mirror of
https://github.com/gpujs/gpu.js.git
synced 2025-12-08 20:35:56 +00:00
...it kind of snowballed from some needs Fixes #521 - If `tactic` is not set, check precision allowed from WebGL, and automatically change based off needs, otherwise use value from `tactic`. Fixes #535 - Internally check if texture from argument is the same as output, if so, clone this texture, and then clean it up after the kernel runs. Fixes #536 - Normalize all declarations to non-destructured, and then parse Fixes #537 - Change logic Fixes #538 - Found the GL script that would work, and reduced the methods to use it Fixes #539 - Found a better way of testing random, and this gives me an error for 1 in 10 runs, acceptable Some refactoring for less duplicate code and documentation
136 lines
4.1 KiB
HTML
136 lines
4.1 KiB
HTML
<!DOCTYPE html>
|
|
<html lang="en">
|
|
<head>
|
|
<meta charset="utf-8">
|
|
<title>Raster projection with GPU.js</title>
|
|
<script src="../../dist/gpu-browser.min.js"></script>
|
|
</head>
|
|
<body>
|
|
<h1>Raster projection with GPU.js from <a href="https://observablehq.com/d/b70d084526a1a764">https://observablehq.com/d/b70d084526a1a764</a></h1>
|
|
<div id="log-fps"></div>
|
|
</body>
|
|
<script>
|
|
function frac(n) {
|
|
return n - Math.floor(n);
|
|
}
|
|
function applyRotation(rotatex, rotatey, rotatez, lambda, phi) {
|
|
const degrees = 57.29577951308232;
|
|
|
|
lambda = lambda / degrees;
|
|
phi = phi / degrees;
|
|
|
|
const cosphi = Math.cos(phi),
|
|
x = Math.cos(lambda) * cosphi,
|
|
y = Math.sin(lambda) * cosphi,
|
|
z = Math.sin(phi);
|
|
|
|
// inverse rotation
|
|
const deltaLambda = rotatex / degrees; // rotate[0]
|
|
const deltaPhi = -rotatey / degrees; // rotate[1]
|
|
const deltaGamma = -rotatez / degrees; // rotate[2]
|
|
|
|
const cosDeltaPhi = Math.cos(deltaPhi),
|
|
sinDeltaPhi = Math.sin(deltaPhi),
|
|
cosDeltaGamma = Math.cos(deltaGamma),
|
|
sinDeltaGamma = Math.sin(deltaGamma);
|
|
|
|
let k = z * cosDeltaGamma - y * sinDeltaGamma;
|
|
|
|
lambda = Math.atan2(
|
|
y * cosDeltaGamma + z * sinDeltaGamma,
|
|
x * cosDeltaPhi + k * sinDeltaPhi
|
|
) - deltaLambda;
|
|
k = k * cosDeltaPhi - x * sinDeltaPhi;
|
|
|
|
phi = Math.asin(k);
|
|
|
|
lambda *= degrees;
|
|
phi *= degrees;
|
|
return [lambda, phi];
|
|
}
|
|
// the kernel runs for each pixel, with:
|
|
// - this.thread.x = horizontal position in pixels from the left edge
|
|
// - this.thread.y = vertical position in pixels from the bottom edge (*opposite of canvas*)
|
|
const kernel = function(pixels, rotate0, rotate1, rotate2, scale) {
|
|
|
|
// azimuthal equal area
|
|
function radius(rho) {
|
|
return 2.0 * Math.asin(rho / 2.0);
|
|
}
|
|
// orthographic
|
|
function __radius(rho) {
|
|
return Math.asin(rho);
|
|
}
|
|
|
|
// equirectangular projection (reads the (lon,lat) color from the base image)
|
|
function pixelx(lon, srcw) {
|
|
lon = frac((lon + 180) / 360);
|
|
return Math.floor(lon * srcw);
|
|
}
|
|
function pixely(lat, srch) {
|
|
lat = frac((lat + 90) / 180);
|
|
return Math.floor(lat * srch);
|
|
}
|
|
|
|
const x = (this.thread.x / this.constants.w - 1 / 2) / scale,
|
|
y = ((this.thread.y - this.constants.h / 2) / this.constants.w) / scale;
|
|
|
|
// inverse projection
|
|
const rho = Math.sqrt(x * x + y * y) + 1e-12;
|
|
|
|
const c = radius(rho),
|
|
sinc = Math.sin(c),
|
|
cosc = Math.cos(c);
|
|
|
|
// x, y : pixel coordinates if rotation was null
|
|
const lambda = Math.atan2(x * sinc, rho * cosc) * 57.29577951308232;
|
|
const z = y * sinc / rho;
|
|
if (Math.abs(z) < 1) {
|
|
const phi = Math.asin(z) * 57.29577951308232;
|
|
|
|
// apply rotation
|
|
const rotation = applyRotation(rotate0, rotate1, rotate2, lambda, phi);
|
|
const lambdan = rotation[0];
|
|
const phin = rotation[1];
|
|
//var n = n0(lambda, phi, this.constants.srcw, this.constants.srch);
|
|
//this.color(pixels[n]/256, pixels[n+1]/256,pixels[n+2]/256,1);
|
|
const pixel = pixels[pixely(phin, this.constants.srch)][pixelx(lambdan, this.constants.srcw)];
|
|
this.color(pixel[0], pixel[1], pixel[2], 1);
|
|
}
|
|
};
|
|
const gpu = new GPU();
|
|
const logFps = document.querySelector('#log-fps');
|
|
const image = new Image();
|
|
image.src = './earth-map.jpg';
|
|
image.onload = () => {
|
|
const w = 975;
|
|
const h = 975;
|
|
const render = gpu
|
|
.createKernel(kernel, { functions: [applyRotation, frac] })
|
|
.setConstants({ w, h, srcw: image.width, srch: image.height })
|
|
.setOutput([w, h])
|
|
.setTactic('precision')
|
|
.setGraphical(true);
|
|
const canvas = render.canvas;
|
|
document.body.appendChild(canvas);
|
|
let lastCalledTime;
|
|
let fps;
|
|
function callRender() {
|
|
let r0 = (-Date.now() / 30) % 360,
|
|
r1 = 35 * Math.sin((-Date.now() / 1030) % 360),
|
|
r2 = 0,
|
|
scale = 0.49;
|
|
render(image, r0, r1, r2, scale);
|
|
delta = (Date.now() - lastCalledTime)/1000;
|
|
lastCalledTime = Date.now();
|
|
fps = 1/delta;
|
|
logFps.innerHTML = fps.toFixed(0) + ' FPS';
|
|
window.requestAnimationFrame(() => {
|
|
callRender();
|
|
});
|
|
}
|
|
callRender();
|
|
};
|
|
</script>
|
|
</html>
|