mirror of
https://github.com/trekhleb/javascript-algorithms.git
synced 2025-12-08 19:06:00 +00:00
34 lines
1.2 KiB
JavaScript
34 lines
1.2 KiB
JavaScript
/**
|
|
* Divide and Conquer solution.
|
|
* Complexity: O(n^2) in case if no memoization applied
|
|
*
|
|
* @param {Number[]} inputArray
|
|
* @return {Number[]}
|
|
*/
|
|
export default function dcMaximumSubarraySum(inputArray) {
|
|
/**
|
|
* We are going through the inputArray array and for each element we have two options:
|
|
* - to pick
|
|
* - not to pick
|
|
*
|
|
* Also keep in mind, that the maximum sub-array must be contiguous. It means if we picked
|
|
* the element, we need to continue picking the next elements or stop counting the max sum.
|
|
*
|
|
* @param {number} elementIndex - the index of the element we're deciding to pick or not
|
|
* @param {boolean} mustPick - to pick or not to pick the element
|
|
* @returns {number} - maximum subarray sum that we'll get
|
|
*/
|
|
function solveRecursively(elementIndex, mustPick) {
|
|
if (elementIndex >= inputArray.length) {
|
|
return mustPick ? 0 : -Infinity;
|
|
}
|
|
return Math.max(
|
|
// Option #1: Pick the current element, and continue picking next one.
|
|
inputArray[elementIndex] + solveRecursively(elementIndex + 1, true),
|
|
// Option #2: Don't pick the current element.
|
|
mustPick ? 0 : solveRecursively(elementIndex + 1, false),
|
|
);
|
|
}
|
|
return solveRecursively(0, false);
|
|
}
|