Improve double to string conversion

Added errol implementation. Fixed '3d-raytrace.js', because
the new algorithm has better precision and also reduce the
code size.

JerryScript-DCO-1.0-Signed-off-by: László Langó llango.u-szeged@partner.samsung.com
This commit is contained in:
László Langó 2016-05-03 12:40:46 +02:00
parent 5369fd4515
commit 2a5468a2ac
6 changed files with 386 additions and 201 deletions

View File

@ -14,6 +14,8 @@
* limitations under the License.
*/
#include <math.h>
#include "ecma-globals.h"
#include "ecma-helpers.h"
#include "jrt-libc-includes.h"
@ -916,74 +918,6 @@ ecma_number_to_int32 (ecma_number_t num) /**< ecma-number */
return ret;
} /* ecma_number_to_int32 */
#if CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT64
/**
* Perform conversion of 128-bit binary representation of number
* to decimal representation with decimal exponent.
*/
static void
ecma_number_helper_binary_to_decimal (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ARG (fraction_uint128), /**< mantissa */
int32_t binary_exponent, /**< binary exponent */
int32_t *out_decimal_exp_p) /**< [out] decimal exponent */
{
int32_t decimal_exp = 0;
if (binary_exponent > 0)
{
while (binary_exponent > 0)
{
if (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 124))
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_INC (fraction_uint128);
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_RIGHT_SHIFT (fraction_uint128);
binary_exponent++;
}
else
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER (fraction_uint128_tmp);
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_COPY (fraction_uint128_tmp, fraction_uint128);
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_DIV_10 (fraction_uint128_tmp);
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_MUL_10 (fraction_uint128_tmp);
if (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ARE_EQUAL (fraction_uint128, fraction_uint128_tmp)
&& ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 123))
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_LEFT_SHIFT (fraction_uint128);
binary_exponent--;
}
else
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_DIV_10 (fraction_uint128);
decimal_exp++;
}
}
}
}
else if (binary_exponent < 0)
{
while (binary_exponent < 0)
{
if (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_LOW_BIT_MASK_ZERO (fraction_uint128, 0)
|| !ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128, 124))
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_RIGHT_SHIFT (fraction_uint128);
binary_exponent++;
}
else
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_MUL_10 (fraction_uint128);
decimal_exp--;
}
}
}
*out_decimal_exp_p = decimal_exp;
} /* ecma_number_helper_binary_to_decimal */
#endif /* CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT64 */
/**
* Perform conversion of ecma-number to decimal representation with decimal exponent
*
@ -1002,142 +936,11 @@ ecma_number_to_decimal (ecma_number_t num, /**< ecma-number */
JERRY_ASSERT (!ecma_number_is_nan (num));
JERRY_ASSERT (!ecma_number_is_zero (num));
JERRY_ASSERT (!ecma_number_is_infinity (num));
JERRY_ASSERT (!ecma_number_is_negative (num));
#if CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT64
ecma_number_t num_m1 = ecma_number_get_prev (num);
ecma_number_t num_p1 = ecma_number_get_next (num);
ECMA_NUMBER_CONVERSION_128BIT_INTEGER (fraction_uint128);
ECMA_NUMBER_CONVERSION_128BIT_INTEGER (fraction_uint128_m1);
ECMA_NUMBER_CONVERSION_128BIT_INTEGER (fraction_uint128_p1);
uint64_t fraction_uint64, fraction_uint64_m1, fraction_uint64_p1;
int32_t binary_exponent, binary_exponent_m1, binary_exponent_p1;
int32_t decimal_exp, decimal_exp_m1, decimal_exp_p1;
int32_t dot_shift, dot_shift_m1, dot_shift_p1;
dot_shift_m1 = ecma_number_get_fraction_and_exponent (num_m1, &fraction_uint64_m1, &binary_exponent_m1);
dot_shift = ecma_number_get_fraction_and_exponent (num, &fraction_uint64, &binary_exponent);
dot_shift_p1 = ecma_number_get_fraction_and_exponent (num_p1, &fraction_uint64_p1, &binary_exponent_p1);
binary_exponent_m1 -= dot_shift_m1;
binary_exponent -= dot_shift;
binary_exponent_p1 -= dot_shift_p1;
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_INIT (fraction_uint128,
0ull,
0ull,
(fraction_uint64) >> 32u,
((fraction_uint64) << 32u) >> 32u);
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_INIT (fraction_uint128_m1,
0ull,
0ull,
(fraction_uint64_m1) >> 32u,
((fraction_uint64_m1) << 32u) >> 32u);
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_INIT (fraction_uint128_p1,
0ull,
0ull,
(fraction_uint64_p1) >> 32u,
((fraction_uint64_p1) << 32u) >> 32u);
ecma_number_helper_binary_to_decimal (fraction_uint128, binary_exponent, &decimal_exp);
ecma_number_helper_binary_to_decimal (fraction_uint128_m1, binary_exponent_m1, &decimal_exp_m1);
ecma_number_helper_binary_to_decimal (fraction_uint128_p1, binary_exponent_p1, &decimal_exp_p1);
if (ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_ZERO (fraction_uint128_m1))
{
decimal_exp_m1 = decimal_exp;
}
while (decimal_exp != decimal_exp_m1
|| decimal_exp != decimal_exp_p1)
{
while (decimal_exp > decimal_exp_m1
|| decimal_exp > decimal_exp_p1)
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_MUL_10 (fraction_uint128);
decimal_exp--;
}
while (decimal_exp_m1 > decimal_exp
|| decimal_exp_m1 > decimal_exp_p1)
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_MUL_10 (fraction_uint128_m1);
decimal_exp_m1--;
}
while (decimal_exp_p1 > decimal_exp
|| decimal_exp_p1 > decimal_exp_m1)
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_MUL_10 (fraction_uint128_p1);
decimal_exp_p1--;
}
}
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ADD (fraction_uint128_m1, fraction_uint128);
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_RIGHT_SHIFT (fraction_uint128_m1);
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ADD (fraction_uint128_p1, fraction_uint128);
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_RIGHT_SHIFT (fraction_uint128_p1);
/* While fraction doesn't fit to integer, divide it by 10
and simultaneously increment decimal exponent */
uint64_t digits_min, digits_max;
while (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128_m1, 63))
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_DIV_10 (fraction_uint128_m1);
decimal_exp_m1++;
}
while (!ECMA_NUMBER_CONVERSION_128BIT_INTEGER_IS_HIGH_BIT_MASK_ZERO (fraction_uint128_p1, 63))
{
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_DIV_10 (fraction_uint128_p1);
decimal_exp_p1++;
}
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ROUND_MIDDLE_AND_LOW_TO_UINT64 (fraction_uint128_m1, digits_min);
ECMA_NUMBER_CONVERSION_128BIT_INTEGER_ROUND_MIDDLE_AND_LOW_TO_UINT64 (fraction_uint128_p1, digits_max);
digits_min++;
if (decimal_exp_m1 < decimal_exp_p1)
{
JERRY_ASSERT (decimal_exp_m1 == decimal_exp_p1 - 1);
digits_min /= 10;
decimal_exp_m1++;
}
else if (decimal_exp_m1 > decimal_exp_p1)
{
JERRY_ASSERT (decimal_exp_m1 == decimal_exp_p1 + 1);
digits_max /= 10;
decimal_exp_p1++;
}
JERRY_ASSERT (digits_max >= digits_min);
while (digits_min / 10 != digits_max / 10)
{
digits_min /= 10;
digits_max /= 10;
decimal_exp_m1++;
decimal_exp_p1++;
}
uint64_t digits = (digits_min + digits_max + 1) / 2;
int32_t digits_num = 0;
uint64_t t = digits;
while (t != 0)
{
t /= 10;
digits_num++;
}
JERRY_ASSERT (digits_num > 0);
*out_digits_p = digits;
*out_digits_num_p = digits_num;
*out_decimal_exp_p = decimal_exp_p1 + digits_num;
*out_digits_p = ecma_errol0_dtoa (num, out_digits_num_p, out_decimal_exp_p);
#elif CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT32
/* Less precise conversion */

View File

@ -0,0 +1,238 @@
/* Copyright 2016 Samsung Electronics Co., Ltd.
* Copyright 2016 University of Szeged
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is based on work under the following copyright and permission
* notice:
*
* Copyright (c) 2016 Marc Andrysco
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <math.h>
#include "config.h"
#include "ecma-helpers.h"
/** \addtogroup ecma ECMA
* @{
*
* \addtogroup ecmahelpers Helpers for operations with ECMA data types
* @{
*/
#if CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT64
/**
* Printing Floating-Point Numbers
*
* available at http://cseweb.ucsd.edu/~mandrysc/pub/dtoa.pdf
*/
/**
* Floating point format definitions
*/
#define ECMA_NEXT_FLOAT(value) (nextafter ((value), INFINITY))
#define ECMA_PREV_FLOAT(value) (nextafter ((value), -INFINITY))
#define ERROL0_EPSILON 0.0000001
/**
* High-precision data structure.
*/
typedef struct
{
ecma_number_t value; /**< value */
ecma_number_t offset; /**< offset */
} ecma_high_prec_t;
/**
* Normalize the number by factoring in the error.
*/
static inline void __attr_always_inline___
ecma_normalize_high_prec_data (ecma_high_prec_t *hp_data_p) /**< [in, out] float pair */
{
ecma_number_t val = hp_data_p->value;
hp_data_p->value += hp_data_p->offset;
hp_data_p->offset += val - hp_data_p->value;
} /* ecma_normalize_high_prec_data */
/**
* Multiply the high-precision number by ten.
*/
static inline void __attr_always_inline___
ecma_multiply_high_prec_by_10 (ecma_high_prec_t *hp_data_p) /**< [in, out] high-precision number */
{
ecma_number_t value = hp_data_p->value;
hp_data_p->value *= 10.0;
hp_data_p->offset *= 10.0;
ecma_number_t offset = hp_data_p->value;
offset -= value * 8.0;
offset -= value * 2.0;
hp_data_p->offset -= offset;
ecma_normalize_high_prec_data (hp_data_p);
} /* ecma_multiply_high_prec_by_10 */
/**
* Divide the high-precision number by ten.
*/
static void
ecma_divide_high_prec_by_10 (ecma_high_prec_t *hp_data_p) /**< [in, out] high-precision number */
{
ecma_number_t value = hp_data_p->value;
hp_data_p->value /= 10.0;
hp_data_p->offset /= 10.0;
value -= hp_data_p->value * 8.0;
value -= hp_data_p->value * 2.0;
hp_data_p->offset += value / 10.0;
ecma_normalize_high_prec_data (hp_data_p);
} /* ecma_divide_high_prec_by_10 */
/**
* Errol0 double to ASCII conversion, guaranteed correct but possibly not optimal.
*
* @return digits
*/
inline uint64_t __attr_always_inline___
ecma_errol0_dtoa (ecma_number_t val, /**< ecma number */
int32_t *num_of_digits_p, /**< [out] number of digits */
int32_t *exp_p) /**< [out] exponent */
{
uint64_t digits = 0u;
int32_t num_of_digits = 0;
double power_of_10 = 1.0;
int32_t exp = 1;
/* normalize the midpoint */
ecma_high_prec_t mid;
mid.value = val;
mid.offset = 0.0;
while (((mid.value > 10.0) || ((mid.value == 10.0) && (mid.offset >= 0.0))) && (exp < 308))
{
exp++;
ecma_divide_high_prec_by_10 (&mid);
power_of_10 /= 10.0;
}
while (((mid.value < 1.0) || ((mid.value == 1.0) && (mid.offset < 0.0))) && (exp > -307))
{
exp--;
ecma_multiply_high_prec_by_10 (&mid);
power_of_10 *= 10.0;
}
ecma_high_prec_t high_bound, low_bound;
high_bound.value = mid.value;
high_bound.offset = mid.offset + (ECMA_NEXT_FLOAT (val) - val) * power_of_10 / (2.0 + ERROL0_EPSILON);
low_bound.value = mid.value;
low_bound.offset = mid.offset + (ECMA_PREV_FLOAT (val) - val) * power_of_10 / (2.0 + ERROL0_EPSILON);
ecma_normalize_high_prec_data (&high_bound);
ecma_normalize_high_prec_data (&low_bound);
/* normalized boundaries */
while (high_bound.value > 10.0 || (high_bound.value == 10.0 && (high_bound.offset >= 0.0)))
{
exp++;
ecma_divide_high_prec_by_10 (&high_bound);
ecma_divide_high_prec_by_10 (&low_bound);
}
while (high_bound.value < 1.0 || (high_bound.value == 1.0 && (high_bound.offset < 0.0)))
{
exp--;
ecma_multiply_high_prec_by_10 (&high_bound);
ecma_multiply_high_prec_by_10 (&low_bound);
}
/* digit generation */
while (high_bound.value != 0.0 || high_bound.offset != 0.0)
{
uint8_t high_digit = (uint8_t) high_bound.value;
if ((high_bound.value == high_digit) && (high_bound.offset < 0))
{
high_digit = (uint8_t) (high_digit - 1u);
}
uint8_t low_digit = (uint8_t) low_bound.value;
if ((low_bound.value == low_digit) && (low_bound.offset < 0))
{
low_digit = (uint8_t) (low_digit - 1u);
}
if (low_digit != high_digit)
{
break;
}
digits *= 10;
digits += (uint64_t) high_digit;
num_of_digits++;
high_bound.value -= high_digit;
ecma_multiply_high_prec_by_10 (&high_bound);
low_bound.value -= low_digit;
ecma_multiply_high_prec_by_10 (&low_bound);
}
double mdig = (high_bound.value + low_bound.value) / 2.0 + 0.5;
*num_of_digits_p = num_of_digits + 1;
*exp_p = exp;
digits *= 10;
return digits + (uint64_t) mdig;
} /* ecma_errol0_dtoa */
#endif /* CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT64 */
/**
* @}
* @}
*/

View File

@ -308,6 +308,11 @@ extern uint32_t ecma_number_to_uint32 (ecma_number_t);
extern int32_t ecma_number_to_int32 (ecma_number_t);
extern lit_utf8_size_t ecma_number_to_utf8_string (ecma_number_t, lit_utf8_byte_t *, lit_utf8_size_t);
/* ecma-helpers-errol.c */
#if CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT64
extern uint64_t ecma_errol0_dtoa (ecma_number_t, int32_t *, int32_t *);
#endif /* CONFIG_ECMA_NUMBER_TYPE == CONFIG_ECMA_NUMBER_FLOAT64 */
/**
* @}
* @}

View File

@ -76,6 +76,8 @@ double floor (double);
double fabs (double);
double fmod (double, double);
double nextafter (double, double);
#ifdef __cplusplus
}
#endif /* __cplusplus */

View File

@ -72,6 +72,8 @@ extern double fmod (double, double);
extern int isnan (double);
extern int finite (double);
double nextafter (double, double);
/*
* Functions callable from C, intended to support IEEE arithmetic.
*/

135
jerry-libm/nextafter.c Normal file
View File

@ -0,0 +1,135 @@
/* Copyright 2016 Samsung Electronics Co., Ltd.
* Copyright 2016 University of Szeged
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is based on work under the following copyright and permission
* notice:
*
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
*
* @(#)s_nextafter.c 1.3 95/01/18
*/
#include "jerry-libm-internal.h"
double
nextafter (double x,
double y)
{
int hx, hy, ix, iy;
unsigned lx, ly;
hx = __HI (x); /* high word of x */
lx = __LO (x); /* low word of x */
hy = __HI (y); /* high word of y */
ly = __LO (y); /* low word of y */
ix = hx & 0x7fffffff; /* |x| */
iy = hy & 0x7fffffff; /* |y| */
if (((ix >= 0x7ff00000) && ((ix - 0x7ff00000) | lx) != 0) /* x is nan */
|| ((iy >= 0x7ff00000) && ((iy - 0x7ff00000) | ly) != 0)) /* y is nan */
{
return x + y;
}
if (x == y)
{
return x; /* x=y, return x */
}
if ((ix | lx) == 0)
{ /* x == 0 */
__HI (x) = hy & 0x80000000; /* return +-minsubnormal */
__LO (x) = 1;
y = x * x;
if (y == x)
{
return y;
}
else
{
return x; /* raise underflow flag */
}
}
if (hx >= 0)
{ /* x > 0 */
if (hx > hy || ((hx == hy) && (lx > ly)))
{ /* x > y, x -= ulp */
if (lx == 0)
{
hx -= 1;
}
lx -= 1;
}
else
{ /* x < y, x += ulp */
lx += 1;
if (lx == 0)
{
hx += 1;
}
}
}
else
{ /* x < 0 */
if (hy >= 0 || hx > hy || ((hx == hy) && (lx > ly)))
{ /* x < y, x -= ulp */
if (lx == 0)
{
hx -= 1;
}
lx -= 1;
}
else
{ /* x > y, x += ulp */
lx += 1;
if (lx == 0)
{
hx += 1;
}
}
}
hy = hx & 0x7ff00000;
if (hy >= 0x7ff00000)
{
return x + x; /* overflow */
}
if (hy < 0x00100000)
{ /* underflow */
y = x * x;
if (y != x)
{ /* raise underflow flag */
__HI (y) = hx;
__LO (y) = lx;
return y;
}
}
__HI (x) = hx;
__LO (x) = lx;
return x;
} /* nextafter */