mirror of
https://github.com/toji/gl-matrix.git
synced 2026-01-18 14:26:54 +00:00
488 lines
12 KiB
HTML
488 lines
12 KiB
HTML
<!DOCTYPE html>
|
|
<html lang="en">
|
|
<head>
|
|
<meta charset="utf-8">
|
|
<title>JSDoc: Source: mat2.js</title>
|
|
|
|
<script src="scripts/prettify/prettify.js"> </script>
|
|
<script src="scripts/prettify/lang-css.js"> </script>
|
|
<!--[if lt IE 9]>
|
|
<script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script>
|
|
<![endif]-->
|
|
<link type="text/css" rel="stylesheet" href="styles/prettify-tomorrow.css">
|
|
<link type="text/css" rel="stylesheet" href="styles/jsdoc-default.css">
|
|
</head>
|
|
|
|
<body>
|
|
|
|
<div id="main">
|
|
|
|
<h1 class="page-title">Source: mat2.js</h1>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<section>
|
|
<article>
|
|
<pre class="prettyprint source linenums"><code>/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE. */
|
|
|
|
var glMatrix = require("./common.js");
|
|
|
|
/**
|
|
* @class 2x2 Matrix
|
|
* @name mat2
|
|
*/
|
|
var mat2 = {};
|
|
|
|
/**
|
|
* Creates a new identity mat2
|
|
*
|
|
* @returns {mat2} a new 2x2 matrix
|
|
*/
|
|
mat2.create = function() {
|
|
var out = new glMatrix.ARRAY_TYPE(4);
|
|
out[0] = 1;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 1;
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Creates a new mat2 initialized with values from an existing matrix
|
|
*
|
|
* @param {mat2} a matrix to clone
|
|
* @returns {mat2} a new 2x2 matrix
|
|
*/
|
|
mat2.clone = function(a) {
|
|
var out = new glMatrix.ARRAY_TYPE(4);
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
out[3] = a[3];
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Copy the values from one mat2 to another
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the source matrix
|
|
* @returns {mat2} out
|
|
*/
|
|
mat2.copy = function(out, a) {
|
|
out[0] = a[0];
|
|
out[1] = a[1];
|
|
out[2] = a[2];
|
|
out[3] = a[3];
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Set a mat2 to the identity matrix
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @returns {mat2} out
|
|
*/
|
|
mat2.identity = function(out) {
|
|
out[0] = 1;
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = 1;
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Create a new mat2 with the given values
|
|
*
|
|
* @param {Number} m00 Component in column 0, row 0 position (index 0)
|
|
* @param {Number} m01 Component in column 0, row 1 position (index 1)
|
|
* @param {Number} m10 Component in column 1, row 0 position (index 2)
|
|
* @param {Number} m11 Component in column 1, row 1 position (index 3)
|
|
* @returns {mat2} out A new 2x2 matrix
|
|
*/
|
|
mat2.fromValues = function(m00, m01, m10, m11) {
|
|
var out = new glMatrix.ARRAY_TYPE(4);
|
|
out[0] = m00;
|
|
out[1] = m01;
|
|
out[2] = m10;
|
|
out[3] = m11;
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Set the components of a mat2 to the given values
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {Number} m00 Component in column 0, row 0 position (index 0)
|
|
* @param {Number} m01 Component in column 0, row 1 position (index 1)
|
|
* @param {Number} m10 Component in column 1, row 0 position (index 2)
|
|
* @param {Number} m11 Component in column 1, row 1 position (index 3)
|
|
* @returns {mat2} out
|
|
*/
|
|
mat2.set = function(out, m00, m01, m10, m11) {
|
|
out[0] = m00;
|
|
out[1] = m01;
|
|
out[2] = m10;
|
|
out[3] = m11;
|
|
return out;
|
|
};
|
|
|
|
|
|
/**
|
|
* Transpose the values of a mat2
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the source matrix
|
|
* @returns {mat2} out
|
|
*/
|
|
mat2.transpose = function(out, a) {
|
|
// If we are transposing ourselves we can skip a few steps but have to cache some values
|
|
if (out === a) {
|
|
var a1 = a[1];
|
|
out[1] = a[2];
|
|
out[2] = a1;
|
|
} else {
|
|
out[0] = a[0];
|
|
out[1] = a[2];
|
|
out[2] = a[1];
|
|
out[3] = a[3];
|
|
}
|
|
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Inverts a mat2
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the source matrix
|
|
* @returns {mat2} out
|
|
*/
|
|
mat2.invert = function(out, a) {
|
|
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
|
|
|
|
// Calculate the determinant
|
|
det = a0 * a3 - a2 * a1;
|
|
|
|
if (!det) {
|
|
return null;
|
|
}
|
|
det = 1.0 / det;
|
|
|
|
out[0] = a3 * det;
|
|
out[1] = -a1 * det;
|
|
out[2] = -a2 * det;
|
|
out[3] = a0 * det;
|
|
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Calculates the adjugate of a mat2
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the source matrix
|
|
* @returns {mat2} out
|
|
*/
|
|
mat2.adjoint = function(out, a) {
|
|
// Caching this value is nessecary if out == a
|
|
var a0 = a[0];
|
|
out[0] = a[3];
|
|
out[1] = -a[1];
|
|
out[2] = -a[2];
|
|
out[3] = a0;
|
|
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Calculates the determinant of a mat2
|
|
*
|
|
* @param {mat2} a the source matrix
|
|
* @returns {Number} determinant of a
|
|
*/
|
|
mat2.determinant = function (a) {
|
|
return a[0] * a[3] - a[2] * a[1];
|
|
};
|
|
|
|
/**
|
|
* Multiplies two mat2's
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the first operand
|
|
* @param {mat2} b the second operand
|
|
* @returns {mat2} out
|
|
*/
|
|
mat2.multiply = function (out, a, b) {
|
|
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
|
|
var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
|
|
out[0] = a0 * b0 + a2 * b1;
|
|
out[1] = a1 * b0 + a3 * b1;
|
|
out[2] = a0 * b2 + a2 * b3;
|
|
out[3] = a1 * b2 + a3 * b3;
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Alias for {@link mat2.multiply}
|
|
* @function
|
|
*/
|
|
mat2.mul = mat2.multiply;
|
|
|
|
/**
|
|
* Rotates a mat2 by the given angle
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the matrix to rotate
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @returns {mat2} out
|
|
*/
|
|
mat2.rotate = function (out, a, rad) {
|
|
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
|
|
s = Math.sin(rad),
|
|
c = Math.cos(rad);
|
|
out[0] = a0 * c + a2 * s;
|
|
out[1] = a1 * c + a3 * s;
|
|
out[2] = a0 * -s + a2 * c;
|
|
out[3] = a1 * -s + a3 * c;
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Scales the mat2 by the dimensions in the given vec2
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the matrix to rotate
|
|
* @param {vec2} v the vec2 to scale the matrix by
|
|
* @returns {mat2} out
|
|
**/
|
|
mat2.scale = function(out, a, v) {
|
|
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
|
|
v0 = v[0], v1 = v[1];
|
|
out[0] = a0 * v0;
|
|
out[1] = a1 * v0;
|
|
out[2] = a2 * v1;
|
|
out[3] = a3 * v1;
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Creates a matrix from a given angle
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat2.identity(dest);
|
|
* mat2.rotate(dest, dest, rad);
|
|
*
|
|
* @param {mat2} out mat2 receiving operation result
|
|
* @param {Number} rad the angle to rotate the matrix by
|
|
* @returns {mat2} out
|
|
*/
|
|
mat2.fromRotation = function(out, rad) {
|
|
var s = Math.sin(rad),
|
|
c = Math.cos(rad);
|
|
out[0] = c;
|
|
out[1] = s;
|
|
out[2] = -s;
|
|
out[3] = c;
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Creates a matrix from a vector scaling
|
|
* This is equivalent to (but much faster than):
|
|
*
|
|
* mat2.identity(dest);
|
|
* mat2.scale(dest, dest, vec);
|
|
*
|
|
* @param {mat2} out mat2 receiving operation result
|
|
* @param {vec2} v Scaling vector
|
|
* @returns {mat2} out
|
|
*/
|
|
mat2.fromScaling = function(out, v) {
|
|
out[0] = v[0];
|
|
out[1] = 0;
|
|
out[2] = 0;
|
|
out[3] = v[1];
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* Returns a string representation of a mat2
|
|
*
|
|
* @param {mat2} a matrix to represent as a string
|
|
* @returns {String} string representation of the matrix
|
|
*/
|
|
mat2.str = function (a) {
|
|
return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
|
|
};
|
|
|
|
/**
|
|
* Returns Frobenius norm of a mat2
|
|
*
|
|
* @param {mat2} a the matrix to calculate Frobenius norm of
|
|
* @returns {Number} Frobenius norm
|
|
*/
|
|
mat2.frob = function (a) {
|
|
return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2)))
|
|
};
|
|
|
|
/**
|
|
* Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix
|
|
* @param {mat2} L the lower triangular matrix
|
|
* @param {mat2} D the diagonal matrix
|
|
* @param {mat2} U the upper triangular matrix
|
|
* @param {mat2} a the input matrix to factorize
|
|
*/
|
|
|
|
mat2.LDU = function (L, D, U, a) {
|
|
L[2] = a[2]/a[0];
|
|
U[0] = a[0];
|
|
U[1] = a[1];
|
|
U[3] = a[3] - L[2] * U[1];
|
|
return [L, D, U];
|
|
};
|
|
|
|
/**
|
|
* Adds two mat2's
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the first operand
|
|
* @param {mat2} b the second operand
|
|
* @returns {mat2} out
|
|
*/
|
|
mat2.add = function(out, a, b) {
|
|
out[0] = a[0] + b[0];
|
|
out[1] = a[1] + b[1];
|
|
out[2] = a[2] + b[2];
|
|
out[3] = a[3] + b[3];
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Subtracts matrix b from matrix a
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the first operand
|
|
* @param {mat2} b the second operand
|
|
* @returns {mat2} out
|
|
*/
|
|
mat2.subtract = function(out, a, b) {
|
|
out[0] = a[0] - b[0];
|
|
out[1] = a[1] - b[1];
|
|
out[2] = a[2] - b[2];
|
|
out[3] = a[3] - b[3];
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Alias for {@link mat2.subtract}
|
|
* @function
|
|
*/
|
|
mat2.sub = mat2.subtract;
|
|
|
|
/**
|
|
* Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
|
|
*
|
|
* @param {mat2} a The first matrix.
|
|
* @param {mat2} b The second matrix.
|
|
* @returns {Boolean} True if the matrices are equal, false otherwise.
|
|
*/
|
|
mat2.exactEquals = function (a, b) {
|
|
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
|
|
};
|
|
|
|
/**
|
|
* Returns whether or not the matrices have approximately the same elements in the same position.
|
|
*
|
|
* @param {mat2} a The first matrix.
|
|
* @param {mat2} b The second matrix.
|
|
* @returns {Boolean} True if the matrices are equal, false otherwise.
|
|
*/
|
|
mat2.equals = function (a, b) {
|
|
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
|
|
var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
|
|
return (Math.abs(a0 - b0) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
|
|
Math.abs(a1 - b1) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a1), Math.abs(b1)) &&
|
|
Math.abs(a2 - b2) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a2), Math.abs(b2)) &&
|
|
Math.abs(a3 - b3) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a3), Math.abs(b3)));
|
|
};
|
|
|
|
/**
|
|
* Multiply each element of the matrix by a scalar.
|
|
*
|
|
* @param {mat2} out the receiving matrix
|
|
* @param {mat2} a the matrix to scale
|
|
* @param {Number} b amount to scale the matrix's elements by
|
|
* @returns {mat2} out
|
|
*/
|
|
mat2.multiplyScalar = function(out, a, b) {
|
|
out[0] = a[0] * b;
|
|
out[1] = a[1] * b;
|
|
out[2] = a[2] * b;
|
|
out[3] = a[3] * b;
|
|
return out;
|
|
};
|
|
|
|
/**
|
|
* Adds two mat2's after multiplying each element of the second operand by a scalar value.
|
|
*
|
|
* @param {mat2} out the receiving vector
|
|
* @param {mat2} a the first operand
|
|
* @param {mat2} b the second operand
|
|
* @param {Number} scale the amount to scale b's elements by before adding
|
|
* @returns {mat2} out
|
|
*/
|
|
mat2.multiplyScalarAndAdd = function(out, a, b, scale) {
|
|
out[0] = a[0] + (b[0] * scale);
|
|
out[1] = a[1] + (b[1] * scale);
|
|
out[2] = a[2] + (b[2] * scale);
|
|
out[3] = a[3] + (b[3] * scale);
|
|
return out;
|
|
};
|
|
|
|
module.exports = mat2;
|
|
</code></pre>
|
|
</article>
|
|
</section>
|
|
|
|
|
|
|
|
|
|
</div>
|
|
|
|
<nav>
|
|
<h2><a href="index.html">Home</a></h2><h3>Classes</h3><ul><li><a href="glMatrix.html">glMatrix</a></li><li><a href="mat2.html">mat2</a></li><li><a href="mat2d.html">mat2d</a></li><li><a href="mat3.html">mat3</a></li><li><a href="mat4.html">mat4</a></li><li><a href="quat.html">quat</a></li><li><a href="vec2.html">vec2</a></li><li><a href="vec3.html">vec3</a></li><li><a href="vec4.html">vec4</a></li></ul>
|
|
</nav>
|
|
|
|
<br class="clear">
|
|
|
|
<footer>
|
|
Documentation generated by <a href="https://github.com/jsdoc3/jsdoc">JSDoc 3.4.0</a> on Sun May 01 2016 12:11:58 GMT-0700 (Pacific Daylight Time)
|
|
</footer>
|
|
|
|
<script> prettyPrint(); </script>
|
|
<script src="scripts/linenumber.js"> </script>
|
|
</body>
|
|
</html>
|