mirror of
https://github.com/trekhleb/javascript-algorithms.git
synced 2025-12-08 19:06:00 +00:00
45 lines
1.5 KiB
JavaScript
45 lines
1.5 KiB
JavaScript
import Comparator from '../../../utils/comparator/Comparator';
|
|
|
|
/**
|
|
* Binary search implementation.
|
|
*
|
|
* @param {*[]} sortedArray
|
|
* @param {*} seekElement
|
|
* @param {function(a, b)} [comparatorCallback]
|
|
* @return {number}
|
|
*/
|
|
|
|
export default function binarySearch(sortedArray, seekElement, comparatorCallback) {
|
|
// Let's create comparator from the comparatorCallback function.
|
|
// Comparator object will give us common comparison methods like equal() and lessThen().
|
|
const comparator = new Comparator(comparatorCallback);
|
|
|
|
// These two indices will contain current array (sub-array) boundaries.
|
|
let startIndex = 0;
|
|
let endIndex = sortedArray.length - 1;
|
|
|
|
// Let's continue to split array until boundaries are collapsed
|
|
// and there is nothing to split anymore.
|
|
while (startIndex <= endIndex) {
|
|
// Let's calculate the index of the middle element.
|
|
const middleIndex = startIndex + Math.floor((endIndex - startIndex) / 2);
|
|
|
|
// If we've found the element just return its position.
|
|
if (comparator.equal(sortedArray[middleIndex], seekElement)) {
|
|
return middleIndex;
|
|
}
|
|
|
|
// Decide which half to choose for seeking next: left or right one.
|
|
if (comparator.lessThan(sortedArray[middleIndex], seekElement)) {
|
|
// Go to the right half of the array.
|
|
startIndex = middleIndex + 1;
|
|
} else {
|
|
// Go to the left half of the array.
|
|
endIndex = middleIndex - 1;
|
|
}
|
|
}
|
|
|
|
// Return -1 if we have not found anything.
|
|
return -1;
|
|
}
|