mirror of
https://github.com/jerryscript-project/jerryscript.git
synced 2025-12-15 16:29:21 +00:00
Specialize fdlibm to jerry
Keep IEEE code paths only:
* removed SVID, XOPEN, POSIX code paths from everywhere.
* deleted s_lib_version.c, as version is only useful if multiple
standards are supported.
* deleted k_standard.c, as it handles non-IEEE exception cases only.
* renamed the e_{acos,asin,atan2,exp,fmod,log,pow,sqrt}.c sources as
s_.*, dropped the __ieee754_ prefix from the names of the
appropriate functions therein, and deleted the
w_{acos,asin,atan2,exp,fmod,log,pow,sqrt}.c wrapper code.
Keep C99 declaration variants only:
* removed old C-style function declaration variants.
* removed data declaration variants where const qualifier was not
used.
Clean unused sources/functions:
* removed s_{rint,significand,tanh}.c and the appropriate functions
defined therein.
JerryScript-DCO-1.0-Signed-off-by: Akos Kiss akiss@inf.u-szeged.hu
This commit is contained in:
parent
d674b92f26
commit
397dff81ee
59
third-party/fdlibm/e_rem_pio2.c
vendored
59
third-party/fdlibm/e_rem_pio2.c
vendored
@ -13,39 +13,31 @@
|
||||
*/
|
||||
|
||||
/* __ieee754_rem_pio2(x,y)
|
||||
*
|
||||
* return the remainder of x rem pi/2 in y[0]+y[1]
|
||||
*
|
||||
* return the remainder of x rem pi/2 in y[0]+y[1]
|
||||
* use __kernel_rem_pio2()
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
/*
|
||||
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
||||
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
||||
*/
|
||||
#ifdef __STDC__
|
||||
static const int two_over_pi[] = {
|
||||
#else
|
||||
static int two_over_pi[] = {
|
||||
#endif
|
||||
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
|
||||
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
|
||||
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
|
||||
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
|
||||
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
|
||||
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
|
||||
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
|
||||
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
|
||||
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
|
||||
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
|
||||
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
|
||||
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
|
||||
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
|
||||
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
|
||||
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
|
||||
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
|
||||
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
|
||||
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
|
||||
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
|
||||
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
|
||||
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
|
||||
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const int npio2_hw[] = {
|
||||
#else
|
||||
static int npio2_hw[] = {
|
||||
#endif
|
||||
0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
|
||||
0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
|
||||
0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
|
||||
@ -64,11 +56,7 @@ static int npio2_hw[] = {
|
||||
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
||||
*/
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
static const double
|
||||
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
||||
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
||||
@ -80,12 +68,7 @@ pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
|
||||
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
|
||||
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
|
||||
|
||||
#ifdef __STDC__
|
||||
int __ieee754_rem_pio2(double x, double *y)
|
||||
#else
|
||||
int __ieee754_rem_pio2(x,y)
|
||||
double x,y[];
|
||||
#endif
|
||||
int __ieee754_rem_pio2(double x, double *y)
|
||||
{
|
||||
double z,w,t,r,fn;
|
||||
double tx[3];
|
||||
@ -126,7 +109,7 @@ pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
|
||||
fn = (double)n;
|
||||
r = t-fn*pio2_1;
|
||||
w = fn*pio2_1t; /* 1st round good to 85 bit */
|
||||
if(n<32&&ix!=npio2_hw[n-1]) {
|
||||
if(n<32&&ix!=npio2_hw[n-1]) {
|
||||
y[0] = r-w; /* quick check no cancellation */
|
||||
} else {
|
||||
j = ix>>20;
|
||||
@ -134,16 +117,16 @@ pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
|
||||
i = j-(((__HI(y[0]))>>20)&0x7ff);
|
||||
if(i>16) { /* 2nd iteration needed, good to 118 */
|
||||
t = r;
|
||||
w = fn*pio2_2;
|
||||
w = fn*pio2_2;
|
||||
r = t-w;
|
||||
w = fn*pio2_2t-((t-r)-w);
|
||||
w = fn*pio2_2t-((t-r)-w);
|
||||
y[0] = r-w;
|
||||
i = j-(((__HI(y[0]))>>20)&0x7ff);
|
||||
if(i>49) { /* 3rd iteration need, 151 bits acc */
|
||||
t = r; /* will cover all possible cases */
|
||||
w = fn*pio2_3;
|
||||
r = t-w;
|
||||
w = fn*pio2_3t-((t-r)-w);
|
||||
w = fn*pio2_3t-((t-r)-w);
|
||||
y[0] = r-w;
|
||||
}
|
||||
}
|
||||
@ -152,7 +135,7 @@ pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
|
||||
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
|
||||
else return n;
|
||||
}
|
||||
/*
|
||||
/*
|
||||
* all other (large) arguments
|
||||
*/
|
||||
if(ix>=0x7ff00000) { /* x is inf or NaN */
|
||||
|
||||
174
third-party/fdlibm/include/fdlibm.h
vendored
174
third-party/fdlibm/include/fdlibm.h
vendored
@ -24,56 +24,17 @@
|
||||
#ifdef __LITTLE_ENDIAN
|
||||
#define __HI(x) *(1+(int*)&x)
|
||||
#define __LO(x) *(int*)&x
|
||||
#define __HIp(x) *(1+(int*)x)
|
||||
#define __LOp(x) *(int*)x
|
||||
#else
|
||||
#define __HI(x) *(int*)&x
|
||||
#define __LO(x) *(1+(int*)&x)
|
||||
#define __HIp(x) *(int*)x
|
||||
#define __LOp(x) *(1+(int*)x)
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
#define __P(p) p
|
||||
#else
|
||||
#define __P(p) ()
|
||||
#endif
|
||||
|
||||
/*
|
||||
* ANSI/POSIX
|
||||
*/
|
||||
|
||||
extern int signgam;
|
||||
|
||||
#define MAXFLOAT ((float)3.40282346638528860e+38)
|
||||
|
||||
enum fdversion {fdlibm_ieee = -1, fdlibm_svid, fdlibm_xopen, fdlibm_posix};
|
||||
|
||||
#define _LIB_VERSION_TYPE enum fdversion
|
||||
#define _LIB_VERSION _fdlib_version
|
||||
|
||||
/* if global variable _LIB_VERSION is not desirable, one may
|
||||
* change the following to be a constant by:
|
||||
* #define _LIB_VERSION_TYPE const enum version
|
||||
* In that case, after one initializes the value _LIB_VERSION (see
|
||||
* s_lib_version.c) during compile time, it cannot be modified
|
||||
* in the middle of a program
|
||||
*/
|
||||
extern _LIB_VERSION_TYPE _LIB_VERSION;
|
||||
|
||||
#define _IEEE_ fdlibm_ieee
|
||||
#define _SVID_ fdlibm_svid
|
||||
#define _XOPEN_ fdlibm_xopen
|
||||
#define _POSIX_ fdlibm_posix
|
||||
|
||||
struct exception {
|
||||
int type;
|
||||
char *name;
|
||||
double arg1;
|
||||
double arg2;
|
||||
double retval;
|
||||
};
|
||||
|
||||
#define HUGE MAXFLOAT
|
||||
|
||||
/*
|
||||
@ -93,126 +54,39 @@ struct exception {
|
||||
/*
|
||||
* ANSI/POSIX
|
||||
*/
|
||||
extern double acos __P((double));
|
||||
extern double asin __P((double));
|
||||
extern double atan __P((double));
|
||||
extern double atan2 __P((double, double));
|
||||
extern double cos __P((double));
|
||||
extern double sin __P((double));
|
||||
extern double tan __P((double));
|
||||
extern double acos (double);
|
||||
extern double asin (double);
|
||||
extern double atan (double);
|
||||
extern double atan2 (double, double);
|
||||
extern double cos (double);
|
||||
extern double sin (double);
|
||||
extern double tan (double);
|
||||
|
||||
extern double cosh __P((double));
|
||||
extern double sinh __P((double));
|
||||
extern double tanh __P((double));
|
||||
extern double exp (double);
|
||||
extern double log (double);
|
||||
|
||||
extern double exp __P((double));
|
||||
extern double frexp __P((double, int *));
|
||||
extern double ldexp __P((double, int));
|
||||
extern double log __P((double));
|
||||
extern double log10 __P((double));
|
||||
extern double modf __P((double, double *));
|
||||
extern double pow (double, double);
|
||||
extern double sqrt (double);
|
||||
|
||||
extern double pow __P((double, double));
|
||||
extern double sqrt __P((double));
|
||||
extern double ceil (double);
|
||||
extern double fabs (double);
|
||||
extern double floor (double);
|
||||
extern double fmod (double, double);
|
||||
|
||||
extern double ceil __P((double));
|
||||
extern double fabs __P((double));
|
||||
extern double floor __P((double));
|
||||
extern double fmod __P((double, double));
|
||||
|
||||
extern double erf __P((double));
|
||||
extern double erfc __P((double));
|
||||
extern double gamma __P((double));
|
||||
extern double hypot __P((double, double));
|
||||
extern int isnan __P((double));
|
||||
extern int finite __P((double));
|
||||
extern double j0 __P((double));
|
||||
extern double j1 __P((double));
|
||||
extern double jn __P((int, double));
|
||||
extern double lgamma __P((double));
|
||||
extern double y0 __P((double));
|
||||
extern double y1 __P((double));
|
||||
extern double yn __P((int, double));
|
||||
|
||||
extern double acosh __P((double));
|
||||
extern double asinh __P((double));
|
||||
extern double atanh __P((double));
|
||||
extern double cbrt __P((double));
|
||||
extern double logb __P((double));
|
||||
extern double nextafter __P((double, double));
|
||||
extern double remainder __P((double, double));
|
||||
#ifdef _SCALB_INT
|
||||
extern double scalb __P((double, int));
|
||||
#else
|
||||
extern double scalb __P((double, double));
|
||||
#endif
|
||||
|
||||
extern int matherr __P((struct exception *));
|
||||
|
||||
/*
|
||||
* IEEE Test Vector
|
||||
*/
|
||||
extern double significand __P((double));
|
||||
extern int isnan (double);
|
||||
extern int finite (double);
|
||||
|
||||
/*
|
||||
* Functions callable from C, intended to support IEEE arithmetic.
|
||||
*/
|
||||
extern double copysign __P((double, double));
|
||||
extern int ilogb __P((double));
|
||||
extern double rint __P((double));
|
||||
extern double scalbn __P((double, int));
|
||||
|
||||
/*
|
||||
* BSD math library entry points
|
||||
*/
|
||||
extern double expm1 __P((double));
|
||||
extern double log1p __P((double));
|
||||
|
||||
/*
|
||||
* Reentrant version of gamma & lgamma; passes signgam back by reference
|
||||
* as the second argument; user must allocate space for signgam.
|
||||
*/
|
||||
#ifdef _REENTRANT
|
||||
extern double gamma_r __P((double, int *));
|
||||
extern double lgamma_r __P((double, int *));
|
||||
#endif /* _REENTRANT */
|
||||
extern double copysign (double, double);
|
||||
extern double scalbn (double, int);
|
||||
|
||||
/* ieee style elementary functions */
|
||||
extern double __ieee754_sqrt __P((double));
|
||||
extern double __ieee754_acos __P((double));
|
||||
extern double __ieee754_acosh __P((double));
|
||||
extern double __ieee754_log __P((double));
|
||||
extern double __ieee754_atanh __P((double));
|
||||
extern double __ieee754_asin __P((double));
|
||||
extern double __ieee754_atan2 __P((double,double));
|
||||
extern double __ieee754_exp __P((double));
|
||||
extern double __ieee754_cosh __P((double));
|
||||
extern double __ieee754_fmod __P((double,double));
|
||||
extern double __ieee754_pow __P((double,double));
|
||||
extern double __ieee754_lgamma_r __P((double,int *));
|
||||
extern double __ieee754_gamma_r __P((double,int *));
|
||||
extern double __ieee754_lgamma __P((double));
|
||||
extern double __ieee754_gamma __P((double));
|
||||
extern double __ieee754_log10 __P((double));
|
||||
extern double __ieee754_sinh __P((double));
|
||||
extern double __ieee754_hypot __P((double,double));
|
||||
extern double __ieee754_j0 __P((double));
|
||||
extern double __ieee754_j1 __P((double));
|
||||
extern double __ieee754_y0 __P((double));
|
||||
extern double __ieee754_y1 __P((double));
|
||||
extern double __ieee754_jn __P((int,double));
|
||||
extern double __ieee754_yn __P((int,double));
|
||||
extern double __ieee754_remainder __P((double,double));
|
||||
extern int __ieee754_rem_pio2 __P((double,double*));
|
||||
#ifdef _SCALB_INT
|
||||
extern double __ieee754_scalb __P((double,int));
|
||||
#else
|
||||
extern double __ieee754_scalb __P((double,double));
|
||||
#endif
|
||||
extern int __ieee754_rem_pio2 (double,double*);
|
||||
|
||||
/* fdlibm kernel function */
|
||||
extern double __kernel_standard __P((double,double,int));
|
||||
extern double __kernel_sin __P((double,double,int));
|
||||
extern double __kernel_cos __P((double,double));
|
||||
extern double __kernel_tan __P((double,double,int));
|
||||
extern int __kernel_rem_pio2 __P((double*,double*,int,int,int,const int*));
|
||||
extern double __kernel_sin (double,double,int);
|
||||
extern double __kernel_cos (double,double);
|
||||
extern double __kernel_tan (double,double,int);
|
||||
extern int __kernel_rem_pio2 (double*,double*,int,int,int,const int*);
|
||||
|
||||
29
third-party/fdlibm/k_cos.c
vendored
29
third-party/fdlibm/k_cos.c
vendored
@ -15,7 +15,7 @@
|
||||
* __kernel_cos( x, y )
|
||||
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
* Input y is the tail of x.
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
|
||||
@ -26,14 +26,14 @@
|
||||
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
||||
* where the remez error is
|
||||
*
|
||||
* | 2 4 6 8 10 12 14 | -58
|
||||
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
||||
* | |
|
||||
*
|
||||
* 4 6 8 10 12 14
|
||||
* | 2 4 6 8 10 12 14 | -58
|
||||
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
||||
* | |
|
||||
*
|
||||
* 4 6 8 10 12 14
|
||||
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
||||
* cos(x) = 1 - x*x/2 + r
|
||||
* since cos(x+y) ~ cos(x) - sin(x)*y
|
||||
* since cos(x+y) ~ cos(x) - sin(x)*y
|
||||
* ~ cos(x) - x*y,
|
||||
* a correction term is necessary in cos(x) and hence
|
||||
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
|
||||
@ -48,11 +48,7 @@
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
static const double
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
|
||||
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
|
||||
@ -61,12 +57,7 @@ C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
|
||||
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
|
||||
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
|
||||
|
||||
#ifdef __STDC__
|
||||
double __kernel_cos(double x, double y)
|
||||
#else
|
||||
double __kernel_cos(x, y)
|
||||
double x,y;
|
||||
#endif
|
||||
double __kernel_cos(double x, double y)
|
||||
{
|
||||
double a,hz,z,r,qx;
|
||||
int ix;
|
||||
@ -76,7 +67,7 @@ C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
|
||||
}
|
||||
z = x*x;
|
||||
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
|
||||
if(ix < 0x3FD33333) /* if |x| < 0.3 */
|
||||
if(ix < 0x3FD33333) /* if |x| < 0.3 */
|
||||
return one - (0.5*z - (z*r - x*y));
|
||||
else {
|
||||
if(ix > 0x3fe90000) { /* x > 0.78125 */
|
||||
|
||||
73
third-party/fdlibm/k_rem_pio2.c
vendored
73
third-party/fdlibm/k_rem_pio2.c
vendored
@ -14,12 +14,12 @@
|
||||
/*
|
||||
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
|
||||
* double x[],y[]; int e0,nx,prec; int ipio2[];
|
||||
*
|
||||
* __kernel_rem_pio2 return the last three digits of N with
|
||||
*
|
||||
* __kernel_rem_pio2 return the last three digits of N with
|
||||
* y = x - N*pi/2
|
||||
* so that |y| < pi/2.
|
||||
*
|
||||
* The method is to compute the integer (mod 8) and fraction parts of
|
||||
* The method is to compute the integer (mod 8) and fraction parts of
|
||||
* (2/pi)*x without doing the full multiplication. In general we
|
||||
* skip the part of the product that are known to be a huge integer (
|
||||
* more accurately, = 0 mod 8 ). Thus the number of operations are
|
||||
@ -28,10 +28,10 @@
|
||||
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
|
||||
*
|
||||
* Input parameters:
|
||||
* x[] The input value (must be positive) is broken into nx
|
||||
* x[] The input value (must be positive) is broken into nx
|
||||
* pieces of 24-bit integers in double precision format.
|
||||
* x[i] will be the i-th 24 bit of x. The scaled exponent
|
||||
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
|
||||
* x[i] will be the i-th 24 bit of x. The scaled exponent
|
||||
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
|
||||
* match x's up to 24 bits.
|
||||
*
|
||||
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
|
||||
@ -61,15 +61,15 @@
|
||||
*
|
||||
* nx dimension of x[]
|
||||
*
|
||||
* prec an integer indicating the precision:
|
||||
* prec an integer indicating the precision:
|
||||
* 0 24 bits (single)
|
||||
* 1 53 bits (double)
|
||||
* 2 64 bits (extended)
|
||||
* 3 113 bits (quad)
|
||||
*
|
||||
* ipio2[]
|
||||
* integer array, contains the (24*i)-th to (24*i+23)-th
|
||||
* bit of 2/pi after binary point. The corresponding
|
||||
* integer array, contains the (24*i)-th to (24*i+23)-th
|
||||
* bit of 2/pi after binary point. The corresponding
|
||||
* floating value is
|
||||
*
|
||||
* ipio2[i] * 2^(-24(i+1)).
|
||||
@ -80,12 +80,12 @@
|
||||
*
|
||||
* Here is the description of some local variables:
|
||||
*
|
||||
* jk jk+1 is the initial number of terms of ipio2[] needed
|
||||
* jk jk+1 is the initial number of terms of ipio2[] needed
|
||||
* in the computation. The recommended value is 2,3,4,
|
||||
* 6 for single, double, extended,and quad.
|
||||
*
|
||||
* jz local integer variable indicating the number of
|
||||
* terms of ipio2[] used.
|
||||
* jz local integer variable indicating the number of
|
||||
* terms of ipio2[] used.
|
||||
*
|
||||
* jx nx - 1
|
||||
*
|
||||
@ -98,16 +98,16 @@
|
||||
*
|
||||
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
|
||||
*
|
||||
* q[] double array with integral value, representing the
|
||||
* q[] double array with integral value, representing the
|
||||
* 24-bits chunk of the product of x and 2/pi.
|
||||
*
|
||||
* q0 the corresponding exponent of q[0]. Note that the
|
||||
* exponent for q[i] would be q0-24*i.
|
||||
*
|
||||
* PIo2[] double precision array, obtained by cutting pi/2
|
||||
* into 24 bits chunks.
|
||||
* into 24 bits chunks.
|
||||
*
|
||||
* f[] ipio2[] in floating point
|
||||
* f[] ipio2[] in floating point
|
||||
*
|
||||
* iq[] integer array by breaking up q[] in 24-bits chunk.
|
||||
*
|
||||
@ -121,25 +121,17 @@
|
||||
|
||||
/*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
|
||||
#else
|
||||
static int init_jk[] = {2,3,4,6};
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double PIo2[] = {
|
||||
#else
|
||||
static double PIo2[] = {
|
||||
#endif
|
||||
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
|
||||
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
|
||||
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
|
||||
@ -150,22 +142,13 @@ static double PIo2[] = {
|
||||
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
static const double
|
||||
zero = 0.0,
|
||||
one = 1.0,
|
||||
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
||||
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
|
||||
|
||||
#ifdef __STDC__
|
||||
int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
|
||||
#else
|
||||
int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
|
||||
double x[], y[]; int e0,nx,prec; int ipio2[];
|
||||
#endif
|
||||
int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
|
||||
{
|
||||
int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
|
||||
double z,fw,f[20],fq[20],q[20];
|
||||
@ -258,7 +241,7 @@ recompute:
|
||||
while(iq[jz]==0) { jz--; q0-=24;}
|
||||
} else { /* break z into 24-bit if necessary */
|
||||
z = scalbn(z,-q0);
|
||||
if(z>=two24) {
|
||||
if(z>=two24) {
|
||||
fw = (double)((int)(twon24*z));
|
||||
iq[jz] = (int)(z-two24*fw);
|
||||
jz += 1; q0 += 24;
|
||||
@ -283,29 +266,29 @@ recompute:
|
||||
case 0:
|
||||
fw = 0.0;
|
||||
for (i=jz;i>=0;i--) fw += fq[i];
|
||||
y[0] = (ih==0)? fw: -fw;
|
||||
y[0] = (ih==0)? fw: -fw;
|
||||
break;
|
||||
case 1:
|
||||
case 2:
|
||||
fw = 0.0;
|
||||
for (i=jz;i>=0;i--) fw += fq[i];
|
||||
y[0] = (ih==0)? fw: -fw;
|
||||
for (i=jz;i>=0;i--) fw += fq[i];
|
||||
y[0] = (ih==0)? fw: -fw;
|
||||
fw = fq[0]-fw;
|
||||
for (i=1;i<=jz;i++) fw += fq[i];
|
||||
y[1] = (ih==0)? fw: -fw;
|
||||
y[1] = (ih==0)? fw: -fw;
|
||||
break;
|
||||
case 3: /* painful */
|
||||
for (i=jz;i>0;i--) {
|
||||
fw = fq[i-1]+fq[i];
|
||||
fw = fq[i-1]+fq[i];
|
||||
fq[i] += fq[i-1]-fw;
|
||||
fq[i-1] = fw;
|
||||
}
|
||||
for (i=jz;i>1;i--) {
|
||||
fw = fq[i-1]+fq[i];
|
||||
fw = fq[i-1]+fq[i];
|
||||
fq[i] += fq[i-1]-fw;
|
||||
fq[i-1] = fw;
|
||||
}
|
||||
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
|
||||
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
|
||||
if(ih==0) {
|
||||
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
|
||||
} else {
|
||||
|
||||
27
third-party/fdlibm/k_sin.c
vendored
27
third-party/fdlibm/k_sin.c
vendored
@ -15,10 +15,10 @@
|
||||
* kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
||||
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
||||
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
||||
* 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
|
||||
* 3. sin(x) is approximated by a polynomial of degree 13 on
|
||||
* [0,pi/4]
|
||||
@ -26,13 +26,13 @@
|
||||
* sin(x) ~ x + S1*x + ... + S6*x
|
||||
* where
|
||||
*
|
||||
* |sin(x) 2 4 6 8 10 12 | -58
|
||||
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
||||
* | x |
|
||||
*
|
||||
* |sin(x) 2 4 6 8 10 12 | -58
|
||||
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
||||
* | x |
|
||||
*
|
||||
* 4. sin(x+y) = sin(x) + sin'(x')*y
|
||||
* ~ sin(x) + (1-x*x/2)*y
|
||||
* For better accuracy, let
|
||||
* For better accuracy, let
|
||||
* 3 2 2 2 2
|
||||
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
|
||||
* then 3 2
|
||||
@ -41,11 +41,7 @@
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
static const double
|
||||
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
||||
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
|
||||
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
|
||||
@ -54,12 +50,7 @@ S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
|
||||
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
|
||||
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
|
||||
|
||||
#ifdef __STDC__
|
||||
double __kernel_sin(double x, double y, int iy)
|
||||
#else
|
||||
double __kernel_sin(x, y, iy)
|
||||
double x,y; int iy; /* iy=0 if y is zero */
|
||||
#endif
|
||||
double __kernel_sin(double x, double y, int iy)
|
||||
{
|
||||
double z,r,v;
|
||||
int ix;
|
||||
|
||||
733
third-party/fdlibm/k_standard.c
vendored
733
third-party/fdlibm/k_standard.c
vendored
@ -1,733 +0,0 @@
|
||||
|
||||
/* @(#)k_standard.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
#include <errno.h>
|
||||
|
||||
#ifndef _USE_WRITE
|
||||
#include <stdio.h> /* fputs(), stderr */
|
||||
// #define WRITE2(u,v) fputs(u, stderr)
|
||||
#else /* !defined(_USE_WRITE) */
|
||||
#include <unistd.h> /* write */
|
||||
// #define WRITE2(u,v) write(2, u, v)
|
||||
#undef fflush
|
||||
#endif /* !defined(_USE_WRITE) */
|
||||
|
||||
static double zero = 0.0; /* used as const */
|
||||
|
||||
/*
|
||||
* Standard conformance (non-IEEE) on exception cases.
|
||||
* Mapping:
|
||||
* 1 -- acos(|x|>1)
|
||||
* 2 -- asin(|x|>1)
|
||||
* 3 -- atan2(+-0,+-0)
|
||||
* 4 -- hypot overflow
|
||||
* 5 -- cosh overflow
|
||||
* 6 -- exp overflow
|
||||
* 7 -- exp underflow
|
||||
* 8 -- y0(0)
|
||||
* 9 -- y0(-ve)
|
||||
* 10-- y1(0)
|
||||
* 11-- y1(-ve)
|
||||
* 12-- yn(0)
|
||||
* 13-- yn(-ve)
|
||||
* 14-- lgamma(finite) overflow
|
||||
* 15-- lgamma(-integer)
|
||||
* 16-- log(0)
|
||||
* 17-- log(x<0)
|
||||
* 18-- log10(0)
|
||||
* 19-- log10(x<0)
|
||||
* 20-- pow(0.0,0.0)
|
||||
* 21-- pow(x,y) overflow
|
||||
* 22-- pow(x,y) underflow
|
||||
* 23-- pow(0,negative)
|
||||
* 24-- pow(neg,non-integral)
|
||||
* 25-- sinh(finite) overflow
|
||||
* 26-- sqrt(negative)
|
||||
* 27-- fmod(x,0)
|
||||
* 28-- remainder(x,0)
|
||||
* 29-- acosh(x<1)
|
||||
* 30-- atanh(|x|>1)
|
||||
* 31-- atanh(|x|=1)
|
||||
* 32-- scalb overflow
|
||||
* 33-- scalb underflow
|
||||
* 34-- j0(|x|>X_TLOSS)
|
||||
* 35-- y0(x>X_TLOSS)
|
||||
* 36-- j1(|x|>X_TLOSS)
|
||||
* 37-- y1(x>X_TLOSS)
|
||||
* 38-- jn(|x|>X_TLOSS, n)
|
||||
* 39-- yn(x>X_TLOSS, n)
|
||||
* 40-- gamma(finite) overflow
|
||||
* 41-- gamma(-integer)
|
||||
* 42-- pow(NaN,0.0)
|
||||
*/
|
||||
|
||||
|
||||
#ifdef __STDC__
|
||||
double __kernel_standard(double x, double y, int type)
|
||||
#else
|
||||
double __kernel_standard(x,y,type)
|
||||
double x,y; int type;
|
||||
#endif
|
||||
{
|
||||
struct exception exc;
|
||||
#ifndef HUGE_VAL /* this is the only routine that uses HUGE_VAL */
|
||||
#define HUGE_VAL inf
|
||||
double inf = 0.0;
|
||||
|
||||
__HI(inf) = 0x7ff00000; /* set inf to infinite */
|
||||
#endif
|
||||
|
||||
#ifdef _USE_WRITE
|
||||
(void) fflush(stdout);
|
||||
#endif
|
||||
exc.arg1 = x;
|
||||
exc.arg2 = y;
|
||||
switch(type) {
|
||||
case 1:
|
||||
/* acos(|x|>1) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "acos";
|
||||
exc.retval = zero;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if(_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("acos: DOMAIN error\n", 19);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 2:
|
||||
/* asin(|x|>1) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "asin";
|
||||
exc.retval = zero;
|
||||
// if(_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if(_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("asin: DOMAIN error\n", 19);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 3:
|
||||
/* atan2(+-0,+-0) */
|
||||
exc.arg1 = y;
|
||||
exc.arg2 = x;
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "atan2";
|
||||
exc.retval = zero;
|
||||
// if(_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if(_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("atan2: DOMAIN error\n", 20);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 4:
|
||||
/* hypot(finite,finite) overflow */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = "hypot";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = HUGE;
|
||||
else
|
||||
exc.retval = HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 5:
|
||||
/* cosh(finite) overflow */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = "cosh";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = HUGE;
|
||||
else
|
||||
exc.retval = HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 6:
|
||||
/* exp(finite) overflow */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = "exp";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = HUGE;
|
||||
else
|
||||
exc.retval = HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 7:
|
||||
/* exp(finite) underflow */
|
||||
exc.type = UNDERFLOW;
|
||||
exc.name = "exp";
|
||||
exc.retval = zero;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 8:
|
||||
/* y0(0) = -inf */
|
||||
exc.type = DOMAIN; /* should be SING for IEEE */
|
||||
exc.name = "y0";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("y0: DOMAIN error\n", 17);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 9:
|
||||
/* y0(x<0) = NaN */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "y0";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("y0: DOMAIN error\n", 17);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 10:
|
||||
/* y1(0) = -inf */
|
||||
exc.type = DOMAIN; /* should be SING for IEEE */
|
||||
exc.name = "y1";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("y1: DOMAIN error\n", 17);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 11:
|
||||
/* y1(x<0) = NaN */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "y1";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("y1: DOMAIN error\n", 17);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 12:
|
||||
/* yn(n,0) = -inf */
|
||||
exc.type = DOMAIN; /* should be SING for IEEE */
|
||||
exc.name = "yn";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("yn: DOMAIN error\n", 17);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 13:
|
||||
/* yn(x<0) = NaN */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "yn";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("yn: DOMAIN error\n", 17);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 14:
|
||||
/* lgamma(finite) overflow */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = "lgamma";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = HUGE;
|
||||
else
|
||||
exc.retval = HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 15:
|
||||
/* lgamma(-integer) or lgamma(0) */
|
||||
exc.type = SING;
|
||||
exc.name = "lgamma";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = HUGE;
|
||||
else
|
||||
exc.retval = HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("lgamma: SING error\n", 19);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 16:
|
||||
/* log(0) */
|
||||
exc.type = SING;
|
||||
exc.name = "log";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("log: SING error\n", 16);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 17:
|
||||
/* log(x<0) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "log";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("log: DOMAIN error\n", 18);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 18:
|
||||
/* log10(0) */
|
||||
exc.type = SING;
|
||||
exc.name = "log10";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("log10: SING error\n", 18);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 19:
|
||||
/* log10(x<0) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "log10";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = -HUGE;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("log10: DOMAIN error\n", 20);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 20:
|
||||
/* pow(0.0,0.0) */
|
||||
/* error only if _LIB_VERSION == _SVID_ */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "pow";
|
||||
exc.retval = zero;
|
||||
// if (_LIB_VERSION != _SVID_) exc.retval = 1.0;
|
||||
// else if (!matherr(&exc)) {
|
||||
// // (void) WRITE2("pow(0,0): DOMAIN error\n", 23);
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 21:
|
||||
/* pow(x,y) overflow */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = "pow";
|
||||
if (_LIB_VERSION == _SVID_) {
|
||||
exc.retval = HUGE;
|
||||
y *= 0.5;
|
||||
if(x<zero&&rint(y)!=y) exc.retval = -HUGE;
|
||||
} else {
|
||||
exc.retval = HUGE_VAL;
|
||||
y *= 0.5;
|
||||
if(x<zero&&rint(y)!=y) exc.retval = -HUGE_VAL;
|
||||
}
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 22:
|
||||
/* pow(x,y) underflow */
|
||||
exc.type = UNDERFLOW;
|
||||
exc.name = "pow";
|
||||
exc.retval = zero;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 23:
|
||||
/* 0**neg */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "pow";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = zero;
|
||||
else
|
||||
exc.retval = -HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("pow(0,neg): DOMAIN error\n", 25);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 24:
|
||||
/* neg**non-integral */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "pow";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = zero;
|
||||
else
|
||||
exc.retval = zero/zero; /* X/Open allow NaN */
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("neg**non-integral: DOMAIN error\n", 32);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 25:
|
||||
/* sinh(finite) overflow */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = "sinh";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = ( (x>zero) ? HUGE : -HUGE);
|
||||
else
|
||||
exc.retval = ( (x>zero) ? HUGE_VAL : -HUGE_VAL);
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 26:
|
||||
/* sqrt(x<0) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "sqrt";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = zero;
|
||||
else
|
||||
exc.retval = zero/zero;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("sqrt: DOMAIN error\n", 19);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 27:
|
||||
/* fmod(x,0) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "fmod";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = x;
|
||||
else
|
||||
exc.retval = zero/zero;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("fmod: DOMAIN error\n", 20);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 28:
|
||||
/* remainder(x,0) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "remainder";
|
||||
exc.retval = zero/zero;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("remainder: DOMAIN error\n", 24);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 29:
|
||||
/* acosh(x<1) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "acosh";
|
||||
exc.retval = zero/zero;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("acosh: DOMAIN error\n", 20);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 30:
|
||||
/* atanh(|x|>1) */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "atanh";
|
||||
exc.retval = zero/zero;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("atanh: DOMAIN error\n", 20);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 31:
|
||||
/* atanh(|x|=1) */
|
||||
exc.type = SING;
|
||||
exc.name = "atanh";
|
||||
exc.retval = x/zero; /* sign(x)*inf */
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("atanh: SING error\n", 18);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 32:
|
||||
/* scalb overflow; SVID also returns +-HUGE_VAL */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = "scalb";
|
||||
exc.retval = x > zero ? HUGE_VAL : -HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 33:
|
||||
/* scalb underflow */
|
||||
exc.type = UNDERFLOW;
|
||||
exc.name = "scalb";
|
||||
exc.retval = copysign(zero,x);
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 34:
|
||||
/* j0(|x|>X_TLOSS) */
|
||||
exc.type = TLOSS;
|
||||
exc.name = "j0";
|
||||
exc.retval = zero;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2(exc.name, 2);
|
||||
// // (void) WRITE2(": TLOSS error\n", 14);
|
||||
// }
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 35:
|
||||
/* y0(x>X_TLOSS) */
|
||||
exc.type = TLOSS;
|
||||
exc.name = "y0";
|
||||
exc.retval = zero;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2(exc.name, 2);
|
||||
// // (void) WRITE2(": TLOSS error\n", 14);
|
||||
// }
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 36:
|
||||
/* j1(|x|>X_TLOSS) */
|
||||
exc.type = TLOSS;
|
||||
exc.name = "j1";
|
||||
exc.retval = zero;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2(exc.name, 2);
|
||||
// // (void) WRITE2(": TLOSS error\n", 14);
|
||||
// }
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 37:
|
||||
/* y1(x>X_TLOSS) */
|
||||
exc.type = TLOSS;
|
||||
exc.name = "y1";
|
||||
exc.retval = zero;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2(exc.name, 2);
|
||||
// // (void) WRITE2(": TLOSS error\n", 14);
|
||||
// }
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 38:
|
||||
/* jn(|x|>X_TLOSS) */
|
||||
exc.type = TLOSS;
|
||||
exc.name = "jn";
|
||||
exc.retval = zero;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2(exc.name, 2);
|
||||
// // (void) WRITE2(": TLOSS error\n", 14);
|
||||
// }
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 39:
|
||||
/* yn(x>X_TLOSS) */
|
||||
exc.type = TLOSS;
|
||||
exc.name = "yn";
|
||||
exc.retval = zero;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2(exc.name, 2);
|
||||
// // (void) WRITE2(": TLOSS error\n", 14);
|
||||
// }
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 40:
|
||||
/* gamma(finite) overflow */
|
||||
exc.type = OVERFLOW;
|
||||
exc.name = "gamma";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = HUGE;
|
||||
else
|
||||
exc.retval = HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = ERANGE;
|
||||
// else if (!matherr(&exc)) {
|
||||
// errno = ERANGE;
|
||||
// }
|
||||
break;
|
||||
case 41:
|
||||
/* gamma(-integer) or gamma(0) */
|
||||
exc.type = SING;
|
||||
exc.name = "gamma";
|
||||
if (_LIB_VERSION == _SVID_)
|
||||
exc.retval = HUGE;
|
||||
else
|
||||
exc.retval = HUGE_VAL;
|
||||
// if (_LIB_VERSION == _POSIX_)
|
||||
// errno = EDOM;
|
||||
// else if (!matherr(&exc)) {
|
||||
// if (_LIB_VERSION == _SVID_) {
|
||||
// // (void) WRITE2("gamma: SING error\n", 18);
|
||||
// }
|
||||
// errno = EDOM;
|
||||
// }
|
||||
break;
|
||||
case 42:
|
||||
/* pow(NaN,0.0) */
|
||||
/* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */
|
||||
exc.type = DOMAIN;
|
||||
exc.name = "pow";
|
||||
exc.retval = x;
|
||||
// if (_LIB_VERSION == _IEEE_ ||
|
||||
// _LIB_VERSION == _POSIX_) exc.retval = 1.0;
|
||||
// else if (!matherr(&exc)) {
|
||||
// errno = EDOM;
|
||||
// }
|
||||
// break;
|
||||
}
|
||||
return exc.retval;
|
||||
}
|
||||
12
third-party/fdlibm/k_tan.c
vendored
12
third-party/fdlibm/k_tan.c
vendored
@ -10,7 +10,6 @@
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* INDENT OFF */
|
||||
/* __kernel_tan( x, y, k )
|
||||
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
@ -26,9 +25,9 @@
|
||||
* tan(x) ~ x + T1*x + ... + T13*x
|
||||
* where
|
||||
*
|
||||
* |tan(x) 2 4 26 | -59.2
|
||||
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
||||
* | x |
|
||||
* |tan(x) 2 4 26 | -59.2
|
||||
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
||||
* | x |
|
||||
*
|
||||
* Note: tan(x+y) = tan(x) + tan'(x)*y
|
||||
* ~ tan(x) + (1+x*x)*y
|
||||
@ -68,10 +67,9 @@ static const double xxx[] = {
|
||||
#define pio4 xxx[14]
|
||||
#define pio4lo xxx[15]
|
||||
#define T xxx
|
||||
/* INDENT ON */
|
||||
|
||||
double
|
||||
__kernel_tan(double x, double y, int iy) {
|
||||
double __kernel_tan(double x, double y, int iy)
|
||||
{
|
||||
double z, r, v, w, s;
|
||||
int ix, hx;
|
||||
|
||||
|
||||
@ -11,15 +11,15 @@
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __ieee754_acos(x)
|
||||
* Method :
|
||||
/* acos(x)
|
||||
* Method :
|
||||
* acos(x) = pi/2 - asin(x)
|
||||
* acos(-x) = pi/2 + asin(x)
|
||||
* For |x|<=0.5
|
||||
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
|
||||
* For x>0.5
|
||||
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
|
||||
* = 2asin(sqrt((1-x)/2))
|
||||
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
|
||||
* = 2asin(sqrt((1-x)/2))
|
||||
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
|
||||
* = 2f + (2c + 2s*z*R(z))
|
||||
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
|
||||
@ -37,13 +37,9 @@
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
||||
static const double
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
||||
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
||||
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
||||
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
||||
@ -57,12 +53,7 @@ qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
||||
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
||||
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_acos(double x)
|
||||
#else
|
||||
double __ieee754_acos(x)
|
||||
double x;
|
||||
#endif
|
||||
double acos(double x)
|
||||
{
|
||||
double z,p,q,r,w,s,c,df;
|
||||
int hx,ix;
|
||||
@ -11,13 +11,13 @@
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __ieee754_asin(x)
|
||||
* Method :
|
||||
/* asin(x)
|
||||
* Method :
|
||||
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
|
||||
* we approximate asin(x) on [0,0.5] by
|
||||
* asin(x) = x + x*x^2*R(x^2)
|
||||
* where
|
||||
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
|
||||
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
|
||||
* and its remez error is bounded by
|
||||
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
|
||||
*
|
||||
@ -44,11 +44,7 @@
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
huge = 1.000e+300,
|
||||
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
||||
@ -66,12 +62,7 @@ qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
||||
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
||||
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_asin(double x)
|
||||
#else
|
||||
double __ieee754_asin(x)
|
||||
double x;
|
||||
#endif
|
||||
double asin(double x)
|
||||
{
|
||||
double t = 0,w,p,q,c,r,s;
|
||||
int hx,ix;
|
||||
@ -80,8 +71,8 @@ qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
||||
if(ix>= 0x3ff00000) { /* |x|>= 1 */
|
||||
if(((ix-0x3ff00000)|__LO(x))==0)
|
||||
/* asin(1)=+-pi/2 with inexact */
|
||||
return x*pio2_hi+x*pio2_lo;
|
||||
return (x-x)/(x-x); /* asin(|x|>1) is NaN */
|
||||
return x*pio2_hi+x*pio2_lo;
|
||||
return (x-x)/(x-x); /* asin(|x|>1) is NaN */
|
||||
} else if (ix<0x3fe00000) { /* |x|<0.5 */
|
||||
if(ix<0x3e400000) { /* if |x| < 2**-27 */
|
||||
if(huge+x>one) return x;/* return x with inexact if x!=0*/
|
||||
@ -109,6 +100,6 @@ qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
||||
p = 2.0*s*r-(pio2_lo-2.0*c);
|
||||
q = pio4_hi-2.0*w;
|
||||
t = pio4_hi-(p-q);
|
||||
}
|
||||
if(hx>0) return t; else return -t;
|
||||
}
|
||||
if(hx>0) return t; else return -t;
|
||||
}
|
||||
35
third-party/fdlibm/s_atan.c
vendored
35
third-party/fdlibm/s_atan.c
vendored
@ -26,41 +26,29 @@
|
||||
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double atanhi[] = {
|
||||
#else
|
||||
static double atanhi[] = {
|
||||
#endif
|
||||
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
|
||||
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
|
||||
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
|
||||
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double atanlo[] = {
|
||||
#else
|
||||
static double atanlo[] = {
|
||||
#endif
|
||||
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
|
||||
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
|
||||
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
|
||||
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double aT[] = {
|
||||
#else
|
||||
static double aT[] = {
|
||||
#endif
|
||||
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
|
||||
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
|
||||
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
|
||||
@ -74,20 +62,11 @@ static double aT[] = {
|
||||
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
static const double
|
||||
one = 1.0,
|
||||
huge = 1.0e300;
|
||||
|
||||
#ifdef __STDC__
|
||||
double atan(double x)
|
||||
#else
|
||||
double atan(x)
|
||||
double x;
|
||||
#endif
|
||||
double atan(double x)
|
||||
{
|
||||
double w,s1,s2,z;
|
||||
int ix,hx,id;
|
||||
@ -109,9 +88,9 @@ huge = 1.0e300;
|
||||
x = fabs(x);
|
||||
if (ix < 0x3ff30000) { /* |x| < 1.1875 */
|
||||
if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
|
||||
id = 0; x = (2.0*x-one)/(2.0+x);
|
||||
id = 0; x = (2.0*x-one)/(2.0+x);
|
||||
} else { /* 11/16<=|x|< 19/16 */
|
||||
id = 1; x = (x-one)/(x+one);
|
||||
id = 1; x = (x-one)/(x+one);
|
||||
}
|
||||
} else {
|
||||
if (ix < 0x40038000) { /* |x| < 2.4375 */
|
||||
|
||||
@ -12,10 +12,10 @@
|
||||
*
|
||||
*/
|
||||
|
||||
/* __ieee754_atan2(y,x)
|
||||
/* atan2(y,x)
|
||||
* Method :
|
||||
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
|
||||
* 2. Reduce x to positive by (if x and y are unexceptional):
|
||||
* 2. Reduce x to positive by (if x and y are unexceptional):
|
||||
* ARG (x+iy) = arctan(y/x) ... if x > 0,
|
||||
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
|
||||
*
|
||||
@ -33,19 +33,15 @@
|
||||
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
static const double
|
||||
tiny = 1.0e-300,
|
||||
zero = 0.0,
|
||||
pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
|
||||
@ -53,12 +49,7 @@ pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
|
||||
pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
|
||||
pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_atan2(double y, double x)
|
||||
#else
|
||||
double __ieee754_atan2(y,x)
|
||||
double y,x;
|
||||
#endif
|
||||
double atan2(double y, double x)
|
||||
{
|
||||
double z;
|
||||
int k,m,hx,hy,ix,iy;
|
||||
15
third-party/fdlibm/s_ceil.c
vendored
15
third-party/fdlibm/s_ceil.c
vendored
@ -22,18 +22,9 @@
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double huge = 1.0e300;
|
||||
#else
|
||||
static double huge = 1.0e300;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
double ceil(double x)
|
||||
#else
|
||||
double ceil(x)
|
||||
double x;
|
||||
#endif
|
||||
double ceil(double x)
|
||||
{
|
||||
int i0,i1,j0;
|
||||
unsigned i,j;
|
||||
@ -43,7 +34,7 @@ static double huge = 1.0e300;
|
||||
if(j0<20) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
|
||||
if(i0<0) {i0=0x80000000;i1=0;}
|
||||
if(i0<0) {i0=0x80000000;i1=0;}
|
||||
else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;}
|
||||
}
|
||||
} else {
|
||||
@ -62,7 +53,7 @@ static double huge = 1.0e300;
|
||||
if((i1&i)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0>0) {
|
||||
if(j0==20) i0+=1;
|
||||
if(j0==20) i0+=1;
|
||||
else {
|
||||
j = i1 + (1<<(52-j0));
|
||||
if(j<i1) i0+=1; /* got a carry */
|
||||
|
||||
7
third-party/fdlibm/s_copysign.c
vendored
7
third-party/fdlibm/s_copysign.c
vendored
@ -19,12 +19,7 @@
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
double copysign(double x, double y)
|
||||
#else
|
||||
double copysign(x,y)
|
||||
double x,y;
|
||||
#endif
|
||||
double copysign(double x, double y)
|
||||
{
|
||||
__HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
|
||||
return x;
|
||||
|
||||
13
third-party/fdlibm/s_cos.c
vendored
13
third-party/fdlibm/s_cos.c
vendored
@ -20,8 +20,8 @@
|
||||
* __ieee754_rem_pio2 ... argument reduction routine
|
||||
*
|
||||
* Method.
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||
* We have
|
||||
*
|
||||
@ -39,17 +39,12 @@
|
||||
* trig(NaN) is that NaN;
|
||||
*
|
||||
* Accuracy:
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
double cos(double x)
|
||||
#else
|
||||
double cos(x)
|
||||
double x;
|
||||
#endif
|
||||
double cos(double x)
|
||||
{
|
||||
double y[2],z=0.0;
|
||||
int n, ix;
|
||||
|
||||
@ -10,7 +10,7 @@
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __ieee754_exp(x)
|
||||
/* exp(x)
|
||||
* Returns the exponential of x.
|
||||
*
|
||||
* Method
|
||||
@ -18,36 +18,36 @@
|
||||
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
||||
* Given x, find r and integer k such that
|
||||
*
|
||||
* x = k*ln2 + r, |r| <= 0.5*ln2.
|
||||
* x = k*ln2 + r, |r| <= 0.5*ln2.
|
||||
*
|
||||
* Here r will be represented as r = hi-lo for better
|
||||
* Here r will be represented as r = hi-lo for better
|
||||
* accuracy.
|
||||
*
|
||||
* 2. Approximation of exp(r) by a special rational function on
|
||||
* the interval [0,0.34658]:
|
||||
* Write
|
||||
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
||||
* We use a special Remes algorithm on [0,0.34658] to generate
|
||||
* a polynomial of degree 5 to approximate R. The maximum error
|
||||
* We use a special Remes algorithm on [0,0.34658] to generate
|
||||
* a polynomial of degree 5 to approximate R. The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-59. In
|
||||
* other words,
|
||||
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
|
||||
* (where z=r*r, and the values of P1 to P5 are listed below)
|
||||
* (where z=r*r, and the values of P1 to P5 are listed below)
|
||||
* and
|
||||
* | 5 | -59
|
||||
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
||||
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
||||
* | |
|
||||
* The computation of exp(r) thus becomes
|
||||
* 2*r
|
||||
* exp(r) = 1 + -------
|
||||
* R - r
|
||||
* r*R1(r)
|
||||
* r*R1(r)
|
||||
* = 1 + r + ----------- (for better accuracy)
|
||||
* 2 - R1(r)
|
||||
* where
|
||||
* 2 4 10
|
||||
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
||||
*
|
||||
*
|
||||
* 3. Scale back to obtain exp(x):
|
||||
* From step 1, we have
|
||||
* exp(x) = 2^k * exp(r)
|
||||
@ -62,24 +62,20 @@
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Misc. info.
|
||||
* For IEEE double
|
||||
* For IEEE double
|
||||
* if x > 7.09782712893383973096e+02 then exp(x) overflow
|
||||
* if x < -7.45133219101941108420e+02 then exp(x) underflow
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
one = 1.0,
|
||||
halF[2] = {0.5,-0.5,},
|
||||
huge = 1.0e+300,
|
||||
@ -98,12 +94,7 @@ P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
||||
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
||||
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_exp(double x) /* default IEEE double exp */
|
||||
#else
|
||||
double __ieee754_exp(x) /* default IEEE double exp */
|
||||
double x;
|
||||
#endif
|
||||
double exp(double x) /* default IEEE double exp */
|
||||
{
|
||||
double y,hi,lo,c,t;
|
||||
int k = 0,xsb;
|
||||
@ -125,7 +116,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
||||
}
|
||||
|
||||
/* argument reduction */
|
||||
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
||||
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
||||
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
||||
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
|
||||
} else {
|
||||
@ -135,7 +126,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
||||
lo = t*ln2LO[0];
|
||||
}
|
||||
x = hi - lo;
|
||||
}
|
||||
}
|
||||
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
|
||||
if(huge+x>one) return one+x;/* trigger inexact */
|
||||
}
|
||||
@ -144,7 +135,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
||||
/* x is now in primary range */
|
||||
t = x*x;
|
||||
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
||||
if(k==0) return one-((x*c)/(c-2.0)-x);
|
||||
if(k==0) return one-((x*c)/(c-2.0)-x);
|
||||
else y = one-((lo-(x*c)/(2.0-c))-hi);
|
||||
if(k >= -1021) {
|
||||
__HI(y) += (k<<20); /* add k to y's exponent */
|
||||
7
third-party/fdlibm/s_fabs.c
vendored
7
third-party/fdlibm/s_fabs.c
vendored
@ -17,12 +17,7 @@
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
double fabs(double x)
|
||||
#else
|
||||
double fabs(x)
|
||||
double x;
|
||||
#endif
|
||||
double fabs(double x)
|
||||
{
|
||||
__HI(x) &= 0x7fffffff;
|
||||
return x;
|
||||
|
||||
9
third-party/fdlibm/s_finite.c
vendored
9
third-party/fdlibm/s_finite.c
vendored
@ -18,14 +18,9 @@
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
int finite(double x)
|
||||
#else
|
||||
int finite(x)
|
||||
double x;
|
||||
#endif
|
||||
int finite(double x)
|
||||
{
|
||||
int hx;
|
||||
int hx;
|
||||
hx = __HI(x);
|
||||
return (unsigned)((hx&0x7fffffff)-0x7ff00000)>>31;
|
||||
}
|
||||
|
||||
15
third-party/fdlibm/s_floor.c
vendored
15
third-party/fdlibm/s_floor.c
vendored
@ -22,18 +22,9 @@
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double huge = 1.0e300;
|
||||
#else
|
||||
static double huge = 1.0e300;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
double floor(double x)
|
||||
#else
|
||||
double floor(x)
|
||||
double x;
|
||||
#endif
|
||||
double floor(double x)
|
||||
{
|
||||
int i0,i1,j0;
|
||||
unsigned i,j;
|
||||
@ -43,7 +34,7 @@ static double huge = 1.0e300;
|
||||
if(j0<20) {
|
||||
if(j0<0) { /* raise inexact if x != 0 */
|
||||
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
|
||||
if(i0>=0) {i0=i1=0;}
|
||||
if(i0>=0) {i0=i1=0;}
|
||||
else if(((i0&0x7fffffff)|i1)!=0)
|
||||
{ i0=0xbff00000;i1=0;}
|
||||
}
|
||||
@ -63,7 +54,7 @@ static double huge = 1.0e300;
|
||||
if((i1&i)==0) return x; /* x is integral */
|
||||
if(huge+x>0.0) { /* raise inexact flag */
|
||||
if(i0<0) {
|
||||
if(j0==20) i0+=1;
|
||||
if(j0==20) i0+=1;
|
||||
else {
|
||||
j = i1+(1<<(52-j0));
|
||||
if(j<i1) i0 +=1 ; /* got a carry */
|
||||
|
||||
@ -12,25 +12,18 @@
|
||||
*/
|
||||
|
||||
/*
|
||||
* __ieee754_fmod(x,y)
|
||||
* fmod(x,y)
|
||||
* Return x mod y in exact arithmetic
|
||||
* Method: shift and subtract
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double one = 1.0, Zero[] = {0.0, -0.0,};
|
||||
#else
|
||||
static double one = 1.0, Zero[] = {0.0, -0.0,};
|
||||
#endif
|
||||
static const double
|
||||
one = 1.0,
|
||||
Zero[] = {0.0, -0.0,};
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_fmod(double x, double y)
|
||||
#else
|
||||
double __ieee754_fmod(x,y)
|
||||
double x,y ;
|
||||
#endif
|
||||
double fmod(double x, double y)
|
||||
{
|
||||
int n,hx,hy,hz,ix,iy,sx,i;
|
||||
unsigned lx,ly,lz;
|
||||
9
third-party/fdlibm/s_isnan.c
vendored
9
third-party/fdlibm/s_isnan.c
vendored
@ -18,17 +18,12 @@
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
int isnan(double x)
|
||||
#else
|
||||
int isnan(x)
|
||||
double x;
|
||||
#endif
|
||||
int isnan(double x)
|
||||
{
|
||||
int hx,lx;
|
||||
hx = (__HI(x)&0x7fffffff);
|
||||
lx = __LO(x);
|
||||
hx |= (unsigned)(lx|(-lx))>>31;
|
||||
hx |= (unsigned)(lx|(-lx))>>31;
|
||||
hx = 0x7ff00000 - hx;
|
||||
return ((unsigned)(hx))>>31;
|
||||
}
|
||||
|
||||
35
third-party/fdlibm/s_lib_version.c
vendored
35
third-party/fdlibm/s_lib_version.c
vendored
@ -1,35 +0,0 @@
|
||||
|
||||
/* @(#)s_lib_version.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* MACRO for standards
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
/*
|
||||
* define and initialize _LIB_VERSION
|
||||
*/
|
||||
#ifdef _POSIX_MODE
|
||||
_LIB_VERSION_TYPE _LIB_VERSION = _POSIX_;
|
||||
#else
|
||||
#ifdef _XOPEN_MODE
|
||||
_LIB_VERSION_TYPE _LIB_VERSION = _XOPEN_;
|
||||
#else
|
||||
#ifdef _SVID3_MODE
|
||||
_LIB_VERSION_TYPE _LIB_VERSION = _SVID_;
|
||||
#else /* default _IEEE_MODE */
|
||||
_LIB_VERSION_TYPE _LIB_VERSION = _IEEE_;
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
@ -11,28 +11,28 @@
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __ieee754_log(x)
|
||||
/* log(x)
|
||||
* Return the logrithm of x
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* x = 2^k * (1+f),
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* 2. Approximation of log(1+f).
|
||||
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
||||
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
||||
* = 2s + s*R
|
||||
* We use a special Reme algorithm on [0,0.1716] to generate
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* We use a special Reme algorithm on [0,0.1716] to generate
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-58.45. In
|
||||
* other words,
|
||||
* 2 4 6 8 10 12 14
|
||||
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
||||
* (the values of Lg1 to Lg7 are listed in the program)
|
||||
* (the values of Lg1 to Lg7 are listed in the program)
|
||||
* and
|
||||
* | 2 14 | -58.45
|
||||
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
||||
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
||||
* | |
|
||||
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
||||
* In order to guarantee error in log below 1ulp, we compute log
|
||||
@ -40,14 +40,14 @@
|
||||
* log(1+f) = f - s*(f - R) (if f is not too large)
|
||||
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
||||
*
|
||||
* 3. Finally, log(x) = k*ln2 + log(1+f).
|
||||
* 3. Finally, log(x) = k*ln2 + log(1+f).
|
||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||
* Here ln2 is split into two floating point number:
|
||||
* Here ln2 is split into two floating point number:
|
||||
* ln2_hi + ln2_lo,
|
||||
* where n*ln2_hi is always exact for |n| < 2000.
|
||||
*
|
||||
* Special cases:
|
||||
* log(x) is NaN with signal if x < 0 (including -INF) ;
|
||||
* log(x) is NaN with signal if x < 0 (including -INF) ;
|
||||
* log(+INF) is +INF; log(0) is -INF with signal;
|
||||
* log(NaN) is that NaN with no signal.
|
||||
*
|
||||
@ -56,19 +56,15 @@
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
||||
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
||||
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
|
||||
@ -80,14 +76,9 @@ Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
||||
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
||||
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
static double zero = 0.0;
|
||||
static const double zero = 0.0;
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_log(double x)
|
||||
#else
|
||||
double __ieee754_log(x)
|
||||
double x;
|
||||
#endif
|
||||
double log(double x)
|
||||
{
|
||||
double hfsq,f,s,z,R,w,t1,t2,dk;
|
||||
int k,hx,i,j;
|
||||
@ -118,14 +109,14 @@ static double zero = 0.0;
|
||||
if(k==0) return f-R; else {dk=(double)k;
|
||||
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
|
||||
}
|
||||
s = f/(2.0+f);
|
||||
s = f/(2.0+f);
|
||||
dk = (double)k;
|
||||
z = s*s;
|
||||
i = hx-0x6147a;
|
||||
w = z*z;
|
||||
j = 0x6b851-hx;
|
||||
t1= w*(Lg2+w*(Lg4+w*Lg6));
|
||||
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
||||
t1= w*(Lg2+w*(Lg4+w*Lg6));
|
||||
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
||||
i |= j;
|
||||
R = t2+t1;
|
||||
if(i>0) {
|
||||
@ -10,14 +10,14 @@
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __ieee754_pow(x,y) return x**y
|
||||
/* pow(x,y) return x**y
|
||||
*
|
||||
* n
|
||||
* Method: Let x = 2 * (1+f)
|
||||
* 1. Compute and return log2(x) in two pieces:
|
||||
* log2(x) = w1 + w2,
|
||||
* where w1 has 53-24 = 29 bit trailing zeros.
|
||||
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
|
||||
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
|
||||
* arithmetic, where |y'|<=0.5.
|
||||
* 3. Return x**y = 2**n*exp(y'*log2)
|
||||
*
|
||||
@ -45,23 +45,19 @@
|
||||
* Accuracy:
|
||||
* pow(x,y) returns x**y nearly rounded. In particular
|
||||
* pow(integer,integer)
|
||||
* always returns the correct integer provided it is
|
||||
* always returns the correct integer provided it is
|
||||
* representable.
|
||||
*
|
||||
* Constants :
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
static const double
|
||||
bp[] = {1.0, 1.5,},
|
||||
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
|
||||
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
|
||||
@ -94,12 +90,7 @@ ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
|
||||
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
|
||||
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_pow(double x, double y)
|
||||
#else
|
||||
double __ieee754_pow(x,y)
|
||||
double x, y;
|
||||
#endif
|
||||
double pow(double x, double y)
|
||||
{
|
||||
double z,ax,z_h,z_l,p_h,p_l;
|
||||
double y1,t1,t2,r,s,t,u,v,w;
|
||||
@ -113,12 +104,12 @@ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
||||
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
|
||||
|
||||
/* y==zero: x**0 = 1 */
|
||||
if((iy|ly)==0) return one;
|
||||
if((iy|ly)==0) return one;
|
||||
|
||||
/* +-NaN return x+y */
|
||||
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
|
||||
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
|
||||
return x+y;
|
||||
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
|
||||
return x+y;
|
||||
|
||||
/* determine if y is an odd int when x < 0
|
||||
* yisint = 0 ... y is not an integer
|
||||
@ -126,7 +117,7 @@ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
||||
* yisint = 2 ... y is an even int
|
||||
*/
|
||||
yisint = 0;
|
||||
if(hx<0) {
|
||||
if(hx<0) {
|
||||
if(iy>=0x43400000) yisint = 2; /* even integer y */
|
||||
else if(iy>=0x3ff00000) {
|
||||
k = (iy>>20)-0x3ff; /* exponent */
|
||||
@ -137,11 +128,11 @@ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
||||
j = iy>>(20-k);
|
||||
if((j<<(20-k))==iy) yisint = 2-(j&1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* special value of y */
|
||||
if(ly==0) {
|
||||
if(ly==0) {
|
||||
if (iy==0x7ff00000) { /* y is +-inf */
|
||||
if(((ix-0x3ff00000)|lx)==0)
|
||||
return y - y; /* inf**+-1 is NaN */
|
||||
@ -156,7 +147,7 @@ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
||||
if(hy==0x40000000) return x*x; /* y is 2 */
|
||||
if(hy==0x3fe00000) { /* y is 0.5 */
|
||||
if(hx>=0) /* x >= +0 */
|
||||
return sqrt(x);
|
||||
return sqrt(x);
|
||||
}
|
||||
}
|
||||
|
||||
@ -169,13 +160,13 @@ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
||||
if(hx<0) {
|
||||
if(((ix-0x3ff00000)|yisint)==0) {
|
||||
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
|
||||
} else if(yisint==1)
|
||||
} else if(yisint==1)
|
||||
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
||||
}
|
||||
return z;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
n = (hx>>31)+1;
|
||||
|
||||
/* (x<0)**(non-int) is NaN */
|
||||
@ -193,7 +184,7 @@ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
||||
/* over/underflow if x is not close to one */
|
||||
if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
|
||||
if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
|
||||
/* now |1-x| is tiny <= 2**-20, suffice to compute
|
||||
/* now |1-x| is tiny <= 2**-20, suffice to compute
|
||||
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
||||
t = ax-one; /* t has 20 trailing zeros */
|
||||
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
|
||||
@ -225,7 +216,7 @@ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
||||
__LO(s_h) = 0;
|
||||
/* t_h=ax+bp[k] High */
|
||||
t_h = zero;
|
||||
__HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
|
||||
__HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
|
||||
t_l = ax - (t_h-bp[k]);
|
||||
s_l = v*((u-s_h*t_h)-s_h*t_l);
|
||||
/* compute log(ax) */
|
||||
@ -287,7 +278,7 @@ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
||||
n = ((n&0x000fffff)|0x00100000)>>(20-k);
|
||||
if(j<0) n = -n;
|
||||
p_h -= t;
|
||||
}
|
||||
}
|
||||
t = p_l+p_h;
|
||||
__LO(t) = 0;
|
||||
u = t*lg2_h;
|
||||
84
third-party/fdlibm/s_rint.c
vendored
84
third-party/fdlibm/s_rint.c
vendored
@ -1,84 +0,0 @@
|
||||
|
||||
/* @(#)s_rint.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* rint(x)
|
||||
* Return x rounded to integral value according to the prevailing
|
||||
* rounding mode.
|
||||
* Method:
|
||||
* Using floating addition.
|
||||
* Exception:
|
||||
* Inexact flag raised if x not equal to rint(x).
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
TWO52[2]={
|
||||
4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
|
||||
-4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */
|
||||
};
|
||||
|
||||
#ifdef __STDC__
|
||||
double rint(double x)
|
||||
#else
|
||||
double rint(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
int i0,j0,sx;
|
||||
unsigned i,i1;
|
||||
double w,t;
|
||||
i0 = __HI(x);
|
||||
sx = (i0>>31)&1;
|
||||
i1 = __LO(x);
|
||||
j0 = ((i0>>20)&0x7ff)-0x3ff;
|
||||
if(j0<20) {
|
||||
if(j0<0) {
|
||||
if(((i0&0x7fffffff)|i1)==0) return x;
|
||||
i1 |= (i0&0x0fffff);
|
||||
i0 &= 0xfffe0000;
|
||||
i0 |= ((i1|-i1)>>12)&0x80000;
|
||||
__HI(x)=i0;
|
||||
w = TWO52[sx]+x;
|
||||
t = w-TWO52[sx];
|
||||
i0 = __HI(t);
|
||||
__HI(t) = (i0&0x7fffffff)|(sx<<31);
|
||||
return t;
|
||||
} else {
|
||||
i = (0x000fffff)>>j0;
|
||||
if(((i0&i)|i1)==0) return x; /* x is integral */
|
||||
i>>=1;
|
||||
if(((i0&i)|i1)!=0) {
|
||||
if(j0==19) i1 = 0x40000000; else
|
||||
i0 = (i0&(~i))|((0x20000)>>j0);
|
||||
}
|
||||
}
|
||||
} else if (j0>51) {
|
||||
if(j0==0x400) return x+x; /* inf or NaN */
|
||||
else return x; /* x is integral */
|
||||
} else {
|
||||
i = ((unsigned)(0xffffffff))>>(j0-20);
|
||||
if((i1&i)==0) return x; /* x is integral */
|
||||
i>>=1;
|
||||
if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-20));
|
||||
}
|
||||
__HI(x) = i0;
|
||||
__LO(x) = i1;
|
||||
w = TWO52[sx]+x;
|
||||
return w-TWO52[sx];
|
||||
}
|
||||
23
third-party/fdlibm/s_scalbn.c
vendored
23
third-party/fdlibm/s_scalbn.c
vendored
@ -11,31 +11,22 @@
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
/*
|
||||
* scalbn (double x, int n)
|
||||
* scalbn(x,n) returns x* 2**n computed by exponent
|
||||
* manipulation rather than by actually performing an
|
||||
* scalbn(x,n) returns x* 2**n computed by exponent
|
||||
* manipulation rather than by actually performing an
|
||||
* exponentiation or a multiplication.
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
|
||||
twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
|
||||
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
|
||||
twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
|
||||
huge = 1.0e+300,
|
||||
tiny = 1.0e-300;
|
||||
|
||||
#ifdef __STDC__
|
||||
double scalbn (double x, int n)
|
||||
#else
|
||||
double scalbn (x,n)
|
||||
double x; int n;
|
||||
#endif
|
||||
double scalbn (double x, int n)
|
||||
{
|
||||
int k,hx,lx;
|
||||
hx = __HI(x);
|
||||
@ -45,7 +36,7 @@ tiny = 1.0e-300;
|
||||
if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
|
||||
x *= two54;
|
||||
hx = __HI(x);
|
||||
k = ((hx&0x7ff00000)>>20) - 54;
|
||||
k = ((hx&0x7ff00000)>>20) - 54;
|
||||
if (n< -50000) return tiny*x; /*underflow*/
|
||||
}
|
||||
if (k==0x7ff) return x+x; /* NaN or Inf */
|
||||
|
||||
30
third-party/fdlibm/s_significand.c
vendored
30
third-party/fdlibm/s_significand.c
vendored
@ -1,30 +0,0 @@
|
||||
|
||||
/* @(#)s_significand.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* significand(x) computes just
|
||||
* scalb(x, (double) -ilogb(x)),
|
||||
* for exercising the fraction-part(F) IEEE 754-1985 test vector.
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
double significand(double x)
|
||||
#else
|
||||
double significand(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
return __ieee754_scalb(x,(double) -ilogb(x));
|
||||
}
|
||||
13
third-party/fdlibm/s_sin.c
vendored
13
third-party/fdlibm/s_sin.c
vendored
@ -20,8 +20,8 @@
|
||||
* __ieee754_rem_pio2 ... argument reduction routine
|
||||
*
|
||||
* Method.
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||
* We have
|
||||
*
|
||||
@ -39,17 +39,12 @@
|
||||
* trig(NaN) is that NaN;
|
||||
*
|
||||
* Accuracy:
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
double sin(double x)
|
||||
#else
|
||||
double sin(x)
|
||||
double x;
|
||||
#endif
|
||||
double sin(double x)
|
||||
{
|
||||
double y[2],z=0.0;
|
||||
int n, ix;
|
||||
|
||||
@ -11,15 +11,15 @@
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __ieee754_sqrt(x)
|
||||
/* sqrt(x)
|
||||
* Return correctly rounded sqrt.
|
||||
* ------------------------------------------
|
||||
* | Use the hardware sqrt if you have one |
|
||||
* ------------------------------------------
|
||||
* Method:
|
||||
* Bit by bit method using integer arithmetic. (Slow, but portable)
|
||||
* Method:
|
||||
* Bit by bit method using integer arithmetic. (Slow, but portable)
|
||||
* 1. Normalization
|
||||
* Scale x to y in [1,4) with even powers of 2:
|
||||
* Scale x to y in [1,4) with even powers of 2:
|
||||
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
|
||||
* sqrt(x) = 2^k * sqrt(y)
|
||||
* 2. Bit by bit computation
|
||||
@ -28,9 +28,9 @@
|
||||
* i+1 2
|
||||
* s = 2*q , and y = 2 * ( y - q ). (1)
|
||||
* i i i i
|
||||
*
|
||||
* To compute q from q , one checks whether
|
||||
* i+1 i
|
||||
*
|
||||
* To compute q from q , one checks whether
|
||||
* i+1 i
|
||||
*
|
||||
* -(i+1) 2
|
||||
* (q + 2 ) <= y. (2)
|
||||
@ -45,7 +45,7 @@
|
||||
* s + 2 <= y (3)
|
||||
* i i
|
||||
*
|
||||
* The advantage of (3) is that s and y can be computed by
|
||||
* The advantage of (3) is that s and y can be computed by
|
||||
* i i
|
||||
* the following recurrence formula:
|
||||
* if (3) is false
|
||||
@ -57,10 +57,10 @@
|
||||
* -i -(i+1)
|
||||
* s = s + 2 , y = y - s - 2 (5)
|
||||
* i+1 i i+1 i i
|
||||
*
|
||||
* One may easily use induction to prove (4) and (5).
|
||||
*
|
||||
* One may easily use induction to prove (4) and (5).
|
||||
* Note. Since the left hand side of (3) contain only i+2 bits,
|
||||
* it does not necessary to do a full (53-bit) comparison
|
||||
* it does not necessary to do a full (53-bit) comparison
|
||||
* in (3).
|
||||
* 3. Final rounding
|
||||
* After generating the 53 bits result, we compute one more bit.
|
||||
@ -70,7 +70,7 @@
|
||||
* The rounding mode can be detected by checking whether
|
||||
* huge + tiny is equal to huge, and whether huge - tiny is
|
||||
* equal to huge for some floating point number "huge" and "tiny".
|
||||
*
|
||||
*
|
||||
* Special cases:
|
||||
* sqrt(+-0) = +-0 ... exact
|
||||
* sqrt(inf) = inf
|
||||
@ -83,21 +83,14 @@
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double one = 1.0, tiny=1.0e-300;
|
||||
#else
|
||||
static double one = 1.0, tiny=1.0e-300;
|
||||
#endif
|
||||
static const double
|
||||
one = 1.0,
|
||||
tiny = 1.0e-300;
|
||||
|
||||
#ifdef __STDC__
|
||||
double __ieee754_sqrt(double x)
|
||||
#else
|
||||
double __ieee754_sqrt(x)
|
||||
double x;
|
||||
#endif
|
||||
double sqrt(double x)
|
||||
{
|
||||
double z;
|
||||
int sign = (int)0x80000000;
|
||||
int sign = (int)0x80000000;
|
||||
unsigned r,t1,s1,ix1,q1;
|
||||
int ix0,s0,q,m,t,i;
|
||||
|
||||
@ -108,7 +101,7 @@ static double one = 1.0, tiny=1.0e-300;
|
||||
if((ix0&0x7ff00000)==0x7ff00000) {
|
||||
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
|
||||
sqrt(-inf)=sNaN */
|
||||
}
|
||||
}
|
||||
/* take care of zero */
|
||||
if(ix0<=0) {
|
||||
if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
|
||||
@ -142,12 +135,12 @@ static double one = 1.0, tiny=1.0e-300;
|
||||
r = 0x00200000; /* r = moving bit from right to left */
|
||||
|
||||
while(r!=0) {
|
||||
t = s0+r;
|
||||
if(t<=ix0) {
|
||||
s0 = t+r;
|
||||
ix0 -= t;
|
||||
q += r;
|
||||
}
|
||||
t = s0+r;
|
||||
if(t<=ix0) {
|
||||
s0 = t+r;
|
||||
ix0 -= t;
|
||||
q += r;
|
||||
}
|
||||
ix0 += ix0 + ((ix1&sign)>>31);
|
||||
ix1 += ix1;
|
||||
r>>=1;
|
||||
@ -155,9 +148,9 @@ static double one = 1.0, tiny=1.0e-300;
|
||||
|
||||
r = sign;
|
||||
while(r!=0) {
|
||||
t1 = s1+r;
|
||||
t1 = s1+r;
|
||||
t = s0;
|
||||
if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
|
||||
if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
|
||||
s1 = t1+r;
|
||||
if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
|
||||
ix0 -= t;
|
||||
@ -178,7 +171,7 @@ static double one = 1.0, tiny=1.0e-300;
|
||||
if (q1==(unsigned)0xffffffff) { q1=0; q += 1;}
|
||||
else if (z>one) {
|
||||
if (q1==(unsigned)0xfffffffe) q+=1;
|
||||
q1+=2;
|
||||
q1+=2;
|
||||
} else
|
||||
q1 += (q1&1);
|
||||
}
|
||||
@ -195,18 +188,18 @@ static double one = 1.0, tiny=1.0e-300;
|
||||
/*
|
||||
Other methods (use floating-point arithmetic)
|
||||
-------------
|
||||
(This is a copy of a drafted paper by Prof W. Kahan
|
||||
(This is a copy of a drafted paper by Prof W. Kahan
|
||||
and K.C. Ng, written in May, 1986)
|
||||
|
||||
Two algorithms are given here to implement sqrt(x)
|
||||
Two algorithms are given here to implement sqrt(x)
|
||||
(IEEE double precision arithmetic) in software.
|
||||
Both supply sqrt(x) correctly rounded. The first algorithm (in
|
||||
Section A) uses newton iterations and involves four divisions.
|
||||
The second one uses reciproot iterations to avoid division, but
|
||||
requires more multiplications. Both algorithms need the ability
|
||||
to chop results of arithmetic operations instead of round them,
|
||||
to chop results of arithmetic operations instead of round them,
|
||||
and the INEXACT flag to indicate when an arithmetic operation
|
||||
is executed exactly with no roundoff error, all part of the
|
||||
is executed exactly with no roundoff error, all part of the
|
||||
standard (IEEE 754-1985). The ability to perform shift, add,
|
||||
subtract and logical AND operations upon 32-bit words is needed
|
||||
too, though not part of the standard.
|
||||
@ -216,7 +209,7 @@ A. sqrt(x) by Newton Iteration
|
||||
(1) Initial approximation
|
||||
|
||||
Let x0 and x1 be the leading and the trailing 32-bit words of
|
||||
a floating point number x (in IEEE double format) respectively
|
||||
a floating point number x (in IEEE double format) respectively
|
||||
|
||||
1 11 52 ...widths
|
||||
------------------------------------------------------
|
||||
@ -224,7 +217,7 @@ A. sqrt(x) by Newton Iteration
|
||||
------------------------------------------------------
|
||||
msb lsb msb lsb ...order
|
||||
|
||||
|
||||
|
||||
------------------------ ------------------------
|
||||
x0: |s| e | f1 | x1: | f2 |
|
||||
------------------------ ------------------------
|
||||
@ -249,7 +242,7 @@ A. sqrt(x) by Newton Iteration
|
||||
|
||||
(2) Iterative refinement
|
||||
|
||||
Apply Heron's rule three times to y, we have y approximates
|
||||
Apply Heron's rule three times to y, we have y approximates
|
||||
sqrt(x) to within 1 ulp (Unit in the Last Place):
|
||||
|
||||
y := (y+x/y)/2 ... almost 17 sig. bits
|
||||
@ -274,12 +267,12 @@ A. sqrt(x) by Newton Iteration
|
||||
it requires more multiplications and additions. Also x must be
|
||||
scaled in advance to avoid spurious overflow in evaluating the
|
||||
expression 3y*y+x. Hence it is not recommended uless division
|
||||
is slow. If division is very slow, then one should use the
|
||||
is slow. If division is very slow, then one should use the
|
||||
reciproot algorithm given in section B.
|
||||
|
||||
(3) Final adjustment
|
||||
|
||||
By twiddling y's last bit it is possible to force y to be
|
||||
By twiddling y's last bit it is possible to force y to be
|
||||
correctly rounded according to the prevailing rounding mode
|
||||
as follows. Let r and i be copies of the rounding mode and
|
||||
inexact flag before entering the square root program. Also we
|
||||
@ -310,7 +303,7 @@ A. sqrt(x) by Newton Iteration
|
||||
I := i; ... restore inexact flag
|
||||
R := r; ... restore rounded mode
|
||||
return sqrt(x):=y.
|
||||
|
||||
|
||||
(4) Special cases
|
||||
|
||||
Square root of +inf, +-0, or NaN is itself;
|
||||
@ -329,7 +322,7 @@ B. sqrt(x) by Reciproot Iteration
|
||||
k := 0x5fe80000 - (x0>>1);
|
||||
y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
|
||||
|
||||
Here k is a 32-bit integer and T2[] is an integer array
|
||||
Here k is a 32-bit integer and T2[] is an integer array
|
||||
containing correction terms. Now magically the floating
|
||||
value of y (y's leading 32-bit word is y0, the value of
|
||||
its trailing word y1 is set to zero) approximates 1/sqrt(x)
|
||||
@ -350,9 +343,9 @@ B. sqrt(x) by Reciproot Iteration
|
||||
|
||||
Apply Reciproot iteration three times to y and multiply the
|
||||
result by x to get an approximation z that matches sqrt(x)
|
||||
to about 1 ulp. To be exact, we will have
|
||||
to about 1 ulp. To be exact, we will have
|
||||
-1ulp < sqrt(x)-z<1.0625ulp.
|
||||
|
||||
|
||||
... set rounding mode to Round-to-nearest
|
||||
y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
|
||||
y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
|
||||
@ -361,7 +354,7 @@ B. sqrt(x) by Reciproot Iteration
|
||||
z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
|
||||
|
||||
Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
|
||||
(a) the term z*y in the final iteration is always less than 1;
|
||||
(a) the term z*y in the final iteration is always less than 1;
|
||||
(b) the error in the final result is biased upward so that
|
||||
-1 ulp < sqrt(x) - z < 1.0625 ulp
|
||||
instead of |sqrt(x)-z|<1.03125ulp.
|
||||
@ -408,27 +401,27 @@ B. sqrt(x) by Reciproot Iteration
|
||||
I := 1; ... Raise Inexact flag: z is not exact
|
||||
else {
|
||||
j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
|
||||
k := z1 >> 26; ... get z's 25-th and 26-th
|
||||
k := z1 >> 26; ... get z's 25-th and 26-th
|
||||
fraction bits
|
||||
I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
|
||||
}
|
||||
R:= r ... restore rounded mode
|
||||
return sqrt(x):=z.
|
||||
|
||||
If multiplication is cheaper then the foregoing red tape, the
|
||||
If multiplication is cheaper then the foregoing red tape, the
|
||||
Inexact flag can be evaluated by
|
||||
|
||||
I := i;
|
||||
I := (z*z!=x) or I.
|
||||
|
||||
Note that z*z can overwrite I; this value must be sensed if it is
|
||||
Note that z*z can overwrite I; this value must be sensed if it is
|
||||
True.
|
||||
|
||||
Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
|
||||
zero.
|
||||
|
||||
--------------------
|
||||
z1: | f2 |
|
||||
z1: | f2 |
|
||||
--------------------
|
||||
bit 31 bit 0
|
||||
|
||||
@ -445,7 +438,6 @@ B. sqrt(x) by Reciproot Iteration
|
||||
11 01 even
|
||||
-------------------------------------------------
|
||||
|
||||
(4) Special cases (see (4) of Section A).
|
||||
|
||||
(4) Special cases (see (4) of Section A).
|
||||
|
||||
*/
|
||||
|
||||
13
third-party/fdlibm/s_tan.c
vendored
13
third-party/fdlibm/s_tan.c
vendored
@ -19,8 +19,8 @@
|
||||
* __ieee754_rem_pio2 ... argument reduction routine
|
||||
*
|
||||
* Method.
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||
* We have
|
||||
*
|
||||
@ -38,17 +38,12 @@
|
||||
* trig(NaN) is that NaN;
|
||||
*
|
||||
* Accuracy:
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
double tan(double x)
|
||||
#else
|
||||
double tan(x)
|
||||
double x;
|
||||
#endif
|
||||
double tan(double x)
|
||||
{
|
||||
double y[2],z=0.0;
|
||||
int n, ix;
|
||||
|
||||
82
third-party/fdlibm/s_tanh.c
vendored
82
third-party/fdlibm/s_tanh.c
vendored
@ -1,82 +0,0 @@
|
||||
|
||||
/* @(#)s_tanh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* Tanh(x)
|
||||
* Return the Hyperbolic Tangent of x
|
||||
*
|
||||
* Method :
|
||||
* x -x
|
||||
* e - e
|
||||
* 0. tanh(x) is defined to be -----------
|
||||
* x -x
|
||||
* e + e
|
||||
* 1. reduce x to non-negative by tanh(-x) = -tanh(x).
|
||||
* 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x)
|
||||
* -t
|
||||
* 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x)
|
||||
* t + 2
|
||||
* 2
|
||||
* 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x)
|
||||
* t + 2
|
||||
* 22.0 < x <= INF : tanh(x) := 1.
|
||||
*
|
||||
* Special cases:
|
||||
* tanh(NaN) is NaN;
|
||||
* only tanh(0)=0 is exact for finite argument.
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double one=1.0, two=2.0, tiny = 1.0e-300;
|
||||
#else
|
||||
static double one=1.0, two=2.0, tiny = 1.0e-300;
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
double tanh(double x)
|
||||
#else
|
||||
double tanh(x)
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
double t,z;
|
||||
int jx,ix;
|
||||
|
||||
/* High word of |x|. */
|
||||
jx = __HI(x);
|
||||
ix = jx&0x7fffffff;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if(ix>=0x7ff00000) {
|
||||
if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */
|
||||
else return one/x-one; /* tanh(NaN) = NaN */
|
||||
}
|
||||
|
||||
/* |x| < 22 */
|
||||
if (ix < 0x40360000) { /* |x|<22 */
|
||||
if (ix<0x3c800000) /* |x|<2**-55 */
|
||||
return x*(one+x); /* tanh(small) = small */
|
||||
if (ix>=0x3ff00000) { /* |x|>=1 */
|
||||
t = expm1(two*fabs(x));
|
||||
z = one - two/(t+two);
|
||||
} else {
|
||||
t = expm1(-two*fabs(x));
|
||||
z= -t/(t+two);
|
||||
}
|
||||
/* |x| > 22, return +-1 */
|
||||
} else {
|
||||
z = one - tiny; /* raised inexact flag */
|
||||
}
|
||||
return (jx>=0)? z: -z;
|
||||
}
|
||||
39
third-party/fdlibm/w_acos.c
vendored
39
third-party/fdlibm/w_acos.c
vendored
@ -1,39 +0,0 @@
|
||||
|
||||
/* @(#)w_acos.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrap_acos(x)
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
|
||||
#ifdef __STDC__
|
||||
double acos(double x) /* wrapper acos */
|
||||
#else
|
||||
double acos(x) /* wrapper acos */
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
#ifdef _IEEE_LIBM
|
||||
return __ieee754_acos(x);
|
||||
#else
|
||||
double z;
|
||||
z = __ieee754_acos(x);
|
||||
if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
|
||||
if(fabs(x)>1.0) {
|
||||
return __kernel_standard(x,x,1); /* acos(|x|>1) */
|
||||
} else
|
||||
return z;
|
||||
#endif
|
||||
}
|
||||
41
third-party/fdlibm/w_asin.c
vendored
41
third-party/fdlibm/w_asin.c
vendored
@ -1,41 +0,0 @@
|
||||
|
||||
/* @(#)w_asin.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper asin(x)
|
||||
*/
|
||||
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
|
||||
#ifdef __STDC__
|
||||
double asin(double x) /* wrapper asin */
|
||||
#else
|
||||
double asin(x) /* wrapper asin */
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
#ifdef _IEEE_LIBM
|
||||
return __ieee754_asin(x);
|
||||
#else
|
||||
double z;
|
||||
z = __ieee754_asin(x);
|
||||
if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
|
||||
if(fabs(x)>1.0) {
|
||||
return __kernel_standard(x,x,2); /* asin(|x|>1) */
|
||||
} else
|
||||
return z;
|
||||
#endif
|
||||
}
|
||||
40
third-party/fdlibm/w_atan2.c
vendored
40
third-party/fdlibm/w_atan2.c
vendored
@ -1,40 +0,0 @@
|
||||
|
||||
/* @(#)w_atan2.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper atan2(y,x)
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
|
||||
#ifdef __STDC__
|
||||
double atan2(double y, double x) /* wrapper atan2 */
|
||||
#else
|
||||
double atan2(y,x) /* wrapper atan2 */
|
||||
double y,x;
|
||||
#endif
|
||||
{
|
||||
#ifdef _IEEE_LIBM
|
||||
return __ieee754_atan2(y,x);
|
||||
#else
|
||||
double z;
|
||||
z = __ieee754_atan2(y,x);
|
||||
if(_LIB_VERSION == _IEEE_||isnan(x)||isnan(y)) return z;
|
||||
if(x==0.0&&y==0.0) {
|
||||
return __kernel_standard(y,x,3); /* atan2(+-0,+-0) */
|
||||
} else
|
||||
return z;
|
||||
#endif
|
||||
}
|
||||
48
third-party/fdlibm/w_exp.c
vendored
48
third-party/fdlibm/w_exp.c
vendored
@ -1,48 +0,0 @@
|
||||
|
||||
/* @(#)w_exp.c 1.4 04/04/22 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper exp(x)
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
static const double
|
||||
#else
|
||||
static double
|
||||
#endif
|
||||
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
|
||||
u_threshold= -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */
|
||||
|
||||
#ifdef __STDC__
|
||||
double exp(double x) /* wrapper exp */
|
||||
#else
|
||||
double exp(x) /* wrapper exp */
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
#ifdef _IEEE_LIBM
|
||||
return __ieee754_exp(x);
|
||||
#else
|
||||
double z;
|
||||
z = __ieee754_exp(x);
|
||||
if(_LIB_VERSION == _IEEE_) return z;
|
||||
if(finite(x)) {
|
||||
if(x>o_threshold)
|
||||
return __kernel_standard(x,x,6); /* exp overflow */
|
||||
else if(x<u_threshold)
|
||||
return __kernel_standard(x,x,7); /* exp underflow */
|
||||
}
|
||||
return z;
|
||||
#endif
|
||||
}
|
||||
39
third-party/fdlibm/w_fmod.c
vendored
39
third-party/fdlibm/w_fmod.c
vendored
@ -1,39 +0,0 @@
|
||||
|
||||
/* @(#)w_fmod.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper fmod(x,y)
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
|
||||
#ifdef __STDC__
|
||||
double fmod(double x, double y) /* wrapper fmod */
|
||||
#else
|
||||
double fmod(x,y) /* wrapper fmod */
|
||||
double x,y;
|
||||
#endif
|
||||
{
|
||||
#ifdef _IEEE_LIBM
|
||||
return __ieee754_fmod(x,y);
|
||||
#else
|
||||
double z;
|
||||
z = __ieee754_fmod(x,y);
|
||||
if(_LIB_VERSION == _IEEE_ ||isnan(y)||isnan(x)) return z;
|
||||
if(y==0.0) {
|
||||
return __kernel_standard(x,y,27); /* fmod(x,0) */
|
||||
} else
|
||||
return z;
|
||||
#endif
|
||||
}
|
||||
39
third-party/fdlibm/w_log.c
vendored
39
third-party/fdlibm/w_log.c
vendored
@ -1,39 +0,0 @@
|
||||
|
||||
/* @(#)w_log.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper log(x)
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
|
||||
#ifdef __STDC__
|
||||
double log(double x) /* wrapper log */
|
||||
#else
|
||||
double log(x) /* wrapper log */
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
#ifdef _IEEE_LIBM
|
||||
return __ieee754_log(x);
|
||||
#else
|
||||
double z;
|
||||
z = __ieee754_log(x);
|
||||
if(_LIB_VERSION == _IEEE_ || isnan(x) || x > 0.0) return z;
|
||||
if(x==0.0)
|
||||
return __kernel_standard(x,x,16); /* log(0) */
|
||||
else
|
||||
return __kernel_standard(x,x,17); /* log(x<0) */
|
||||
#endif
|
||||
}
|
||||
59
third-party/fdlibm/w_pow.c
vendored
59
third-party/fdlibm/w_pow.c
vendored
@ -1,59 +0,0 @@
|
||||
|
||||
/* @(#)w_pow.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper pow(x,y) return x**y
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
|
||||
#ifdef __STDC__
|
||||
double pow(double x, double y) /* wrapper pow */
|
||||
#else
|
||||
double pow(x,y) /* wrapper pow */
|
||||
double x,y;
|
||||
#endif
|
||||
{
|
||||
#ifdef _IEEE_LIBM
|
||||
return __ieee754_pow(x,y);
|
||||
#else
|
||||
double z;
|
||||
z=__ieee754_pow(x,y);
|
||||
if(_LIB_VERSION == _IEEE_|| isnan(y)) return z;
|
||||
if(isnan(x)) {
|
||||
if(y==0.0)
|
||||
return __kernel_standard(x,y,42); /* pow(NaN,0.0) */
|
||||
else
|
||||
return z;
|
||||
}
|
||||
if(x==0.0){
|
||||
if(y==0.0)
|
||||
return __kernel_standard(x,y,20); /* pow(0.0,0.0) */
|
||||
if(finite(y)&&y<0.0)
|
||||
return __kernel_standard(x,y,23); /* pow(0.0,negative) */
|
||||
return z;
|
||||
}
|
||||
if(!finite(z)) {
|
||||
if(finite(x)&&finite(y)) {
|
||||
if(isnan(z))
|
||||
return __kernel_standard(x,y,24); /* pow neg**non-int */
|
||||
else
|
||||
return __kernel_standard(x,y,21); /* pow overflow */
|
||||
}
|
||||
}
|
||||
if(z==0.0&&finite(x)&&finite(y))
|
||||
return __kernel_standard(x,y,22); /* pow underflow */
|
||||
return z;
|
||||
#endif
|
||||
}
|
||||
38
third-party/fdlibm/w_sqrt.c
vendored
38
third-party/fdlibm/w_sqrt.c
vendored
@ -1,38 +0,0 @@
|
||||
|
||||
/* @(#)w_sqrt.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper sqrt(x)
|
||||
*/
|
||||
|
||||
#include "fdlibm.h"
|
||||
|
||||
#ifdef __STDC__
|
||||
double sqrt(double x) /* wrapper sqrt */
|
||||
#else
|
||||
double sqrt(x) /* wrapper sqrt */
|
||||
double x;
|
||||
#endif
|
||||
{
|
||||
#ifdef _IEEE_LIBM
|
||||
return __ieee754_sqrt(x);
|
||||
#else
|
||||
double z;
|
||||
z = __ieee754_sqrt(x);
|
||||
if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
|
||||
if(x<0.0) {
|
||||
return __kernel_standard(x,x,26); /* sqrt(negative) */
|
||||
} else
|
||||
return z;
|
||||
#endif
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user