexact */
}
else k = 0;
/* x is now in primary range */
t = x*x;
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
if(k==0) return one-((x*c)/(c-2.0)-x);
else y = one-((lo-(x*c)/(2.0-c))-hi);
if(k >= -1021) {
__HI(y) += (k<<20); /* add k to y's exponent */
return y;
} else {
__HI(y) += ((k+1000)<<20);/* add k to y's exponent */
return y*twom1000;
}
}

139
third-party/fdlibm/e_log.c vendored Normal file
View File

@ -0,0 +1,139 @@
/* @(#)e_log.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_log(x)
* Return the logrithm of x
*
* Method :
* 1. Argument Reduction: find k and f such that
* x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Approximation of log(1+f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
* (the values of Lg1 to Lg7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lg1*s +...+Lg7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log(1+f) = f - s*(f - R) (if f is not too large)
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
*
* 3. Finally, log(x) = k*ln2 + log(1+f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log(x) is NaN with signal if x < 0 (including -INF) ;
* log(+INF) is +INF; log(0) is -INF with signal;
* log(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
static double zero = 0.0;
#ifdef __STDC__
double __ieee754_log(double x)
#else
double __ieee754_log(x)
double x;
#endif
{
double hfsq,f,s,z,R,w,t1,t2,dk;
int k,hx,i,j;
unsigned lx;
hx = __HI(x); /* high word of x */
lx = __LO(x); /* low word of x */
k=0;
if (hx < 0x00100000) { /* x < 2**-1022 */
if (((hx&0x7fffffff)|lx)==0)
return -two54/zero; /* log(+-0)=-inf */
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
k -= 54; x *= two54; /* subnormal number, scale up x */
hx = __HI(x); /* high word of x */
}
if (hx >= 0x7ff00000) return x+x;
k += (hx>>20)-1023;
hx &= 0x000fffff;
i = (hx+0x95f64)&0x100000;
__HI(x) = hx|(i^0x3ff00000); /* normalize x or x/2 */
k += (i>>20);
f = x-1.0;
if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
if(f==zero) if(k==0) return zero; else {dk=(double)k;
return dk*ln2_hi+dk*ln2_lo;}
R = f*f*(0.5-0.33333333333333333*f);
if(k==0) return f-R; else {dk=(double)k;
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
}
s = f/(2.0+f);
dk = (double)k;
z = s*s;
i = hx-0x6147a;
w = z*z;
j = 0x6b851-hx;
t1= w*(Lg2+w*(Lg4+w*Lg6));
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
i |= j;
R = t2+t1;
if(i>0) {
hfsq=0.5*f*f;
if(k==0) return f-(hfsq-s*(hfsq+R)); else
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
} else {
if(k==0) return f-s*(f-R); else
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
}
}

309
third-party/fdlibm/e_pow.c vendored Normal file
View File

@ -0,0 +1,309 @@
#ifndef lint
static char sccsid[] = "@(#)e_pow.c 1.5 04/04/22 SMI";
#endif
/*
* ====================================================
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_pow(x,y) return x**y
*
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 53-24 = 29 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
* Accuracy:
* pow(x,y) returns x**y nearly rounded. In particular
* pow(integer,integer)
* always returns the correct integer provided it is
* representable.
*
* Constants :
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
zero = 0.0,
one = 1.0,
two = 2.0,
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
huge = 1.0e300,
tiny = 1.0e-300,
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
#ifdef __STDC__
double __ieee754_pow(double x, double y)
#else
double __ieee754_pow(x,y)
double x, y;
#endif
{
double z,ax,z_h,z_l,p_h,p_l;
double y1,t1,t2,r,s,t,u,v,w;
int i0,i1,i,j,k,yisint,n;
int hx,hy,ix,iy;
unsigned lx,ly;
i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
hx = __HI(x); lx = __LO(x);
hy = __HI(y); ly = __LO(y);
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
/* y==zero: x**0 = 1 */
if((iy|ly)==0) return one;
/* +-NaN return x+y */
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
return x+y;
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if(hx<0) {
if(iy>=0x43400000) yisint = 2; /* even integer y */
else if(iy>=0x3ff00000) {
k = (iy>>20)-0x3ff; /* exponent */
if(k>20) {
j = ly>>(52-k);
if((j<<(52-k))==ly) yisint = 2-(j&1);
} else if(ly==0) {
j = iy>>(20-k);
if((j<<(20-k))==iy) yisint = 2-(j&1);
}
}
}
/* special value of y */
if(ly==0) {
if (iy==0x7ff00000) { /* y is +-inf */
if(((ix-0x3ff00000)|lx)==0)
return y - y; /* inf**+-1 is NaN */
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
return (hy>=0)? y: zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy<0)?-y: zero;
}
if(iy==0x3ff00000) { /* y is +-1 */
if(hy<0) return one/x; else return x;
}
if(hy==0x40000000) return x*x; /* y is 2 */
if(hy==0x3fe00000) { /* y is 0.5 */
if(hx>=0) /* x >= +0 */
return sqrt(x);
}
}
ax = fabs(x);
/* special value of x */
if(lx==0) {
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
z = ax; /*x is +-0,+-inf,+-1*/
if(hy<0) z = one/z; /* z = (1/|x|) */
if(hx<0) {
if(((ix-0x3ff00000)|yisint)==0) {
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
} else if(yisint==1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
}
n = (hx>>31)+1;
/* (x<0)**(non-int) is NaN */
if((n|yisint)==0) return (x-x)/(x-x);
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
/* |y| is huge */
if(iy>0x41e00000) { /* if |y| > 2**31 */
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
}
/* over/underflow if x is not close to one */
if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
/* now |1-x| is tiny <= 2**-20, suffice to compute
log(x) by x-x^2/2+x^3/3-x^4/4 */
t = ax-one; /* t has 20 trailing zeros */
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
v = t*ivln2_l-w*ivln2;
t1 = u+v;
__LO(t1) = 0;
t2 = v-(t1-u);
} else {
double ss,s2,s_h,s_l,t_h,t_l;
n = 0;
/* take care subnormal number */
if(ix<0x00100000)
{ax *= two53; n -= 53; ix = __HI(ax); }
n += ((ix)>>20)-0x3ff;
j = ix&0x000fffff;
/* determine interval */
ix = j|0x3ff00000; /* normalize ix */
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
else {k=0;n+=1;ix -= 0x00100000;}
__HI(ax) = ix;
/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one/(ax+bp[k]);
ss = u*v;
s_h = ss;
__LO(s_h) = 0;
/* t_h=ax+bp[k] High */
t_h = zero;
__HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
t_l = ax - (t_h-bp[k]);
s_l = v*((u-s_h*t_h)-s_h*t_l);
/* compute log(ax) */
s2 = ss*ss;
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
r += s_l*(s_h+ss);
s2 = s_h*s_h;
t_h = 3.0+s2+r;
__LO(t_h) = 0;
t_l = r-((t_h-3.0)-s2);
/* u+v = ss*(1+...) */
u = s_h*t_h;
v = s_l*t_h+t_l*ss;
/* 2/(3log2)*(ss+...) */
p_h = u+v;
__LO(p_h) = 0;
p_l = v-(p_h-u);
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l*p_h+p_l*cp+dp_l[k];
/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (double)n;
t1 = (((z_h+z_l)+dp_h[k])+t);
__LO(t1) = 0;
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
}
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
y1 = y;
__LO(y1) = 0;
p_l = (y-y1)*t1+y*t2;
p_h = y1*t1;
z = p_l+p_h;
j = __HI(z);
i = __LO(z);
if (j>=0x40900000) { /* z >= 1024 */
if(((j-0x40900000)|i)!=0) /* if z > 1024 */
return s*huge*huge; /* overflow */
else {
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
}
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
return s*tiny*tiny; /* underflow */
else {
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
}
}
/*
* compute 2**(p_h+p_l)
*/
i = j&0x7fffffff;
k = (i>>20)-0x3ff;
n = 0;
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
n = j+(0x00100000>>(k+1));
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
t = zero;
__HI(t) = (n&~(0x000fffff>>k));
n = ((n&0x000fffff)|0x00100000)>>(20-k);
if(j<0) n = -n;
p_h -= t;
}
t = p_l+p_h;
__LO(t) = 0;
u = t*lg2_h;
v = (p_l-(t-p_h))*lg2+t*lg2_l;
z = u+v;
w = v-(z-u);
t = z*z;
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
r = (z*t1)/(t1-two)-(w+z*w);
z = one-(r-z);
j = __HI(z);
j += (n<<20);
if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
else __HI(z) += (n<<20);
return s*z;
}

175
third-party/fdlibm/e_rem_pio2.c vendored Normal file
View File

@ -0,0 +1,175 @@
/* @(#)e_rem_pio2.c 1.4 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_rem_pio2(x,y)
*
* return the remainder of x rem pi/2 in y[0]+y[1]
* use __kernel_rem_pio2()
*/
#include "fdlibm.h"
/*
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
*/
#ifdef __STDC__
static const int two_over_pi[] = {
#else
static int two_over_pi[] = {
#endif
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
};
#ifdef __STDC__
static const int npio2_hw[] = {
#else
static int npio2_hw[] = {
#endif
0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
0x404858EB, 0x404921FB,
};
/*
* invpio2: 53 bits of 2/pi
* pio2_1: first 33 bit of pi/2
* pio2_1t: pi/2 - pio2_1
* pio2_2: second 33 bit of pi/2
* pio2_2t: pi/2 - (pio2_1+pio2_2)
* pio2_3: third 33 bit of pi/2
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
*/
#ifdef __STDC__
static const double
#else
static double
#endif
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
#ifdef __STDC__
int __ieee754_rem_pio2(double x, double *y)
#else
int __ieee754_rem_pio2(x,y)
double x,y[];
#endif
{
double z,w,t,r,fn;
double tx[3];
int e0,i,j,nx,n,ix,hx;
hx = __HI(x); /* high word of x */
ix = hx&0x7fffffff;
if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
{y[0] = x; y[1] = 0; return 0;}
if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
if(hx>0) {
z = x - pio2_1;
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
y[0] = z - pio2_1t;
y[1] = (z-y[0])-pio2_1t;
} else { /* near pi/2, use 33+33+53 bit pi */
z -= pio2_2;
y[0] = z - pio2_2t;
y[1] = (z-y[0])-pio2_2t;
}
return 1;
} else { /* negative x */
z = x + pio2_1;
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
y[0] = z + pio2_1t;
y[1] = (z-y[0])+pio2_1t;
} else { /* near pi/2, use 33+33+53 bit pi */
z += pio2_2;
y[0] = z + pio2_2t;
y[1] = (z-y[0])+pio2_2t;
}
return -1;
}
}
if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
t = fabs(x);
n = (int) (t*invpio2+half);
fn = (double)n;
r = t-fn*pio2_1;
w = fn*pio2_1t; /* 1st round good to 85 bit */
if(n<32&&ix!=npio2_hw[n-1]) {
y[0] = r-w; /* quick check no cancellation */
} else {
j = ix>>20;
y[0] = r-w;
i = j-(((__HI(y[0]))>>20)&0x7ff);
if(i>16) { /* 2nd iteration needed, good to 118 */
t = r;
w = fn*pio2_2;
r = t-w;
w = fn*pio2_2t-((t-r)-w);
y[0] = r-w;
i = j-(((__HI(y[0]))>>20)&0x7ff);
if(i>49) { /* 3rd iteration need, 151 bits acc */
t = r; /* will cover all possible cases */
w = fn*pio2_3;
r = t-w;
w = fn*pio2_3t-((t-r)-w);
y[0] = r-w;
}
}
}
y[1] = (r-y[0])-w;
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
else return n;
}
/*
* all other (large) arguments
*/
if(ix>=0x7ff00000) { /* x is inf or NaN */
y[0]=y[1]=x-x; return 0;
}
/* set z = scalbn(|x|,ilogb(x)-23) */
__LO(z) = __LO(x);
e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */
__HI(z) = ix - (e0<<20);
for(i=0;i<2;i++) {
tx[i] = (double)((int)(z));
z = (z-tx[i])*two24;
}
tx[2] = z;
nx = 3;
while(tx[nx-1]==zero) nx--; /* skip zero term */
n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
return n;
}

450
third-party/fdlibm/e_sqrt.c vendored Normal file
View File

@ -0,0 +1,450 @@
/* @(#)e_sqrt.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_sqrt(x)
* Return correctly rounded sqrt.
* ------------------------------------------
* | Use the hardware sqrt if you have one |
* ------------------------------------------
* Method:
* Bit by bit method using integer arithmetic. (Slow, but portable)
* 1. Normalization
* Scale x to y in [1,4) with even powers of 2:
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
* sqrt(x) = 2^k * sqrt(y)
* 2. Bit by bit computation
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
* i 0
* i+1 2
* s = 2*q , and y = 2 * ( y - q ). (1)
* i i i i
*
* To compute q from q , one checks whether
* i+1 i
*
* -(i+1) 2
* (q + 2 ) <= y. (2)
* i
* -(i+1)
* If (2) is false, then q = q ; otherwise q = q + 2 .
* i+1 i i+1 i
*
* With some algebric manipulation, it is not difficult to see
* that (2) is equivalent to
* -(i+1)
* s + 2 <= y (3)
* i i
*
* The advantage of (3) is that s and y can be computed by
* i i
* the following recurrence formula:
* if (3) is false
*
* s = s , y = y ; (4)
* i+1 i i+1 i
*
* otherwise,
* -i -(i+1)
* s = s + 2 , y = y - s - 2 (5)
* i+1 i i+1 i i
*
* One may easily use induction to prove (4) and (5).
* Note. Since the left hand side of (3) contain only i+2 bits,
* it does not necessary to do a full (53-bit) comparison
* in (3).
* 3. Final rounding
* After generating the 53 bits result, we compute one more bit.
* Together with the remainder, we can decide whether the
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
* (it will never equal to 1/2ulp).
* The rounding mode can be detected by checking whether
* huge + tiny is equal to huge, and whether huge - tiny is
* equal to huge for some floating point number "huge" and "tiny".
*
* Special cases:
* sqrt(+-0) = +-0 ... exact
* sqrt(inf) = inf
* sqrt(-ve) = NaN ... with invalid signal
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
*
* Other methods : see the appended file at the end of the program below.
*---------------
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double one = 1.0, tiny=1.0e-300;
#else
static double one = 1.0, tiny=1.0e-300;
#endif
#ifdef __STDC__
double __ieee754_sqrt(double x)
#else
double __ieee754_sqrt(x)
double x;
#endif
{
double z;
int sign = (int)0x80000000;
unsigned r,t1,s1,ix1,q1;
int ix0,s0,q,m,t,i;
ix0 = __HI(x); /* high word of x */
ix1 = __LO(x); /* low word of x */
/* take care of Inf and NaN */
if((ix0&0x7ff00000)==0x7ff00000) {
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
sqrt(-inf)=sNaN */
}
/* take care of zero */
if(ix0<=0) {
if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
else if(ix0<0)
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
}
/* normalize x */
m = (ix0>>20);
if(m==0) { /* subnormal x */
while(ix0==0) {
m -= 21;
ix0 |= (ix1>>11); ix1 <<= 21;
}
for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
m -= i-1;
ix0 |= (ix1>>(32-i));
ix1 <<= i;
}
m -= 1023; /* unbias exponent */
ix0 = (ix0&0x000fffff)|0x00100000;
if(m&1){ /* odd m, double x to make it even */
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
}
m >>= 1; /* m = [m/2] */
/* generate sqrt(x) bit by bit */
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
r = 0x00200000; /* r = moving bit from right to left */
while(r!=0) {
t = s0+r;
if(t<=ix0) {
s0 = t+r;
ix0 -= t;
q += r;
}
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
r>>=1;
}
r = sign;
while(r!=0) {
t1 = s1+r;
t = s0;
if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
s1 = t1+r;
if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
ix0 -= t;
if (ix1 < t1) ix0 -= 1;
ix1 -= t1;
q1 += r;
}
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
r>>=1;
}
/* use floating add to find out rounding direction */
if((ix0|ix1)!=0) {
z = one-tiny; /* trigger inexact flag */
if (z>=one) {
z = one+tiny;
if (q1==(unsigned)0xffffffff) { q1=0; q += 1;}
else if (z>one) {
if (q1==(unsigned)0xfffffffe) q+=1;
q1+=2;
} else
q1 += (q1&1);
}
}
ix0 = (q>>1)+0x3fe00000;
ix1 = q1>>1;
if ((q&1)==1) ix1 |= sign;
ix0 += (m <<20);
__HI(z) = ix0;
__LO(z) = ix1;
return z;
}
/*
Other methods (use floating-point arithmetic)
-------------
(This is a copy of a drafted paper by Prof W. Kahan
and K.C. Ng, written in May, 1986)
Two algorithms are given here to implement sqrt(x)
(IEEE double precision arithmetic) in software.
Both supply sqrt(x) correctly rounded. The first algorithm (in
Section A) uses newton iterations and involves four divisions.
The second one uses reciproot iterations to avoid division, but
requires more multiplications. Both algorithms need the ability
to chop results of arithmetic operations instead of round them,
and the INEXACT flag to indicate when an arithmetic operation
is executed exactly with no roundoff error, all part of the
standard (IEEE 754-1985). The ability to perform shift, add,
subtract and logical AND operations upon 32-bit words is needed
too, though not part of the standard.
A. sqrt(x) by Newton Iteration
(1) Initial approximation
Let x0 and x1 be the leading and the trailing 32-bit words of
a floating point number x (in IEEE double format) respectively
1 11 52 ...widths
------------------------------------------------------
x: |s| e | f |
------------------------------------------------------
msb lsb msb lsb ...order
------------------------ ------------------------
x0: |s| e | f1 | x1: | f2 |
------------------------ ------------------------
By performing shifts and subtracts on x0 and x1 (both regarded
as integers), we obtain an 8-bit approximation of sqrt(x) as
follows.
k := (x0>>1) + 0x1ff80000;
y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
Here k is a 32-bit integer and T1[] is an integer array containing
correction terms. Now magically the floating value of y (y's
leading 32-bit word is y0, the value of its trailing word is 0)
approximates sqrt(x) to almost 8-bit.
Value of T1:
static int T1[32]= {
0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
(2) Iterative refinement
Apply Heron's rule three times to y, we have y approximates
sqrt(x) to within 1 ulp (Unit in the Last Place):
y := (y+x/y)/2 ... almost 17 sig. bits
y := (y+x/y)/2 ... almost 35 sig. bits
y := y-(y-x/y)/2 ... within 1 ulp
Remark 1.
Another way to improve y to within 1 ulp is:
y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
2
(x-y )*y
y := y + 2* ---------- ...within 1 ulp
2
3y + x
This formula has one division fewer than the one above; however,
it requires more multiplications and additions. Also x must be
scaled in advance to avoid spurious overflow in evaluating the
expression 3y*y+x. Hence it is not recommended uless division
is slow. If division is very slow, then one should use the
reciproot algorithm given in section B.
(3) Final adjustment
By twiddling y's last bit it is possible to force y to be
correctly rounded according to the prevailing rounding mode
as follows. Let r and i be copies of the rounding mode and
inexact flag before entering the square root program. Also we
use the expression y+-ulp for the next representable floating
numbers (up and down) of y. Note that y+-ulp = either fixed
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
mode.
I := FALSE; ... reset INEXACT flag I
R := RZ; ... set rounding mode to round-toward-zero
z := x/y; ... chopped quotient, possibly inexact
If(not I) then { ... if the quotient is exact
if(z=y) {
I := i; ... restore inexact flag
R := r; ... restore rounded mode
return sqrt(x):=y.
} else {
z := z - ulp; ... special rounding
}
}
i := TRUE; ... sqrt(x) is inexact
If (r=RN) then z=z+ulp ... rounded-to-nearest
If (r=RP) then { ... round-toward-+inf
y = y+ulp; z=z+ulp;
}
y := y+z; ... chopped sum
y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
I := i; ... restore inexact flag
R := r; ... restore rounded mode
return sqrt(x):=y.
(4) Special cases
Square root of +inf, +-0, or NaN is itself;
Square root of a negative number is NaN with invalid signal.
B. sqrt(x) by Reciproot Iteration
(1) Initial approximation
Let x0 and x1 be the leading and the trailing 32-bit words of
a floating point number x (in IEEE double format) respectively
(see section A). By performing shifs and subtracts on x0 and y0,
we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
k := 0x5fe80000 - (x0>>1);
y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
Here k is a 32-bit integer and T2[] is an integer array
containing correction terms. Now magically the floating
value of y (y's leading 32-bit word is y0, the value of
its trailing word y1 is set to zero) approximates 1/sqrt(x)
to almost 7.8-bit.
Value of T2:
static int T2[64]= {
0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
(2) Iterative refinement
Apply Reciproot iteration three times to y and multiply the
result by x to get an approximation z that matches sqrt(x)
to about 1 ulp. To be exact, we will have
-1ulp < sqrt(x)-z<1.0625ulp.
... set rounding mode to Round-to-nearest
y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
... special arrangement for better accuracy
z := x*y ... 29 bits to sqrt(x), with z*y<1
z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
(a) the term z*y in the final iteration is always less than 1;
(b) the error in the final result is biased upward so that
-1 ulp < sqrt(x) - z < 1.0625 ulp
instead of |sqrt(x)-z|<1.03125ulp.
(3) Final adjustment
By twiddling y's last bit it is possible to force y to be
correctly rounded according to the prevailing rounding mode
as follows. Let r and i be copies of the rounding mode and
inexact flag before entering the square root program. Also we
use the expression y+-ulp for the next representable floating
numbers (up and down) of y. Note that y+-ulp = either fixed
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
mode.
R := RZ; ... set rounding mode to round-toward-zero
switch(r) {
case RN: ... round-to-nearest
if(x<= z*(z-ulp)...chopped) z = z - ulp; else
if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
break;
case RZ:case RM: ... round-to-zero or round-to--inf
R:=RP; ... reset rounding mod to round-to-+inf
if(x<z*z ... rounded up) z = z - ulp; else
if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
break;
case RP: ... round-to-+inf
if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
if(x>z*z ...chopped) z = z+ulp;
break;
}
Remark 3. The above comparisons can be done in fixed point. For
example, to compare x and w=z*z chopped, it suffices to compare
x1 and w1 (the trailing parts of x and w), regarding them as
two's complement integers.
...Is z an exact square root?
To determine whether z is an exact square root of x, let z1 be the
trailing part of z, and also let x0 and x1 be the leading and
trailing parts of x.
If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
I := 1; ... Raise Inexact flag: z is not exact
else {
j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
k := z1 >> 26; ... get z's 25-th and 26-th
fraction bits
I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
}
R:= r ... restore rounded mode
return sqrt(x):=z.
If multiplication is cheaper then the foregoing red tape, the
Inexact flag can be evaluated by
I := i;
I := (z*z!=x) or I.
Note that z*z can overwrite I; this value must be sensed if it is
True.
Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
zero.
--------------------
z1: | f2 |
--------------------
bit 31 bit 0
Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
or even of logb(x) have the following relations:
-------------------------------------------------
bit 27,26 of z1 bit 1,0 of x1 logb(x)
-------------------------------------------------
00 00 odd and even
01 01 even
10 10 odd
10 00 even
11 01 even
-------------------------------------------------
(4) Special cases (see (4) of Section A).
*/

View File

@ -0,0 +1,79 @@
/* Copyright 2014-2015 Samsung Electronics Co., Ltd.
* Copyright 2015 University of Szeged.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef JERRY_FDLIBM_MATH_H
#define JERRY_FDLIBM_MATH_H
#ifdef __cplusplus
# define EXTERN_C "C"
#else /* !__cplusplus */
# define EXTERN_C
#endif /* !__cplusplus */
// General Constants
#define INFINITY (1.0/0.0)
#define NAN (0.0/0.0)
#define HUGE_VAL INFINITY
#define isnan(x) ((x) != (x))
#define isinf(x) (((x) == INFINITY) || ((x) == -INFINITY))
#define isfinite(x) (!(isinf(x)) && (x != NAN))
// Exponential and Logarithmic constants
#define M_E 2.7182818284590452353602874713526625
#define M_SQRT2 1.4142135623730950488016887242096981
#define M_SQRT1_2 0.7071067811865475244008443621048490
#define M_LOG2E 1.4426950408889634073599246810018921
#define M_LOG10E 0.4342944819032518276511289189166051
#define M_LN2 0.6931471805599453094172321214581765
#define M_LN10 2.3025850929940456840179914546843642
// Trigonometric Constants
#define M_PI 3.1415926535897932384626433832795029
#define M_PI_2 1.5707963267948966192313216916397514
#define M_PI_4 0.7853981633974483096156608458198757
#define M_1_PI 0.3183098861837906715377675267450287
#define M_2_PI 0.6366197723675813430755350534900574
#define M_2_SQRTPI 1.1283791670955125738961589031215452
// Trigonometric functions
extern EXTERN_C double cos(double);
extern EXTERN_C double sin(double);
extern EXTERN_C double tan(double);
extern EXTERN_C double acos(double);
extern EXTERN_C double asin(double);
extern EXTERN_C double atan(double);
extern EXTERN_C double atan2(double, double);
// Exponential and logarithmic functions
extern EXTERN_C double exp(double);
extern EXTERN_C double log(double);
// Power functions
extern EXTERN_C double pow(double, double);
extern EXTERN_C double sqrt(double);
// Rounding and remainder functions
extern EXTERN_C double ceil(double);
extern EXTERN_C double floor(double);
// Other functions
extern EXTERN_C double fabs(double);
#endif /* !JERRY_FDLIBM_MATH_H */

217
third-party/fdlibm/include/fdlibm.h vendored Normal file
View File

@ -0,0 +1,217 @@
/* @(#)fdlibm.h 1.5 04/04/22 */
/*
* ====================================================
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Sometimes it's necessary to define __LITTLE_ENDIAN explicitly
but these catch some common cases. */
#if defined(i386) || defined(i486) || \
defined(intel) || defined(x86) || defined(i86pc) || \
defined(__alpha) || defined(__osf__) || \
defined(__x86_64__) || defined(__arm__)
#define __LITTLE_ENDIAN
#endif
#ifdef __LITTLE_ENDIAN
#define __HI(x) *(1+(int*)&x)
#define __LO(x) *(int*)&x
#define __HIp(x) *(1+(int*)x)
#define __LOp(x) *(int*)x
#else
#define __HI(x) *(int*)&x
#define __LO(x) *(1+(int*)&x)
#define __HIp(x) *(int*)x
#define __LOp(x) *(1+(int*)x)
#endif
#ifdef __STDC__
#define __P(p) p
#else
#define __P(p) ()
#endif
/*
* ANSI/POSIX
*/
extern int signgam;
#define MAXFLOAT ((float)3.40282346638528860e+38)
enum fdversion {fdlibm_ieee = -1, fdlibm_svid, fdlibm_xopen, fdlibm_posix};
#define _LIB_VERSION_TYPE enum fdversion
#define _LIB_VERSION _fdlib_version
/* if global variable _LIB_VERSION is not desirable, one may
* change the following to be a constant by:
* #define _LIB_VERSION_TYPE const enum version
* In that case, after one initializes the value _LIB_VERSION (see
* s_lib_version.c) during compile time, it cannot be modified
* in the middle of a program
*/
extern _LIB_VERSION_TYPE _LIB_VERSION;
#define _IEEE_ fdlibm_ieee
#define _SVID_ fdlibm_svid
#define _XOPEN_ fdlibm_xopen
#define _POSIX_ fdlibm_posix
struct exception {
int type;
char *name;
double arg1;
double arg2;
double retval;
};
#define HUGE MAXFLOAT
/*
* set X_TLOSS = pi*2**52, which is possibly defined in <values.h>
* (one may replace the following line by "#include <values.h>")
*/
#define X_TLOSS 1.41484755040568800000e+16
#define DOMAIN 1
#define SING 2
#define OVERFLOW 3
#define UNDERFLOW 4
#define TLOSS 5
#define PLOSS 6
/*
* ANSI/POSIX
*/
extern double acos __P((double));
extern double asin __P((double));
extern double atan __P((double));
extern double atan2 __P((double, double));
extern double cos __P((double));
extern double sin __P((double));
extern double tan __P((double));
extern double cosh __P((double));
extern double sinh __P((double));
extern double tanh __P((double));
extern double exp __P((double));
extern double frexp __P((double, int *));
extern double ldexp __P((double, int));
extern double log __P((double));
extern double log10 __P((double));
extern double modf __P((double, double *));
extern double pow __P((double, double));
extern double sqrt __P((double));
extern double ceil __P((double));
extern double fabs __P((double));
extern double floor __P((double));
extern double fmod __P((double, double));
extern double erf __P((double));
extern double erfc __P((double));
extern double gamma __P((double));
extern double hypot __P((double, double));
extern int isnan __P((double));
extern int finite __P((double));
extern double j0 __P((double));
extern double j1 __P((double));
extern double jn __P((int, double));
extern double lgamma __P((double));
extern double y0 __P((double));
extern double y1 __P((double));
extern double yn __P((int, double));
extern double acosh __P((double));
extern double asinh __P((double));
extern double atanh __P((double));
extern double cbrt __P((double));
extern double logb __P((double));
extern double nextafter __P((double, double));
extern double remainder __P((double, double));
#ifdef _SCALB_INT
extern double scalb __P((double, int));
#else
extern double scalb __P((double, double));
#endif
extern int matherr __P((struct exception *));
/*
* IEEE Test Vector
*/
extern double significand __P((double));
/*
* Functions callable from C, intended to support IEEE arithmetic.
*/
extern double copysign __P((double, double));
extern int ilogb __P((double));
extern double rint __P((double));
extern double scalbn __P((double, int));
/*
* BSD math library entry points
*/
extern double expm1 __P((double));
extern double log1p __P((double));
/*
* Reentrant version of gamma & lgamma; passes signgam back by reference
* as the second argument; user must allocate space for signgam.
*/
#ifdef _REENTRANT
extern double gamma_r __P((double, int *));
extern double lgamma_r __P((double, int *));
#endif /* _REENTRANT */
/* ieee style elementary functions */
extern double __ieee754_sqrt __P((double));
extern double __ieee754_acos __P((double));
extern double __ieee754_acosh __P((double));
extern double __ieee754_log __P((double));
extern double __ieee754_atanh __P((double));
extern double __ieee754_asin __P((double));
extern double __ieee754_atan2 __P((double,double));
extern double __ieee754_exp __P((double));
extern double __ieee754_cosh __P((double));
extern double __ieee754_fmod __P((double,double));
extern double __ieee754_pow __P((double,double));
extern double __ieee754_lgamma_r __P((double,int *));
extern double __ieee754_gamma_r __P((double,int *));
extern double __ieee754_lgamma __P((double));
extern double __ieee754_gamma __P((double));
extern double __ieee754_log10 __P((double));
extern double __ieee754_sinh __P((double));
extern double __ieee754_hypot __P((double,double));
extern double __ieee754_j0 __P((double));
extern double __ieee754_j1 __P((double));
extern double __ieee754_y0 __P((double));
extern double __ieee754_y1 __P((double));
extern double __ieee754_jn __P((int,double));
extern double __ieee754_yn __P((int,double));
extern double __ieee754_remainder __P((double,double));
extern int __ieee754_rem_pio2 __P((double,double*));
#ifdef _SCALB_INT
extern double __ieee754_scalb __P((double,int));
#else
extern double __ieee754_scalb __P((double,double));
#endif
/* fdlibm kernel function */
extern double __kernel_standard __P((double,double,int));
extern double __kernel_sin __P((double,double,int));
extern double __kernel_cos __P((double,double));
extern double __kernel_tan __P((double,double,int));
extern int __kernel_rem_pio2 __P((double*,double*,int,int,int,const int*));

92
third-party/fdlibm/k_cos.c vendored Normal file
View File

@ -0,0 +1,92 @@
/* @(#)k_cos.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __kernel_cos( x, y )
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
*
* Algorithm
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
* 3. cos(x) is approximated by a polynomial of degree 14 on
* [0,pi/4]
* 4 14
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
* where the remez error is
*
* | 2 4 6 8 10 12 14 | -58
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
* | |
*
* 4 6 8 10 12 14
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
* cos(x) = 1 - x*x/2 + r
* since cos(x+y) ~ cos(x) - sin(x)*y
* ~ cos(x) - x*y,
* a correction term is necessary in cos(x) and hence
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
* For better accuracy when x > 0.3, let qx = |x|/4 with
* the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
* Then
* cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
* Note that 1-qx and (x*x/2-qx) is EXACT here, and the
* magnitude of the latter is at least a quarter of x*x/2,
* thus, reducing the rounding error in the subtraction.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
#ifdef __STDC__
double __kernel_cos(double x, double y)
#else
double __kernel_cos(x, y)
double x,y;
#endif
{
double a,hz,z,r,qx;
int ix;
ix = __HI(x)&0x7fffffff; /* ix = |x|'s high word*/
if(ix<0x3e400000) { /* if x < 2**27 */
if(((int)x)==0) return one; /* generate inexact */
}
z = x*x;
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
if(ix < 0x3FD33333) /* if |x| < 0.3 */
return one - (0.5*z - (z*r - x*y));
else {
if(ix > 0x3fe90000) { /* x > 0.78125 */
qx = 0.28125;
} else {
__HI(qx) = ix-0x00200000; /* x/4 */
__LO(qx) = 0;
}
hz = 0.5*z-qx;
a = one-qx;
return a - (hz - (z*r-x*y));
}
}

316
third-party/fdlibm/k_rem_pio2.c vendored Normal file
View File

@ -0,0 +1,316 @@
/* @(#)k_rem_pio2.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
* double x[],y[]; int e0,nx,prec; int ipio2[];
*
* __kernel_rem_pio2 return the last three digits of N with
* y = x - N*pi/2
* so that |y| < pi/2.
*
* The method is to compute the integer (mod 8) and fraction parts of
* (2/pi)*x without doing the full multiplication. In general we
* skip the part of the product that are known to be a huge integer (
* more accurately, = 0 mod 8 ). Thus the number of operations are
* independent of the exponent of the input.
*
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
*
* Input parameters:
* x[] The input value (must be positive) is broken into nx
* pieces of 24-bit integers in double precision format.
* x[i] will be the i-th 24 bit of x. The scaled exponent
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
* match x's up to 24 bits.
*
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
* e0 = ilogb(z)-23
* z = scalbn(z,-e0)
* for i = 0,1,2
* x[i] = floor(z)
* z = (z-x[i])*2**24
*
*
* y[] ouput result in an array of double precision numbers.
* The dimension of y[] is:
* 24-bit precision 1
* 53-bit precision 2
* 64-bit precision 2
* 113-bit precision 3
* The actual value is the sum of them. Thus for 113-bit
* precison, one may have to do something like:
*
* long double t,w,r_head, r_tail;
* t = (long double)y[2] + (long double)y[1];
* w = (long double)y[0];
* r_head = t+w;
* r_tail = w - (r_head - t);
*
* e0 The exponent of x[0]
*
* nx dimension of x[]
*
* prec an integer indicating the precision:
* 0 24 bits (single)
* 1 53 bits (double)
* 2 64 bits (extended)
* 3 113 bits (quad)
*
* ipio2[]
* integer array, contains the (24*i)-th to (24*i+23)-th
* bit of 2/pi after binary point. The corresponding
* floating value is
*
* ipio2[i] * 2^(-24(i+1)).
*
* External function:
* double scalbn(), floor();
*
*
* Here is the description of some local variables:
*
* jk jk+1 is the initial number of terms of ipio2[] needed
* in the computation. The recommended value is 2,3,4,
* 6 for single, double, extended,and quad.
*
* jz local integer variable indicating the number of
* terms of ipio2[] used.
*
* jx nx - 1
*
* jv index for pointing to the suitable ipio2[] for the
* computation. In general, we want
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
* is an integer. Thus
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
* Hence jv = max(0,(e0-3)/24).
*
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
*
* q[] double array with integral value, representing the
* 24-bits chunk of the product of x and 2/pi.
*
* q0 the corresponding exponent of q[0]. Note that the
* exponent for q[i] would be q0-24*i.
*
* PIo2[] double precision array, obtained by cutting pi/2
* into 24 bits chunks.
*
* f[] ipio2[] in floating point
*
* iq[] integer array by breaking up q[] in 24-bits chunk.
*
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
*
* ih integer. If >0 it indicates q[] is >= 0.5, hence
* it also indicates the *sign* of the result.
*
*/
/*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
#else
static int init_jk[] = {2,3,4,6};
#endif
#ifdef __STDC__
static const double PIo2[] = {
#else
static double PIo2[] = {
#endif
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
};
#ifdef __STDC__
static const double
#else
static double
#endif
zero = 0.0,
one = 1.0,
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
#ifdef __STDC__
int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
#else
int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
double x[], y[]; int e0,nx,prec; int ipio2[];
#endif
{
int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
double z,fw,f[20],fq[20],q[20];
/* initialize jk*/
jk = init_jk[prec];
jp = jk;
/* determine jx,jv,q0, note that 3>q0 */
jx = nx-1;
jv = (e0-3)/24; if(jv<0) jv=0;
q0 = e0-24*(jv+1);
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
j = jv-jx; m = jx+jk;
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
/* compute q[0],q[1],...q[jk] */
for (i=0;i<=jk;i++) {
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
}
jz = jk;
recompute:
/* distill q[] into iq[] reversingly */
for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
fw = (double)((int)(twon24* z));
iq[i] = (int)(z-two24*fw);
z = q[j-1]+fw;
}
/* compute n */
z = scalbn(z,q0); /* actual value of z */
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
n = (int) z;
z -= (double)n;
ih = 0;
if(q0>0) { /* need iq[jz-1] to determine n */
i = (iq[jz-1]>>(24-q0)); n += i;
iq[jz-1] -= i<<(24-q0);
ih = iq[jz-1]>>(23-q0);
}
else if(q0==0) ih = iq[jz-1]>>23;
else if(z>=0.5) ih=2;
if(ih>0) { /* q > 0.5 */
n += 1; carry = 0;
for(i=0;i<jz ;i++) { /* compute 1-q */
j = iq[i];
if(carry==0) {
if(j!=0) {
carry = 1; iq[i] = 0x1000000- j;
}
} else iq[i] = 0xffffff - j;
}
if(q0>0) { /* rare case: chance is 1 in 12 */
switch(q0) {
case 1:
iq[jz-1] &= 0x7fffff; break;
case 2:
iq[jz-1] &= 0x3fffff; break;
}
}
if(ih==2) {
z = one - z;
if(carry!=0) z -= scalbn(one,q0);
}
}
/* check if recomputation is needed */
if(z==zero) {
j = 0;
for (i=jz-1;i>=jk;i--) j |= iq[i];
if(j==0) { /* need recomputation */
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
f[jx+i] = (double) ipio2[jv+i];
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
q[i] = fw;
}
jz += k;
goto recompute;
}
}
/* chop off zero terms */
if(z==0.0) {
jz -= 1; q0 -= 24;
while(iq[jz]==0) { jz--; q0-=24;}
} else { /* break z into 24-bit if necessary */
z = scalbn(z,-q0);
if(z>=two24) {
fw = (double)((int)(twon24*z));
iq[jz] = (int)(z-two24*fw);
jz += 1; q0 += 24;
iq[jz] = (int) fw;
} else iq[jz] = (int) z ;
}
/* convert integer "bit" chunk to floating-point value */
fw = scalbn(one,q0);
for(i=jz;i>=0;i--) {
q[i] = fw*(double)iq[i]; fw*=twon24;
}
/* compute PIo2[0,...,jp]*q[jz,...,0] */
for(i=jz;i>=0;i--) {
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
fq[jz-i] = fw;
}
/* compress fq[] into y[] */
switch(prec) {
case 0:
fw = 0.0;
for (i=jz;i>=0;i--) fw += fq[i];
y[0] = (ih==0)? fw: -fw;
break;
case 1:
case 2:
fw = 0.0;
for (i=jz;i>=0;i--) fw += fq[i];
y[0] = (ih==0)? fw: -fw;
fw = fq[0]-fw;
for (i=1;i<=jz;i++) fw += fq[i];
y[1] = (ih==0)? fw: -fw;
break;
case 3: /* painful */
for (i=jz;i>0;i--) {
fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
for (i=jz;i>1;i--) {
fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
if(ih==0) {
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
} else {
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
}
}
return n&7;
}

74
third-party/fdlibm/k_sin.c vendored Normal file
View File

@ -0,0 +1,74 @@
/* @(#)k_sin.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __kernel_sin( x, y, iy)
* kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
*
* Algorithm
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
* 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
* 3. sin(x) is approximated by a polynomial of degree 13 on
* [0,pi/4]
* 3 13
* sin(x) ~ x + S1*x + ... + S6*x
* where
*
* |sin(x) 2 4 6 8 10 12 | -58
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
* | x |
*
* 4. sin(x+y) = sin(x) + sin'(x')*y
* ~ sin(x) + (1-x*x/2)*y
* For better accuracy, let
* 3 2 2 2 2
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
* then 3 2
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
#ifdef __STDC__
double __kernel_sin(double x, double y, int iy)
#else
double __kernel_sin(x, y, iy)
double x,y; int iy; /* iy=0 if y is zero */
#endif
{
double z,r,v;
int ix;
ix = __HI(x)&0x7fffffff; /* high word of x */
if(ix<0x3e400000) /* |x| < 2**-27 */
{if((int)x==0) return x;} /* generate inexact */
z = x*x;
v = z*x;
r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
if(iy==0) return x+v*(S1+z*r);
else return x-((z*(half*y-v*r)-y)-v*S1);
}

733
third-party/fdlibm/k_standard.c vendored Normal file
View File

@ -0,0 +1,733 @@
/* @(#)k_standard.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
#include "fdlibm.h"
#include <errno.h>
#ifndef _USE_WRITE
#include <stdio.h> /* fputs(), stderr */
// #define WRITE2(u,v) fputs(u, stderr)
#else /* !defined(_USE_WRITE) */
#include <unistd.h> /* write */
// #define WRITE2(u,v) write(2, u, v)
#undef fflush
#endif /* !defined(_USE_WRITE) */
static double zero = 0.0; /* used as const */
/*
* Standard conformance (non-IEEE) on exception cases.
* Mapping:
* 1 -- acos(|x|>1)
* 2 -- asin(|x|>1)
* 3 -- atan2(+-0,+-0)
* 4 -- hypot overflow
* 5 -- cosh overflow
* 6 -- exp overflow
* 7 -- exp underflow
* 8 -- y0(0)
* 9 -- y0(-ve)
* 10-- y1(0)
* 11-- y1(-ve)
* 12-- yn(0)
* 13-- yn(-ve)
* 14-- lgamma(finite) overflow
* 15-- lgamma(-integer)
* 16-- log(0)
* 17-- log(x<0)
* 18-- log10(0)
* 19-- log10(x<0)
* 20-- pow(0.0,0.0)
* 21-- pow(x,y) overflow
* 22-- pow(x,y) underflow
* 23-- pow(0,negative)
* 24-- pow(neg,non-integral)
* 25-- sinh(finite) overflow
* 26-- sqrt(negative)
* 27-- fmod(x,0)
* 28-- remainder(x,0)
* 29-- acosh(x<1)
* 30-- atanh(|x|>1)
* 31-- atanh(|x|=1)
* 32-- scalb overflow
* 33-- scalb underflow
* 34-- j0(|x|>X_TLOSS)
* 35-- y0(x>X_TLOSS)
* 36-- j1(|x|>X_TLOSS)
* 37-- y1(x>X_TLOSS)
* 38-- jn(|x|>X_TLOSS, n)
* 39-- yn(x>X_TLOSS, n)
* 40-- gamma(finite) overflow
* 41-- gamma(-integer)
* 42-- pow(NaN,0.0)
*/
#ifdef __STDC__
double __kernel_standard(double x, double y, int type)
#else
double __kernel_standard(x,y,type)
double x,y; int type;
#endif
{
struct exception exc;
#ifndef HUGE_VAL /* this is the only routine that uses HUGE_VAL */
#define HUGE_VAL inf
double inf = 0.0;
__HI(inf) = 0x7ff00000; /* set inf to infinite */
#endif
#ifdef _USE_WRITE
(void) fflush(stdout);
#endif
exc.arg1 = x;
exc.arg2 = y;
switch(type) {
case 1:
/* acos(|x|>1) */
exc.type = DOMAIN;
exc.name = "acos";
exc.retval = zero;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if(_LIB_VERSION == _SVID_) {
// // (void) WRITE2("acos: DOMAIN error\n", 19);
// }
// errno = EDOM;
// }
break;
case 2:
/* asin(|x|>1) */
exc.type = DOMAIN;
exc.name = "asin";
exc.retval = zero;
// if(_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if(_LIB_VERSION == _SVID_) {
// // (void) WRITE2("asin: DOMAIN error\n", 19);
// }
// errno = EDOM;
// }
break;
case 3:
/* atan2(+-0,+-0) */
exc.arg1 = y;
exc.arg2 = x;
exc.type = DOMAIN;
exc.name = "atan2";
exc.retval = zero;
// if(_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if(_LIB_VERSION == _SVID_) {
// // (void) WRITE2("atan2: DOMAIN error\n", 20);
// }
// errno = EDOM;
// }
break;
case 4:
/* hypot(finite,finite) overflow */
exc.type = OVERFLOW;
exc.name = "hypot";
if (_LIB_VERSION == _SVID_)
exc.retval = HUGE;
else
exc.retval = HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// errno = ERANGE;
// }
break;
case 5:
/* cosh(finite) overflow */
exc.type = OVERFLOW;
exc.name = "cosh";
if (_LIB_VERSION == _SVID_)
exc.retval = HUGE;
else
exc.retval = HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// errno = ERANGE;
// }
break;
case 6:
/* exp(finite) overflow */
exc.type = OVERFLOW;
exc.name = "exp";
if (_LIB_VERSION == _SVID_)
exc.retval = HUGE;
else
exc.retval = HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// errno = ERANGE;
// }
break;
case 7:
/* exp(finite) underflow */
exc.type = UNDERFLOW;
exc.name = "exp";
exc.retval = zero;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// errno = ERANGE;
// }
break;
case 8:
/* y0(0) = -inf */
exc.type = DOMAIN; /* should be SING for IEEE */
exc.name = "y0";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("y0: DOMAIN error\n", 17);
// }
// errno = EDOM;
// }
break;
case 9:
/* y0(x<0) = NaN */
exc.type = DOMAIN;
exc.name = "y0";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("y0: DOMAIN error\n", 17);
// }
// errno = EDOM;
// }
break;
case 10:
/* y1(0) = -inf */
exc.type = DOMAIN; /* should be SING for IEEE */
exc.name = "y1";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("y1: DOMAIN error\n", 17);
// }
// errno = EDOM;
// }
break;
case 11:
/* y1(x<0) = NaN */
exc.type = DOMAIN;
exc.name = "y1";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("y1: DOMAIN error\n", 17);
// }
// errno = EDOM;
// }
break;
case 12:
/* yn(n,0) = -inf */
exc.type = DOMAIN; /* should be SING for IEEE */
exc.name = "yn";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("yn: DOMAIN error\n", 17);
// }
// errno = EDOM;
// }
break;
case 13:
/* yn(x<0) = NaN */
exc.type = DOMAIN;
exc.name = "yn";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("yn: DOMAIN error\n", 17);
// }
// errno = EDOM;
// }
break;
case 14:
/* lgamma(finite) overflow */
exc.type = OVERFLOW;
exc.name = "lgamma";
if (_LIB_VERSION == _SVID_)
exc.retval = HUGE;
else
exc.retval = HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// errno = ERANGE;
// }
break;
case 15:
/* lgamma(-integer) or lgamma(0) */
exc.type = SING;
exc.name = "lgamma";
if (_LIB_VERSION == _SVID_)
exc.retval = HUGE;
else
exc.retval = HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("lgamma: SING error\n", 19);
// }
// errno = EDOM;
// }
break;
case 16:
/* log(0) */
exc.type = SING;
exc.name = "log";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("log: SING error\n", 16);
// }
// errno = EDOM;
// }
break;
case 17:
/* log(x<0) */
exc.type = DOMAIN;
exc.name = "log";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("log: DOMAIN error\n", 18);
// }
// errno = EDOM;
// }
break;
case 18:
/* log10(0) */
exc.type = SING;
exc.name = "log10";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("log10: SING error\n", 18);
// }
// errno = EDOM;
// }
break;
case 19:
/* log10(x<0) */
exc.type = DOMAIN;
exc.name = "log10";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("log10: DOMAIN error\n", 20);
// }
// errno = EDOM;
// }
break;
case 20:
/* pow(0.0,0.0) */
/* error only if _LIB_VERSION == _SVID_ */
exc.type = DOMAIN;
exc.name = "pow";
exc.retval = zero;
// if (_LIB_VERSION != _SVID_) exc.retval = 1.0;
// else if (!matherr(&exc)) {
// // (void) WRITE2("pow(0,0): DOMAIN error\n", 23);
// errno = EDOM;
// }
break;
case 21:
/* pow(x,y) overflow */
exc.type = OVERFLOW;
exc.name = "pow";
if (_LIB_VERSION == _SVID_) {
exc.retval = HUGE;
y *= 0.5;
if(x<zero&&rint(y)!=y) exc.retval = -HUGE;
} else {
exc.retval = HUGE_VAL;
y *= 0.5;
if(x<zero&&rint(y)!=y) exc.retval = -HUGE_VAL;
}
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// errno = ERANGE;
// }
break;
case 22:
/* pow(x,y) underflow */
exc.type = UNDERFLOW;
exc.name = "pow";
exc.retval = zero;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// errno = ERANGE;
// }
break;
case 23:
/* 0**neg */
exc.type = DOMAIN;
exc.name = "pow";
if (_LIB_VERSION == _SVID_)
exc.retval = zero;
else
exc.retval = -HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("pow(0,neg): DOMAIN error\n", 25);
// }
// errno = EDOM;
// }
break;
case 24:
/* neg**non-integral */
exc.type = DOMAIN;
exc.name = "pow";
if (_LIB_VERSION == _SVID_)
exc.retval = zero;
else
exc.retval = zero/zero; /* X/Open allow NaN */
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("neg**non-integral: DOMAIN error\n", 32);
// }
// errno = EDOM;
// }
break;
case 25:
/* sinh(finite) overflow */
exc.type = OVERFLOW;
exc.name = "sinh";
if (_LIB_VERSION == _SVID_)
exc.retval = ( (x>zero) ? HUGE : -HUGE);
else
exc.retval = ( (x>zero) ? HUGE_VAL : -HUGE_VAL);
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// errno = ERANGE;
// }
break;
case 26:
/* sqrt(x<0) */
exc.type = DOMAIN;
exc.name = "sqrt";
if (_LIB_VERSION == _SVID_)
exc.retval = zero;
else
exc.retval = zero/zero;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("sqrt: DOMAIN error\n", 19);
// }
// errno = EDOM;
// }
break;
case 27:
/* fmod(x,0) */
exc.type = DOMAIN;
exc.name = "fmod";
if (_LIB_VERSION == _SVID_)
exc.retval = x;
else
exc.retval = zero/zero;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("fmod: DOMAIN error\n", 20);
// }
// errno = EDOM;
// }
break;
case 28:
/* remainder(x,0) */
exc.type = DOMAIN;
exc.name = "remainder";
exc.retval = zero/zero;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("remainder: DOMAIN error\n", 24);
// }
// errno = EDOM;
// }
break;
case 29:
/* acosh(x<1) */
exc.type = DOMAIN;
exc.name = "acosh";
exc.retval = zero/zero;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("acosh: DOMAIN error\n", 20);
// }
// errno = EDOM;
// }
break;
case 30:
/* atanh(|x|>1) */
exc.type = DOMAIN;
exc.name = "atanh";
exc.retval = zero/zero;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("atanh: DOMAIN error\n", 20);
// }
// errno = EDOM;
// }
break;
case 31:
/* atanh(|x|=1) */
exc.type = SING;
exc.name = "atanh";
exc.retval = x/zero; /* sign(x)*inf */
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("atanh: SING error\n", 18);
// }
// errno = EDOM;
// }
break;
case 32:
/* scalb overflow; SVID also returns +-HUGE_VAL */
exc.type = OVERFLOW;
exc.name = "scalb";
exc.retval = x > zero ? HUGE_VAL : -HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// errno = ERANGE;
// }
break;
case 33:
/* scalb underflow */
exc.type = UNDERFLOW;
exc.name = "scalb";
exc.retval = copysign(zero,x);
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// errno = ERANGE;
// }
break;
case 34:
/* j0(|x|>X_TLOSS) */
exc.type = TLOSS;
exc.name = "j0";
exc.retval = zero;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2(exc.name, 2);
// // (void) WRITE2(": TLOSS error\n", 14);
// }
// errno = ERANGE;
// }
break;
case 35:
/* y0(x>X_TLOSS) */
exc.type = TLOSS;
exc.name = "y0";
exc.retval = zero;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2(exc.name, 2);
// // (void) WRITE2(": TLOSS error\n", 14);
// }
// errno = ERANGE;
// }
break;
case 36:
/* j1(|x|>X_TLOSS) */
exc.type = TLOSS;
exc.name = "j1";
exc.retval = zero;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2(exc.name, 2);
// // (void) WRITE2(": TLOSS error\n", 14);
// }
// errno = ERANGE;
// }
break;
case 37:
/* y1(x>X_TLOSS) */
exc.type = TLOSS;
exc.name = "y1";
exc.retval = zero;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2(exc.name, 2);
// // (void) WRITE2(": TLOSS error\n", 14);
// }
// errno = ERANGE;
// }
break;
case 38:
/* jn(|x|>X_TLOSS) */
exc.type = TLOSS;
exc.name = "jn";
exc.retval = zero;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2(exc.name, 2);
// // (void) WRITE2(": TLOSS error\n", 14);
// }
// errno = ERANGE;
// }
break;
case 39:
/* yn(x>X_TLOSS) */
exc.type = TLOSS;
exc.name = "yn";
exc.retval = zero;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2(exc.name, 2);
// // (void) WRITE2(": TLOSS error\n", 14);
// }
// errno = ERANGE;
// }
break;
case 40:
/* gamma(finite) overflow */
exc.type = OVERFLOW;
exc.name = "gamma";
if (_LIB_VERSION == _SVID_)
exc.retval = HUGE;
else
exc.retval = HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = ERANGE;
// else if (!matherr(&exc)) {
// errno = ERANGE;
// }
break;
case 41:
/* gamma(-integer) or gamma(0) */
exc.type = SING;
exc.name = "gamma";
if (_LIB_VERSION == _SVID_)
exc.retval = HUGE;
else
exc.retval = HUGE_VAL;
// if (_LIB_VERSION == _POSIX_)
// errno = EDOM;
// else if (!matherr(&exc)) {
// if (_LIB_VERSION == _SVID_) {
// // (void) WRITE2("gamma: SING error\n", 18);
// }
// errno = EDOM;
// }
break;
case 42:
/* pow(NaN,0.0) */
/* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */
exc.type = DOMAIN;
exc.name = "pow";
exc.retval = x;
// if (_LIB_VERSION == _IEEE_ ||
// _LIB_VERSION == _POSIX_) exc.retval = 1.0;
// else if (!matherr(&exc)) {
// errno = EDOM;
// }
// break;
}
return exc.retval;
}

148
third-party/fdlibm/k_tan.c vendored Normal file
View File

@ -0,0 +1,148 @@
#pragma ident "@(#)k_tan.c 1.5 04/04/22 SMI"
/*
* ====================================================
* Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* INDENT OFF */
/* __kernel_tan( x, y, k )
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
* Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
*
* Algorithm
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
* [0,0.67434]
* 3 27
* tan(x) ~ x + T1*x + ... + T13*x
* where
*
* |tan(x) 2 4 26 | -59.2
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
* | x |
*
* Note: tan(x+y) = tan(x) + tan'(x)*y
* ~ tan(x) + (1+x*x)*y
* Therefore, for better accuracy in computing tan(x+y), let
* 3 2 2 2 2
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
* then
* 3 2
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
*
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
*/
#include "fdlibm.h"
static const double xxx[] = {
3.33333333333334091986e-01, /* 3FD55555, 55555563 */
1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
-1.85586374855275456654e-05, /* BEF375CB, DB605373 */
2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
/* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
/* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
/* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
};
#define one xxx[13]
#define pio4 xxx[14]
#define pio4lo xxx[15]
#define T xxx
/* INDENT ON */
double
__kernel_tan(double x, double y, int iy) {
double z, r, v, w, s;
int ix, hx;
hx = __HI(x); /* high word of x */
ix = hx & 0x7fffffff; /* high word of |x| */
if (ix < 0x3e300000) { /* x < 2**-28 */
if ((int) x == 0) { /* generate inexact */
if (((ix | __LO(x)) | (iy + 1)) == 0)
return one / fabs(x);
else {
if (iy == 1)
return x;
else { /* compute -1 / (x+y) carefully */
double a, t;
z = w = x + y;
__LO(z) = 0;
v = y - (z - x);
t = a = -one / w;
__LO(t) = 0;
s = one + t * z;
return t + a * (s + t * v);
}
}
}
}
if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
if (hx < 0) {
x = -x;
y = -y;
}
z = pio4 - x;
w = pio4lo - y;
x = z + w;
y = 0.0;
}
z = x * x;
w = z * z;
/*
* Break x^5*(T[1]+x^2*T[2]+...) into
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
*/
r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
w * T[11]))));
v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
w * T[12])))));
s = z * x;
r = y + z * (s * (r + v) + y);
r += T[0] * s;
w = x + r;
if (ix >= 0x3FE59428) {
v = (double) iy;
return (double) (1 - ((hx >> 30) & 2)) *
(v - 2.0 * (x - (w * w / (w + v) - r)));
}
if (iy == 1)
return w;
else {
/*
* if allow error up to 2 ulp, simply return
* -1.0 / (x+r) here
*/
/* compute -1.0 / (x+r) accurately */
double a, t;
z = w;
__LO(z) = 0;
v = r - (z - x); /* z+v = r+x */
t = a = -1.0 / w; /* a = -1.0/w */
__LO(t) = 0;
s = 1.0 + t * z;
return t + a * (s + t * v);
}
}

134
third-party/fdlibm/s_atan.c vendored Normal file
View File

@ -0,0 +1,134 @@
/* @(#)s_atan.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* atan(x)
* Method
* 1. Reduce x to positive by atan(x) = -atan(-x).
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
* is further reduced to one of the following intervals and the
* arctangent of t is evaluated by the corresponding formula:
*
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double atanhi[] = {
#else
static double atanhi[] = {
#endif
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
};
#ifdef __STDC__
static const double atanlo[] = {
#else
static double atanlo[] = {
#endif
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
};
#ifdef __STDC__
static const double aT[] = {
#else
static double aT[] = {
#endif
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
};
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.0,
huge = 1.0e300;
#ifdef __STDC__
double atan(double x)
#else
double atan(x)
double x;
#endif
{
double w,s1,s2,z;
int ix,hx,id;
hx = __HI(x);
ix = hx&0x7fffffff;
if(ix>=0x44100000) { /* if |x| >= 2^66 */
if(ix>0x7ff00000||
(ix==0x7ff00000&&(__LO(x)!=0)))
return x+x; /* NaN */
if(hx>0) return atanhi[3]+atanlo[3];
else return -atanhi[3]-atanlo[3];
} if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
if (ix < 0x3e200000) { /* |x| < 2^-29 */
if(huge+x>one) return x; /* raise inexact */
}
id = -1;
} else {
x = fabs(x);
if (ix < 0x3ff30000) { /* |x| < 1.1875 */
if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
id = 0; x = (2.0*x-one)/(2.0+x);
} else { /* 11/16<=|x|< 19/16 */
id = 1; x = (x-one)/(x+one);
}
} else {
if (ix < 0x40038000) { /* |x| < 2.4375 */
id = 2; x = (x-1.5)/(one+1.5*x);
} else { /* 2.4375 <= |x| < 2^66 */
id = 3; x = -1.0/x;
}
}}
/* end of argument reduction */
z = x*x;
w = z*z;
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
if (id<0) return x - x*(s1+s2);
else {
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
return (hx<0)? -z:z;
}
}

78
third-party/fdlibm/s_ceil.c vendored Normal file
View File

@ -0,0 +1,78 @@
/* @(#)s_ceil.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* ceil(x)
* Return x rounded toward -inf to integral value
* Method:
* Bit twiddling.
* Exception:
* Inexact flag raised if x not equal to ceil(x).
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double huge = 1.0e300;
#else
static double huge = 1.0e300;
#endif
#ifdef __STDC__
double ceil(double x)
#else
double ceil(x)
double x;
#endif
{
int i0,i1,j0;
unsigned i,j;
i0 = __HI(x);
i1 = __LO(x);
j0 = ((i0>>20)&0x7ff)-0x3ff;
if(j0<20) {
if(j0<0) { /* raise inexact if x != 0 */
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
if(i0<0) {i0=0x80000000;i1=0;}
else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;}
}
} else {
i = (0x000fffff)>>j0;
if(((i0&i)|i1)==0) return x; /* x is integral */
if(huge+x>0.0) { /* raise inexact flag */
if(i0>0) i0 += (0x00100000)>>j0;
i0 &= (~i); i1=0;
}
}
} else if (j0>51) {
if(j0==0x400) return x+x; /* inf or NaN */
else return x; /* x is integral */
} else {
i = ((unsigned)(0xffffffff))>>(j0-20);
if((i1&i)==0) return x; /* x is integral */
if(huge+x>0.0) { /* raise inexact flag */
if(i0>0) {
if(j0==20) i0+=1;
else {
j = i1 + (1<<(52-j0));
if(j<i1) i0+=1; /* got a carry */
i1 = j;
}
}
i1 &= (~i);
}
}
__HI(x) = i0;
__LO(x) = i1;
return x;
}

31
third-party/fdlibm/s_copysign.c vendored Normal file
View File

@ -0,0 +1,31 @@
/* @(#)s_copysign.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* copysign(double x, double y)
* copysign(x,y) returns a value with the magnitude of x and
* with the sign bit of y.
*/
#include "fdlibm.h"
#ifdef __STDC__
double copysign(double x, double y)
#else
double copysign(x,y)
double x,y;
#endif
{
__HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
return x;
}

78
third-party/fdlibm/s_cos.c vendored Normal file
View File

@ -0,0 +1,78 @@
/* @(#)s_cos.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* cos(x)
* Return cosine function of x.
*
* kernel function:
* __kernel_sin ... sine function on [-pi/4,pi/4]
* __kernel_cos ... cosine function on [-pi/4,pi/4]
* __ieee754_rem_pio2 ... argument reduction routine
*
* Method.
* Let S,C and T denote the sin, cos and tan respectively on
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
* n sin(x) cos(x) tan(x)
* ----------------------------------------------------------
* 0 S C T
* 1 C -S -1/T
* 2 -S -C T
* 3 -C S -1/T
* ----------------------------------------------------------
*
* Special cases:
* Let trig be any of sin, cos, or tan.
* trig(+-INF) is NaN, with signals;
* trig(NaN) is that NaN;
*
* Accuracy:
* TRIG(x) returns trig(x) nearly rounded
*/
#include "fdlibm.h"
#ifdef __STDC__
double cos(double x)
#else
double cos(x)
double x;
#endif
{
double y[2],z=0.0;
int n, ix;
/* High word of x. */
ix = __HI(x);
/* |x| ~< pi/4 */
ix &= 0x7fffffff;
if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
/* cos(Inf or NaN) is NaN */
else if (ix>=0x7ff00000) return x-x;
/* argument reduction needed */
else {
n = __ieee754_rem_pio2(x,y);
switch(n&3) {
case 0: return __kernel_cos(y[0],y[1]);
case 1: return -__kernel_sin(y[0],y[1],1);
case 2: return -__kernel_cos(y[0],y[1]);
default:
return __kernel_sin(y[0],y[1],1);
}
}
}

29
third-party/fdlibm/s_fabs.c vendored Normal file
View File

@ -0,0 +1,29 @@
/* @(#)s_fabs.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* fabs(x) returns the absolute value of x.
*/
#include "fdlibm.h"
#ifdef __STDC__
double fabs(double x)
#else
double fabs(x)
double x;
#endif
{
__HI(x) &= 0x7fffffff;
return x;
}

31
third-party/fdlibm/s_finite.c vendored Normal file
View File

@ -0,0 +1,31 @@
/* @(#)s_finite.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* finite(x) returns 1 is x is finite, else 0;
* no branching!
*/
#include "fdlibm.h"
#ifdef __STDC__
int finite(double x)
#else
int finite(x)
double x;
#endif
{
int hx;
hx = __HI(x);
return (unsigned)((hx&0x7fffffff)-0x7ff00000)>>31;
}

79
third-party/fdlibm/s_floor.c vendored Normal file
View File

@ -0,0 +1,79 @@
/* @(#)s_floor.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* floor(x)
* Return x rounded toward -inf to integral value
* Method:
* Bit twiddling.
* Exception:
* Inexact flag raised if x not equal to floor(x).
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double huge = 1.0e300;
#else
static double huge = 1.0e300;
#endif
#ifdef __STDC__
double floor(double x)
#else
double floor(x)
double x;
#endif
{
int i0,i1,j0;
unsigned i,j;
i0 = __HI(x);
i1 = __LO(x);
j0 = ((i0>>20)&0x7ff)-0x3ff;
if(j0<20) {
if(j0<0) { /* raise inexact if x != 0 */
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
if(i0>=0) {i0=i1=0;}
else if(((i0&0x7fffffff)|i1)!=0)
{ i0=0xbff00000;i1=0;}
}
} else {
i = (0x000fffff)>>j0;
if(((i0&i)|i1)==0) return x; /* x is integral */
if(huge+x>0.0) { /* raise inexact flag */
if(i0<0) i0 += (0x00100000)>>j0;
i0 &= (~i); i1=0;
}
}
} else if (j0>51) {
if(j0==0x400) return x+x; /* inf or NaN */
else return x; /* x is integral */
} else {
i = ((unsigned)(0xffffffff))>>(j0-20);
if((i1&i)==0) return x; /* x is integral */
if(huge+x>0.0) { /* raise inexact flag */
if(i0<0) {
if(j0==20) i0+=1;
else {
j = i1+(1<<(52-j0));
if(j<i1) i0 +=1 ; /* got a carry */
i1=j;
}
}
i1 &= (~i);
}
}
__HI(x) = i0;
__LO(x) = i1;
return x;
}

34
third-party/fdlibm/s_isnan.c vendored Normal file
View File

@ -0,0 +1,34 @@
/* @(#)s_isnan.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* isnan(x) returns 1 is x is nan, else 0;
* no branching!
*/
#include "fdlibm.h"
#ifdef __STDC__
int isnan(double x)
#else
int isnan(x)
double x;
#endif
{
int hx,lx;
hx = (__HI(x)&0x7fffffff);
lx = __LO(x);
hx |= (unsigned)(lx|(-lx))>>31;
hx = 0x7ff00000 - hx;
return ((unsigned)(hx))>>31;
}

35
third-party/fdlibm/s_lib_version.c vendored Normal file
View File

@ -0,0 +1,35 @@
/* @(#)s_lib_version.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* MACRO for standards
*/
#include "fdlibm.h"
/*
* define and initialize _LIB_VERSION
*/
#ifdef _POSIX_MODE
_LIB_VERSION_TYPE _LIB_VERSION = _POSIX_;
#else
#ifdef _XOPEN_MODE
_LIB_VERSION_TYPE _LIB_VERSION = _XOPEN_;
#else
#ifdef _SVID3_MODE
_LIB_VERSION_TYPE _LIB_VERSION = _SVID_;
#else /* default _IEEE_MODE */
_LIB_VERSION_TYPE _LIB_VERSION = _IEEE_;
#endif
#endif
#endif

84
third-party/fdlibm/s_rint.c vendored Normal file
View File

@ -0,0 +1,84 @@
/* @(#)s_rint.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* rint(x)
* Return x rounded to integral value according to the prevailing
* rounding mode.
* Method:
* Using floating addition.
* Exception:
* Inexact flag raised if x not equal to rint(x).
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
TWO52[2]={
4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
-4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */
};
#ifdef __STDC__
double rint(double x)
#else
double rint(x)
double x;
#endif
{
int i0,j0,sx;
unsigned i,i1;
double w,t;
i0 = __HI(x);
sx = (i0>>31)&1;
i1 = __LO(x);
j0 = ((i0>>20)&0x7ff)-0x3ff;
if(j0<20) {
if(j0<0) {
if(((i0&0x7fffffff)|i1)==0) return x;
i1 |= (i0&0x0fffff);
i0 &= 0xfffe0000;
i0 |= ((i1|-i1)>>12)&0x80000;
__HI(x)=i0;
w = TWO52[sx]+x;
t = w-TWO52[sx];
i0 = __HI(t);
__HI(t) = (i0&0x7fffffff)|(sx<<31);
return t;
} else {
i = (0x000fffff)>>j0;
if(((i0&i)|i1)==0) return x; /* x is integral */
i>>=1;
if(((i0&i)|i1)!=0) {
if(j0==19) i1 = 0x40000000; else
i0 = (i0&(~i))|((0x20000)>>j0);
}
}
} else if (j0>51) {
if(j0==0x400) return x+x; /* inf or NaN */
else return x; /* x is integral */
} else {
i = ((unsigned)(0xffffffff))>>(j0-20);
if((i1&i)==0) return x; /* x is integral */
i>>=1;
if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-20));
}
__HI(x) = i0;
__LO(x) = i1;
w = TWO52[sx]+x;
return w-TWO52[sx];
}

63
third-party/fdlibm/s_scalbn.c vendored Normal file
View File

@ -0,0 +1,63 @@
/* @(#)s_scalbn.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* scalbn (double x, int n)
* scalbn(x,n) returns x* 2**n computed by exponent
* manipulation rather than by actually performing an
* exponentiation or a multiplication.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
huge = 1.0e+300,
tiny = 1.0e-300;
#ifdef __STDC__
double scalbn (double x, int n)
#else
double scalbn (x,n)
double x; int n;
#endif
{
int k,hx,lx;
hx = __HI(x);
lx = __LO(x);
k = (hx&0x7ff00000)>>20; /* extract exponent */
if (k==0) { /* 0 or subnormal x */
if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
x *= two54;
hx = __HI(x);
k = ((hx&0x7ff00000)>>20) - 54;
if (n< -50000) return tiny*x; /*underflow*/
}
if (k==0x7ff) return x+x; /* NaN or Inf */
k = k+n;
if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */
if (k > 0) /* normal result */
{__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
if (k <= -54)
if (n > 50000) /* in case integer overflow in n+k */
return huge*copysign(huge,x); /*overflow*/
else return tiny*copysign(tiny,x); /*underflow*/
k += 54; /* subnormal result */
__HI(x) = (hx&0x800fffff)|(k<<20);
return x*twom54;
}

30
third-party/fdlibm/s_significand.c vendored Normal file
View File

@ -0,0 +1,30 @@
/* @(#)s_significand.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* significand(x) computes just
* scalb(x, (double) -ilogb(x)),
* for exercising the fraction-part(F) IEEE 754-1985 test vector.
*/
#include "fdlibm.h"
#ifdef __STDC__
double significand(double x)
#else
double significand(x)
double x;
#endif
{
return __ieee754_scalb(x,(double) -ilogb(x));
}

78
third-party/fdlibm/s_sin.c vendored Normal file
View File

@ -0,0 +1,78 @@
/* @(#)s_sin.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* sin(x)
* Return sine function of x.
*
* kernel function:
* __kernel_sin ... sine function on [-pi/4,pi/4]
* __kernel_cos ... cose function on [-pi/4,pi/4]
* __ieee754_rem_pio2 ... argument reduction routine
*
* Method.
* Let S,C and T denote the sin, cos and tan respectively on
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
* n sin(x) cos(x) tan(x)
* ----------------------------------------------------------
* 0 S C T
* 1 C -S -1/T
* 2 -S -C T
* 3 -C S -1/T
* ----------------------------------------------------------
*
* Special cases:
* Let trig be any of sin, cos, or tan.
* trig(+-INF) is NaN, with signals;
* trig(NaN) is that NaN;
*
* Accuracy:
* TRIG(x) returns trig(x) nearly rounded
*/
#include "fdlibm.h"
#ifdef __STDC__
double sin(double x)
#else
double sin(x)
double x;
#endif
{
double y[2],z=0.0;
int n, ix;
/* High word of x. */
ix = __HI(x);
/* |x| ~< pi/4 */
ix &= 0x7fffffff;
if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
/* sin(Inf or NaN) is NaN */
else if (ix>=0x7ff00000) return x-x;
/* argument reduction needed */
else {
n = __ieee754_rem_pio2(x,y);
switch(n&3) {
case 0: return __kernel_sin(y[0],y[1],1);
case 1: return __kernel_cos(y[0],y[1]);
case 2: return -__kernel_sin(y[0],y[1],1);
default:
return -__kernel_cos(y[0],y[1]);
}
}
}

72
third-party/fdlibm/s_tan.c vendored Normal file
View File

@ -0,0 +1,72 @@
/* @(#)s_tan.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* tan(x)
* Return tangent function of x.
*
* kernel function:
* __kernel_tan ... tangent function on [-pi/4,pi/4]
* __ieee754_rem_pio2 ... argument reduction routine
*
* Method.
* Let S,C and T denote the sin, cos and tan respectively on
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
* n sin(x) cos(x) tan(x)
* ----------------------------------------------------------
* 0 S C T
* 1 C -S -1/T
* 2 -S -C T
* 3 -C S -1/T
* ----------------------------------------------------------
*
* Special cases:
* Let trig be any of sin, cos, or tan.
* trig(+-INF) is NaN, with signals;
* trig(NaN) is that NaN;
*
* Accuracy:
* TRIG(x) returns trig(x) nearly rounded
*/
#include "fdlibm.h"
#ifdef __STDC__
double tan(double x)
#else
double tan(x)
double x;
#endif
{
double y[2],z=0.0;
int n, ix;
/* High word of x. */
ix = __HI(x);
/* |x| ~< pi/4 */
ix &= 0x7fffffff;
if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
/* tan(Inf or NaN) is NaN */
else if (ix>=0x7ff00000) return x-x; /* NaN */
/* argument reduction needed */
else {
n = __ieee754_rem_pio2(x,y);
return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
-1 -- n odd */
}
}

82
third-party/fdlibm/s_tanh.c vendored Normal file
View File

@ -0,0 +1,82 @@
/* @(#)s_tanh.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Tanh(x)
* Return the Hyperbolic Tangent of x
*
* Method :
* x -x
* e - e
* 0. tanh(x) is defined to be -----------
* x -x
* e + e
* 1. reduce x to non-negative by tanh(-x) = -tanh(x).
* 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x)
* -t
* 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x)
* t + 2
* 2
* 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x)
* t + 2
* 22.0 < x <= INF : tanh(x) := 1.
*
* Special cases:
* tanh(NaN) is NaN;
* only tanh(0)=0 is exact for finite argument.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double one=1.0, two=2.0, tiny = 1.0e-300;
#else
static double one=1.0, two=2.0, tiny = 1.0e-300;
#endif
#ifdef __STDC__
double tanh(double x)
#else
double tanh(x)
double x;
#endif
{
double t,z;
int jx,ix;
/* High word of |x|. */
jx = __HI(x);
ix = jx&0x7fffffff;
/* x is INF or NaN */
if(ix>=0x7ff00000) {
if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */
else return one/x-one; /* tanh(NaN) = NaN */
}
/* |x| < 22 */
if (ix < 0x40360000) { /* |x|<22 */
if (ix<0x3c800000) /* |x|<2**-55 */
return x*(one+x); /* tanh(small) = small */
if (ix>=0x3ff00000) { /* |x|>=1 */
t = expm1(two*fabs(x));
z = one - two/(t+two);
} else {
t = expm1(-two*fabs(x));
z= -t/(t+two);
}
/* |x| > 22, return +-1 */
} else {
z = one - tiny; /* raised inexact flag */
}
return (jx>=0)? z: -z;
}

39
third-party/fdlibm/w_acos.c vendored Normal file
View File

@ -0,0 +1,39 @@
/* @(#)w_acos.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* wrap_acos(x)
*/
#include "fdlibm.h"
#ifdef __STDC__
double acos(double x) /* wrapper acos */
#else
double acos(x) /* wrapper acos */
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_acos(x);
#else
double z;
z = __ieee754_acos(x);
if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
if(fabs(x)>1.0) {
return __kernel_standard(x,x,1); /* acos(|x|>1) */
} else
return z;
#endif
}

41
third-party/fdlibm/w_asin.c vendored Normal file
View File

@ -0,0 +1,41 @@
/* @(#)w_asin.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/*
* wrapper asin(x)
*/
#include "fdlibm.h"
#ifdef __STDC__
double asin(double x) /* wrapper asin */
#else
double asin(x) /* wrapper asin */
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_asin(x);
#else
double z;
z = __ieee754_asin(x);
if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
if(fabs(x)>1.0) {
return __kernel_standard(x,x,2); /* asin(|x|>1) */
} else
return z;
#endif
}

40
third-party/fdlibm/w_atan2.c vendored Normal file
View File

@ -0,0 +1,40 @@
/* @(#)w_atan2.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/*
* wrapper atan2(y,x)
*/
#include "fdlibm.h"
#ifdef __STDC__
double atan2(double y, double x) /* wrapper atan2 */
#else
double atan2(y,x) /* wrapper atan2 */
double y,x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_atan2(y,x);
#else
double z;
z = __ieee754_atan2(y,x);
if(_LIB_VERSION == _IEEE_||isnan(x)||isnan(y)) return z;
if(x==0.0&&y==0.0) {
return __kernel_standard(y,x,3); /* atan2(+-0,+-0) */
} else
return z;
#endif
}

48
third-party/fdlibm/w_exp.c vendored Normal file
View File

@ -0,0 +1,48 @@
/* @(#)w_exp.c 1.4 04/04/22 */
/*
* ====================================================
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* wrapper exp(x)
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
u_threshold= -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */
#ifdef __STDC__
double exp(double x) /* wrapper exp */
#else
double exp(x) /* wrapper exp */
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_exp(x);
#else
double z;
z = __ieee754_exp(x);
if(_LIB_VERSION == _IEEE_) return z;
if(finite(x)) {
if(x>o_threshold)
return __kernel_standard(x,x,6); /* exp overflow */
else if(x<u_threshold)
return __kernel_standard(x,x,7); /* exp underflow */
}
return z;
#endif
}

39
third-party/fdlibm/w_log.c vendored Normal file
View File

@ -0,0 +1,39 @@
/* @(#)w_log.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* wrapper log(x)
*/
#include "fdlibm.h"
#ifdef __STDC__
double log(double x) /* wrapper log */
#else
double log(x) /* wrapper log */
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_log(x);
#else
double z;
z = __ieee754_log(x);
if(_LIB_VERSION == _IEEE_ || isnan(x) || x > 0.0) return z;
if(x==0.0)
return __kernel_standard(x,x,16); /* log(0) */
else
return __kernel_standard(x,x,17); /* log(x<0) */
#endif
}

60
third-party/fdlibm/w_pow.c vendored Normal file
View File

@ -0,0 +1,60 @@
/* @(#)w_pow.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* wrapper pow(x,y) return x**y
*/
#include "fdlibm.h"
#ifdef __STDC__
double pow(double x, double y) /* wrapper pow */
#else
double pow(x,y) /* wrapper pow */
double x,y;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_pow(x,y);
#else
double z;
z=__ieee754_pow(x,y);
if(_LIB_VERSION == _IEEE_|| isnan(y)) return z;
if(isnan(x)) {
if(y==0.0)
return __kernel_standard(x,y,42); /* pow(NaN,0.0) */
else
return z;
}
if(x==0.0){
if(y==0.0)
return __kernel_standard(x,y,20); /* pow(0.0,0.0) */
if(finite(y)&&y<0.0)
return __kernel_standard(x,y,23); /* pow(0.0,negative) */
return z;
}
if(!finite(z)) {
if(finite(x)&&finite(y)) {
if(isnan(z))
return __kernel_standard(x,y,24); /* pow neg**non-int */
else
return __kernel_standard(x,y,21); /* pow overflow */
}
}
if(z==0.0&&finite(x)&&finite(y))
return __kernel_standard(x,y,22); /* pow underflow */
return z;
#endif
}

38
third-party/fdlibm/w_sqrt.c vendored Normal file
View File

@ -0,0 +1,38 @@
/* @(#)w_sqrt.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* wrapper sqrt(x)
*/
#include "fdlibm.h"
#ifdef __STDC__
double sqrt(double x) /* wrapper sqrt */
#else
double sqrt(x) /* wrapper sqrt */
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_sqrt(x);
#else
double z;
z = __ieee754_sqrt(x);
if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
if(x<0.0) {
return __kernel_standard(x,x,26); /* sqrt(negative) */
} else
return z;
#endif
}

View File

@ -23,7 +23,6 @@ shift
TARGETS="$1"
shift
# Checking presence and correctness of Signed-off-by message
commit_hash=`git show -s --format=%H HEAD`
author_name=`git show -s --format=%an HEAD`
author_email=`git show -s --format=%ae HEAD`