Robert Plummer ed1cd94448 feat: Added features and fixes for the following issues:
...it kind of snowballed from some needs
Fixes #521 - If `tactic` is not set, check precision allowed from WebGL, and automatically change based off needs, otherwise use value from `tactic`.
Fixes #535 - Internally check if texture from argument is the same as output, if so, clone this texture, and then clean it up after the kernel runs.
Fixes #536 - Normalize all declarations to non-destructured, and then parse
Fixes #537 - Change logic
Fixes #538 - Found the GL script that would work, and reduced the methods to use it
Fixes #539 - Found a better way of testing random, and this gives me an error for 1 in 10 runs, acceptable

Some refactoring for less duplicate code and documentation
2019-11-26 10:55:28 -05:00

136 lines
4.1 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Raster projection with GPU.js</title>
<script src="../../dist/gpu-browser.min.js"></script>
</head>
<body>
<h1>Raster projection with GPU.js from <a href="https://observablehq.com/d/b70d084526a1a764">https://observablehq.com/d/b70d084526a1a764</a></h1>
<div id="log-fps"></div>
</body>
<script>
function frac(n) {
return n - Math.floor(n);
}
function applyRotation(rotatex, rotatey, rotatez, lambda, phi) {
const degrees = 57.29577951308232;
lambda = lambda / degrees;
phi = phi / degrees;
const cosphi = Math.cos(phi),
x = Math.cos(lambda) * cosphi,
y = Math.sin(lambda) * cosphi,
z = Math.sin(phi);
// inverse rotation
const deltaLambda = rotatex / degrees; // rotate[0]
const deltaPhi = -rotatey / degrees; // rotate[1]
const deltaGamma = -rotatez / degrees; // rotate[2]
const cosDeltaPhi = Math.cos(deltaPhi),
sinDeltaPhi = Math.sin(deltaPhi),
cosDeltaGamma = Math.cos(deltaGamma),
sinDeltaGamma = Math.sin(deltaGamma);
let k = z * cosDeltaGamma - y * sinDeltaGamma;
lambda = Math.atan2(
y * cosDeltaGamma + z * sinDeltaGamma,
x * cosDeltaPhi + k * sinDeltaPhi
) - deltaLambda;
k = k * cosDeltaPhi - x * sinDeltaPhi;
phi = Math.asin(k);
lambda *= degrees;
phi *= degrees;
return [lambda, phi];
}
// the kernel runs for each pixel, with:
// - this.thread.x = horizontal position in pixels from the left edge
// - this.thread.y = vertical position in pixels from the bottom edge (*opposite of canvas*)
const kernel = function(pixels, rotate0, rotate1, rotate2, scale) {
// azimuthal equal area
function radius(rho) {
return 2.0 * Math.asin(rho / 2.0);
}
// orthographic
function __radius(rho) {
return Math.asin(rho);
}
// equirectangular projection (reads the (lon,lat) color from the base image)
function pixelx(lon, srcw) {
lon = frac((lon + 180) / 360);
return Math.floor(lon * srcw);
}
function pixely(lat, srch) {
lat = frac((lat + 90) / 180);
return Math.floor(lat * srch);
}
const x = (this.thread.x / this.constants.w - 1 / 2) / scale,
y = ((this.thread.y - this.constants.h / 2) / this.constants.w) / scale;
// inverse projection
const rho = Math.sqrt(x * x + y * y) + 1e-12;
const c = radius(rho),
sinc = Math.sin(c),
cosc = Math.cos(c);
// x, y : pixel coordinates if rotation was null
const lambda = Math.atan2(x * sinc, rho * cosc) * 57.29577951308232;
const z = y * sinc / rho;
if (Math.abs(z) < 1) {
const phi = Math.asin(z) * 57.29577951308232;
// apply rotation
const rotation = applyRotation(rotate0, rotate1, rotate2, lambda, phi);
const lambdan = rotation[0];
const phin = rotation[1];
//var n = n0(lambda, phi, this.constants.srcw, this.constants.srch);
//this.color(pixels[n]/256, pixels[n+1]/256,pixels[n+2]/256,1);
const pixel = pixels[pixely(phin, this.constants.srch)][pixelx(lambdan, this.constants.srcw)];
this.color(pixel[0], pixel[1], pixel[2], 1);
}
};
const gpu = new GPU();
const logFps = document.querySelector('#log-fps');
const image = new Image();
image.src = './earth-map.jpg';
image.onload = () => {
const w = 975;
const h = 975;
const render = gpu
.createKernel(kernel, { functions: [applyRotation, frac] })
.setConstants({ w, h, srcw: image.width, srch: image.height })
.setOutput([w, h])
.setTactic('precision')
.setGraphical(true);
const canvas = render.canvas;
document.body.appendChild(canvas);
let lastCalledTime;
let fps;
function callRender() {
let r0 = (-Date.now() / 30) % 360,
r1 = 35 * Math.sin((-Date.now() / 1030) % 360),
r2 = 0,
scale = 0.49;
render(image, r0, r1, r2, scale);
delta = (Date.now() - lastCalledTime)/1000;
lastCalledTime = Date.now();
fps = 1/delta;
logFps.innerHTML = fps.toFixed(0) + ' FPS';
window.requestAnimationFrame(() => {
callRender();
});
}
callRender();
};
</script>
</html>