// Copyright (c) 2020 Gitpod GmbH. All rights reserved. // Licensed under the GNU Affero General Public License (AGPL). // See License-AGPL.txt in the project root for license information. package manager import ( "context" "encoding/base64" "encoding/json" "fmt" "net/url" "os" "reflect" "strconv" "strings" "sync" "time" "github.com/alecthomas/repr" "github.com/golang/protobuf/proto" "github.com/opentracing/opentracing-go" tracelog "github.com/opentracing/opentracing-go/log" "golang.org/x/xerrors" "google.golang.org/grpc/codes" grpc_status "google.golang.org/grpc/status" corev1 "k8s.io/api/core/v1" metav1 "k8s.io/apimachinery/pkg/apis/meta/v1" "k8s.io/apimachinery/pkg/labels" "k8s.io/apimachinery/pkg/watch" "sigs.k8s.io/controller-runtime/pkg/client" wsk8s "github.com/gitpod-io/gitpod/common-go/kubernetes" "github.com/gitpod-io/gitpod/common-go/log" "github.com/gitpod-io/gitpod/common-go/tracing" csapi "github.com/gitpod-io/gitpod/content-service/api" wsdaemon "github.com/gitpod-io/gitpod/ws-daemon/api" "github.com/gitpod-io/gitpod/ws-manager/api" "github.com/gitpod-io/gitpod/ws-manager/pkg/manager/internal/workpool" ) const ( // lonelyPLISSurvivalTime is the time a "pod lifecycle independent state" config map can exist without // a pod. This time refers either the creationTimestamp or (if set) the stoppingSince field of the PLIS. lonelyPLISSurvivalTime = 60 * time.Minute // eventpoolWorkers is the number of workers in the event workpool. This number limits how many workspace events can be handled // in parallel; that is NOT the same as "how many workspaces can start in parallel". The event handling per workspace is written // so that it's quick in the "hot path" (i.e. less than 500ms). Thus this number should be around 0.5*expected(events per second). eventpoolWorkers = 100 ) var ( // wsdaemonMaxAttempts is the number of times we'll attempt to work with ws-daemon when a former attempt returned unavailable. // We rety for two minutes every 5 seconds (see wwsdaemonRetryInterval). // // Note: this is a variable rather than a constant so that tests can modify this value. wsdaemonMaxAttempts = 120 / 5 // wsdaemonRetryInterval is the time in between attempts to work with ws-daemon. // // Note: this is a variable rather than a constant so that tests can modify this value. wsdaemonRetryInterval = 5 * time.Second ) // Monitor listens for kubernetes events and periodically checks if everything is still ok. type Monitor struct { startup time.Time manager *Manager eventpool *workpool.EventWorkerPool ticker *time.Ticker inPhaseSpans map[string]opentracing.Span inPhaseSpansLock sync.Mutex probeMap map[string]context.CancelFunc probeMapLock sync.Mutex initializerMap map[string]struct{} initializerMapLock sync.Mutex finalizerMap map[string]context.CancelFunc finalizerMapLock sync.Mutex headlessListener *HeadlessListener OnError func(error) } // CreateMonitor creates a new monitor func (m *Manager) CreateMonitor() (*Monitor, error) { monitorInterval := time.Duration(m.Config.HeartbeatInterval) // Monitor interval is half the heartbeat interval to catch timed out workspaces in time. // See https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem why we need this. monitorInterval /= 2 log.WithField("interval", monitorInterval).Info("starting workspace monitor") res := Monitor{ manager: m, ticker: time.NewTicker(monitorInterval), inPhaseSpans: make(map[string]opentracing.Span), probeMap: make(map[string]context.CancelFunc), initializerMap: make(map[string]struct{}), finalizerMap: make(map[string]context.CancelFunc), headlessListener: NewHeadlessListener(m.RawClient, m.Config.Namespace), OnError: func(err error) { log.WithError(err).Error("workspace monitor error") }, } res.headlessListener.OnHeadlessLog = res.handleHeadlessLog res.headlessListener.OnHeadlessDone = func(pod *corev1.Pod, failed bool) { err := res.actOnHeadlessDone(pod, failed) if err != nil { log.WithFields(wsk8s.GetOWIFromObject(&pod.ObjectMeta)).WithError(err).Error("cannot handle headless workspace event") } } res.eventpool = workpool.NewEventWorkerPool(res.handleEvent) return &res, nil } // Start starts up the monitor which will check the overall workspace state (on event or periodically). // Use Stop() to stop the monitor gracefully. func (m *Monitor) Start() error { // mark startup so that we can do proper workspace timeouting m.startup = time.Now().UTC() m.eventpool.Start(eventpoolWorkers) // our activity state is ephemeral and as such we need to mark existing workspaces active after we have // restarted (i.e. cleared our state). If we didn't do this, we'd time out all workspaces at ws-manager // startup, see: https://github.com/gitpod-io/gitpod/issues/2537 and https://github.com/gitpod-io/gitpod/issues/2619 err := m.manager.markAllWorkspacesActive() if err != nil { log.WithError(err).Warn("cannot mark all existing workspaces active - this will wrongly time out user's workspaces") } go func() { for range m.ticker.C { m.doHousekeeping(context.Background()) } }() return nil } // handleEvent dispatches an event to the corresponding event handler based on the event object kind. // This function is expected to be called from a worker of the event pool. func (m *Monitor) handleEvent(evt watch.Event) { var err error switch evt.Object.(type) { case *corev1.Pod: err = m.onPodEvent(evt) case *corev1.ConfigMap: err = m.onConfigMapEvent(evt) } if err != nil { m.OnError(err) } } // onPodEvent interpretes Kubernetes events, translates and broadcasts them, and acts based on them func (m *Monitor) onPodEvent(evt watch.Event) error { // Beware: we patch running pods to add annotations. At the moment this is not a problem as do not attach // state to pods from which we did not want events to be created. However, we might have to filter out // some MODIFIED events here if that ever changes. Otherwise the monitor clients will receive multiple // events with the same status even though nothing changed for them. pod, ok := evt.Object.(*corev1.Pod) if !ok { repr.Println(evt) return fmt.Errorf("received non-pod event") } // We start with the default kubernetes operation timeout to not block everything in case completing // the object hangs for some reason. Further down when notifying clients, we move to a context.Background() ctx, cancel := context.WithTimeout(context.Background(), kubernetesOperationTimeout) defer cancel() wso, err := m.manager.getWorkspaceObjects(ctx, pod) if err != nil { return xerrors.Errorf("cannot handle workspace event: %w", err) } status, err := m.manager.getWorkspaceStatus(*wso) if err != nil { log.WithError(err).WithFields(wso.GetOWI()).Error("onPodEvent cannot get status") return xerrors.Errorf("cannot handle workspace event: %w", err) } // There's one bit of the status which we cannot infere from Kubernetes alone, and that's the Git repo status // inside the workspace. To get this information, we have to ask ws-daemon. At the moment we only care about this // information during shutdown, as we're only showing it for stopped workspaces. if evt.Type == watch.Deleted { // If we're still probing this workspace (because it was stopped by someone other than the monitor while we // were probing), stop doing that. m.probeMapLock.Lock() if cancelProbe, ok := m.probeMap[pod.Name]; ok { cancelProbe() delete(m.probeMap, pod.Name) } m.probeMapLock.Unlock() // We're handling a pod event, thus Kubernetes gives us the pod we're handling. However, this is also a deleted // event which means the pod doesn't actually exist anymore. We need to reflect that in our status compution, hence // we change the deployed condition. // In case we missed this event, we'll wake up to a situation where the PLIS exists, but the pod doesn't. // actOnConfigMapEvent will handle such situations properly. status.Conditions.Deployed = api.WorkspaceConditionBool_FALSE } // during pod startup we create spans for each workspace phase (e.g. creating/image-pull). m.maintainInPhaseSpan(status, wso) // make sure we tell our clients that things changed - no matter if there's an error in our // subsequent handling of the matter or not. However, we want to respond quickly to events, // thus we start OnChange as a goroutine. // BEWARE beyond this point one must not modify status anymore - we've already sent it out BEWARE span := m.traceWorkspace("handle-"+status.Phase.String(), wso) ctx = opentracing.ContextWithSpan(context.Background(), span) onChangeDone := make(chan bool) go func() { // We call OnChange in a Go routine to make sure it doesn't block our internal handling of events. m.manager.OnChange(ctx, status) onChangeDone <- true }() m.writeEventTraceLog(status, wso) err = m.actOnPodEvent(ctx, status, wso) // To make the tracing work though we have to re-sync with OnChange. But we don't want OnChange to block our event // handling, thus we wait for it to finish in a Go routine. go func() { <-onChangeDone span.Finish() }() return err } // maintainInPhaseSpan maintains the spans across each workspace phase (e.g. creating). func (m *Monitor) maintainInPhaseSpan(status *api.WorkspaceStatus, wso *workspaceObjects) { wsi, hasWSI := wso.WorkspaceID() if !hasWSI { return } m.inPhaseSpansLock.Lock() defer m.inPhaseSpansLock.Unlock() // finish the old span ipspan, ok := m.inPhaseSpans[wsi] if ok { ipspan.Finish() } if status.Phase == api.WorkspacePhase_RUNNING { // we're up and running and don't care for phase spans anymore, hence don't start a new one return } // create the new one ipspan = m.traceWorkspace(fmt.Sprintf("phase-%s", status.Phase.String()), wso) m.inPhaseSpans[wsi] = ipspan ipspan.SetTag("pullingImage", status.Conditions.PullingImages == api.WorkspaceConditionBool_TRUE) } // actOnPodEvent performs actions when a kubernetes event comes in. For example we shut down failed workspaces or start // polling the ready state of initializing ones. func (m *Monitor) actOnPodEvent(ctx context.Context, status *api.WorkspaceStatus, wso *workspaceObjects) (err error) { pod := wso.Pod span, ctx := tracing.FromContext(ctx, "actOnPodEvent") defer tracing.FinishSpan(span, &err) log := log.WithFields(wsk8s.GetOWIFromObject(&pod.ObjectMeta)) workspaceID, ok := pod.Annotations[workspaceIDAnnotation] if !ok { return fmt.Errorf("cannot act on pod %s: has no %s annotation", pod.Name, workspaceIDAnnotation) } if status.Phase == api.WorkspacePhase_STOPPING || status.Phase == api.WorkspacePhase_STOPPED { // With regards to workspace failure, we don't do anything if the workspace is already stopping/stopped // only if the workspace is in any other state do we care // // Beware: do not else-if this condition with the other phases as we don't want the stop // login in any other phase, too. } else if status.Conditions.Failed != "" || status.Conditions.Timeout != "" { // the workspace has failed to run/start - shut it down // we should mark the workspace as failedBeforeStopping - this way the failure status will persist // while we stop the workspace _, hasFailureAnnotation := pod.Annotations[workspaceFailedBeforeStoppingAnnotation] if status.Conditions.Failed != "" && !hasFailureAnnotation { // If this marking operation failes that's ok - we'll still continue to shut down the workspace. // The failure message won't persist while stopping the workspace though. err := m.manager.markWorkspace(ctx, workspaceID, addMark(workspaceFailedBeforeStoppingAnnotation, "true")) if err != nil { log.WithFields(wsk8s.GetOWIFromObject(&pod.ObjectMeta)).WithError(err).Debug("cannot mark workspace as workspaceFailedBeforeStoppingAnnotation") } } // At the moment we call stopWorkspace on the same workspace at least twice: // First when the workspace originally failed, and // second when adding the workspaceFailedBeforeStoppingAnnotation which in turn triggers a new pod event. // // The alternative is to stop the pod only when the workspaceFailedBeforeStoppingAnnotation is present. // However, that's much more brittle than stopping the workspace twice (something that Kubernetes can handle). // It is important that we do not fail here if the pod is already gone, i.e. when we lost the race. The // stopping PLIS update MUST still happen in this case. err := m.manager.stopWorkspace(ctx, workspaceID, stopWorkspaceNormallyGracePeriod) if err != nil && !isKubernetesObjNotFoundError(err) { return xerrors.Errorf("cannot stop workspace: %w", err) } return nil } if status.Phase == api.WorkspacePhase_CREATING { // The workspace has been scheduled on the cluster which means that we can start initializing it go func() { err := m.initializeWorkspaceContent(ctx, pod) if err != nil { // workspace initialization failed, which means the workspace as a whole failed err = m.manager.markWorkspace(ctx, workspaceID, addMark(workspaceExplicitFailAnnotation, err.Error())) if err != nil { log.WithError(err).Warn("was unable to mark workspace as failed") } } }() } if status.Phase == api.WorkspacePhase_INITIALIZING { if wso.IsWorkspaceHeadless() { return } // workspace is initializing (i.e. running but without the ready annotation yet). Start probing and depending on // the result add the appropriate annotation or stop the workspace. waitForWorkspaceReady takes care that it does not // run for the same workspace multiple times. go func() { err := m.waitForWorkspaceReady(ctx, pod) if err != nil { // workspace initialization failed, which means the workspace as a whole failed err = m.manager.markWorkspace(ctx, workspaceID, addMark(workspaceExplicitFailAnnotation, err.Error())) if err != nil { log.WithError(err).Warn("was unable to mark workspace as failed") } } }() } if status.Phase == api.WorkspacePhase_RUNNING { if wso.IsWorkspaceHeadless() { // this is a headless workspace, which means that instead of probing for it becoming available, we'll listen to its log // output, parse it and forward it. Listen() is idempotent. err := m.headlessListener.Listen(context.Background(), pod) if err != nil { return xerrors.Errorf("cannot establish listener: %w", err) } } if !wso.IsWorkspaceHeadless() { tracing.LogEvent(span, "removeTraceAnnotation") // once a regular workspace is up and running, we'll remove the traceID information so that the parent span // ends once the workspace has started err := m.manager.markWorkspace(ctx, workspaceID, deleteMark(wsk8s.TraceIDAnnotation)) if err != nil { log.WithError(err).Warn("was unable to remove traceID annotation from workspace") } } } if status.Phase == api.WorkspacePhase_STOPPING { // This may be the last pod-based status we'll ever see for this workspace, so we must store it in the // plis config map which in turn will trigger the status update mechanism. Because we serialize events // for each workspace, the cfgmap event won't be handled before this function finishes. annotations := make([]*annotation, 0) if v, neverReady := pod.Annotations[workspaceNeverReadyAnnotation]; neverReady { // workspace has never been ready, mark it as such. // Note: this is the reason we're using a never-ready flag instead of a "positive ready" flag. // If we don't copy this flag for some reason (e.g. because we missed the stopping event), // we'll still think the workspace ready, i.e. it's ready by default. annotations = append(annotations, addMark(workspaceNeverReadyAnnotation, v)) } err := m.manager.patchPodLifecycleIndependentState(ctx, status.Id, func(plis *podLifecycleIndependentState) (needsUpdate bool) { needsUpdate = false if !reflect.DeepEqual(plis.LastPodStatus, status) { plis.LastPodStatus = status needsUpdate = true } hostIP := pod.Status.HostIP if hostIP != "" && plis.HostIP != hostIP { plis.HostIP = hostIP needsUpdate = true } if plis.StoppingSince == nil { t := time.Now().UTC() plis.StoppingSince = &t needsUpdate = true } return }, annotations...) if err != nil { return xerrors.Errorf("cannot update pod lifecycle independent state: %w", err) } } return nil } // actOnHeadlessDone performs actions when a headless workspace finishes. func (m *Monitor) actOnHeadlessDone(pod *corev1.Pod, failed bool) (err error) { wso := workspaceObjects{Pod: pod} // This timeout is really a catch-all safety net in case any of the ws-daemon interaction // goes out of hand. Really it should never play a role. ctx, cancel := context.WithTimeout(context.Background(), 1*time.Hour) defer cancel() span := m.traceWorkspace("actOnHeadlessDone", &wso) ctx = opentracing.ContextWithSpan(ctx, span) defer tracing.FinishSpan(span, &err) log := log.WithFields(wsk8s.GetOWIFromObject(&pod.ObjectMeta)) id, ok := pod.Annotations[workspaceIDAnnotation] if !ok { return xerrors.Errorf("cannot get %s annotation from %s", workspaceIDAnnotation, pod.Name) } // Headless workspaces need to maintain their "failure state" so that we can provide feedback to users down the road. // That means that the moment anything goes wrong with headless workspaces we need to fail the workspace to issue a status update. handleFailure := func(msg string) error { // marking the workspace as tasked failed will cause the workspace to fail as a whole which in turn will make the monitor actually stop it err := m.manager.markWorkspace(context.Background(), id, addMark(workspaceExplicitFailAnnotation, msg)) if err == nil || isKubernetesObjNotFoundError(err) { // workspace is gone - we're good return nil } // log error and try to stop the workspace log.WithError(err).Warn("cannot mark headless workspace as failed - stopping myself") err = m.manager.stopWorkspace(context.Background(), id, stopWorkspaceNormallyGracePeriod) if err == nil || isKubernetesObjNotFoundError(err) { // workspace is gone - we're good return nil } // we've failed to mark the workspace or remove it - that's bad log.WithError(err).Error("was unable to mark workspace as failed or stop it") return err } // headless build is done - if this is a prebuild take a snapshot and tell the world tpe, err := wso.WorkspaceType() if err != nil { // We know we're working with a headless workspace, but don't know its type. This really should never happen. // For now we'll just assume this is a headless workspace. Better we create one snapshot too many that too few. tracing.LogError(span, err) log.WithError(err).Warn("cannot determine workspace type - assuming this is a prebuild") tpe = api.WorkspaceType_PREBUILD } if tpe == api.WorkspaceType_PREBUILD { snc, err := m.manager.connectToWorkspaceDaemon(ctx, wso) if err != nil { tracing.LogError(span, err) return handleFailure(fmt.Sprintf("cannot take snapshot: %v", err)) } res, err := snc.TakeSnapshot(ctx, &wsdaemon.TakeSnapshotRequest{Id: id}) if err != nil { tracing.LogError(span, err) return handleFailure(fmt.Sprintf("cannot take snapshot: %v", err)) } err = m.manager.markWorkspace(context.Background(), id, addMark(workspaceSnapshotAnnotation, res.Url)) if err != nil { tracing.LogError(span, err) log.WithError(err).Warn("cannot mark headless workspace with snapshot - that's one prebuild lost") return handleFailure(fmt.Sprintf("cannot remember snapshot: %v", err)) } } // healthy prebuilds don't fail the workspace, thus we have to stop them ourselves err = m.manager.stopWorkspace(ctx, id, stopWorkspaceNormallyGracePeriod) if err != nil { log.WithError(err).Error("unable to stop finished headless workspace") } return nil } func (m *Monitor) handleHeadlessLog(pod *corev1.Pod, msg string) { id, ok := pod.Annotations[workspaceIDAnnotation] if !ok { log.WithFields(wsk8s.GetOWIFromObject(&pod.ObjectMeta)).Errorf("cannot get %s annotation from %s", workspaceIDAnnotation, pod.Name) return } evt := &api.WorkspaceLogMessage{ Id: id, Metadata: getWorkspaceMetadata(pod), Message: msg, } m.manager.OnWorkspaceLog(context.Background(), evt) } // onConfigMapEvent interpretes Kubernetes events regarding pod lifecycle independent state, // translates and broadcasts them, and acts based on them. This is the pod independented counterpart to // onPodEvent, and only does something if there is no pod in place. func (m *Monitor) onConfigMapEvent(evt watch.Event) error { cfgmap, ok := evt.Object.(*corev1.ConfigMap) if !ok { return fmt.Errorf("received non-configmap event") } // Kubernetes sets a deletionGracePeriod on configmaps prior to deleting them. That's a modification // we don't care about as it does not add to the state of a workspace. if cfgmap.DeletionGracePeriodSeconds != nil { return nil } // configmap events only play a role when no pod exists anymore. Otherwise we could not // guarantee a stable order of states, as we complete the workspace objects when we handle the events. // // Consider the following sequence: // pod event fromEvt(pod)=rev1 fromK8S(cfgmap)=none // cfg map event fromK8S(pod)=rev3 fromEvt(cfgmap)=rev1 // pod event fromEvt(pod)=rev2 fromK8S(cfgmap)=rev1 // pod event fromEvt(pod)=rev3 fromK8S(cfgmap)=rev1 // // In this sequence we would intermittently commpute our state from a new version of the pod. This would break // (and has broken) a stable order of status. ctx, cancel := context.WithTimeout(context.Background(), kubernetesOperationTimeout) defer cancel() wso := &workspaceObjects{PLIS: cfgmap} err := m.manager.completeWorkspaceObjects(ctx, wso) if err != nil { return xerrors.Errorf("cannot handle workspace event: %w", err) } if wso.Pod != nil { return nil } status, err := m.manager.getWorkspaceStatus(*wso) if err != nil { log.WithError(err).WithFields(wso.GetOWI()).Error("onConfigMapEvent cannot get status") return xerrors.Errorf("cannot handle workspace event: %w", err) } // make sure we tell our clients that things changed - no matter if there's an error in our // subsequent handling of the matter or not. However, we want to respond quickly to events, // thus we start OnChange as a goroutine. // BEWARE beyond this point one must not modify status anymore - we've already sent it out BEWARE span := m.traceWorkspace(status.Phase.String(), wso) ctx = opentracing.ContextWithSpan(context.Background(), span) onChangeDone := make(chan bool) go func() { // We call OnChange in a Go routine to make sure it doesn't block our internal handling of events. m.manager.OnChange(ctx, status) onChangeDone <- true }() m.writeEventTraceLog(status, wso) err = m.actOnConfigMapEvent(ctx, status, wso) // To make the tracing work though we have to re-sync with OnChange. But we don't want OnChange to block our event // handling, thus we wait for it to finish in a Go routine. go func() { <-onChangeDone span.Finish() }() return err } // actOnConfigMapEvent performs actions when a status change was triggered by a config map (PLIS) update, e.g. clean up the // PLIS config map if the workspace is stopped. // BEWARE: this function only gets called when there's no workspace pod! func (m *Monitor) actOnConfigMapEvent(ctx context.Context, status *api.WorkspaceStatus, wso *workspaceObjects) (err error) { cfgmap := wso.PLIS //nolint:ineffassign,staticcheck span, ctx := tracing.FromContext(ctx, "actOnConfigMapEvent") defer tracing.FinishSpan(span, &err) doDelete := func() error { span.SetTag("deletingObject", true) // the workspace has stopped, we don't need the workspace state configmap anymore propagationPolicy := metav1.DeletePropagationForeground err = m.manager.Clientset.Delete(ctx, cfgmap, &client.DeleteOptions{PropagationPolicy: &propagationPolicy}) if err != nil && !isKubernetesObjNotFoundError(err) { return xerrors.Errorf("cannot delete PLIS config map: %w", err) } // free all allocated ingress ports if wso.TheiaService != nil { m.manager.ingressPortAllocator.FreeAllocatedPorts(wso.TheiaService.Name) } if wso.PortsService != nil { m.manager.ingressPortAllocator.FreeAllocatedPorts(wso.PortsService.Name) } return nil } // Beware: for this finalization mechanism to work, the pod going out has to trigger a config map event. Because we have a // workspace condition "deployed" which changes state when the pod goes away, and during startup of wsman we'll enter here, // that will be the case. It does feel rather frickle though. if status.Phase == api.WorkspacePhase_STOPPING { // Handling timeouts in config map events is tricky as we must not rely on the workspace status timeout condition. That condition // could come from a regular timeout and does not indicate a timeout incurred while stopping. Timeouts which happen while we're stopping // become annotations on the PLIS configmap and not part of the serialized PLIS content. if _, ok := cfgmap.Annotations[workspaceTimedOutAnnotation]; ok { // this workspace has timed out while stopping, thus we no longer try and remove the PLIS config map return doDelete() } // after the workspace pod is gone, we have to initiate the last workspace backup and the disposal of // of the workspce content go m.finalizeWorkspaceContent(ctx, wso) } if status.Phase == api.WorkspacePhase_STOPPED { return doDelete() } return nil } // doHouskeeping is called regularly by the monitor and removes timed out or dangling workspaces/services func (m *Monitor) doHousekeeping(ctx context.Context) { span, ctx := tracing.FromContext(ctx, "doHousekeeping") defer tracing.FinishSpan(span, nil) err := m.markTimedoutWorkspaces(ctx) if err != nil { m.OnError(err) } err = m.deleteDanglingServices(ctx) if err != nil { m.OnError(err) } err = m.deleteDanglingPodLifecycleIndependentState(ctx) if err != nil { m.OnError(err) } } // writeEventTraceLog writes an event trace log if one is configured. This function is written in // such a way that it does not fail - and if it fails it fails silently. This is on purpose. // The event trace log is for debugging only and has no operational significance. func (m *Monitor) writeEventTraceLog(status *api.WorkspaceStatus, wso *workspaceObjects) { // make sure we recover from a panic in this function - not that we expect this to ever happen //nolint:errcheck defer recover() if m.manager.Config.EventTraceLog == "" { return } // The pod object contains potentially sensitive information, e.g. passwords or tokens. // We must do our best to remove that information prior to logging it out. twso := *wso if twso.Pod != nil { twso.Pod = twso.Pod.DeepCopy() if _, ok := twso.Pod.Annotations[workspaceInitializerAnnotation]; ok { twso.Pod.Annotations[workspaceInitializerAnnotation] = "[redacted]" } for _, c := range twso.Pod.Spec.Containers { for i, env := range c.Env { isGitpodVar := strings.HasPrefix(env.Name, "GITPOD_") || strings.HasPrefix(env.Name, "THEIA_") if isGitpodVar { continue } isKnownVar := env.Name == "PATH" if isKnownVar { continue } c.Env[i].Value = "[redacted]" } } } type eventTraceEntry struct { Time string `json:"time"` Status *api.WorkspaceStatus `json:"status"` Objects workspaceObjects `json:"objects"` } entry := eventTraceEntry{Time: time.Now().UTC().Format(time.RFC3339Nano), Status: status, Objects: twso} if m.manager.Config.EventTraceLog == "-" { //nolint:errcheck log.WithField("evt", entry).Debug("event trace log") return } out, err := os.OpenFile(m.manager.Config.EventTraceLog, os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644) if err != nil { return } defer out.Close() // If writing the event trace log fails that does nothing to harm the function of ws-manager. // In fact we don't even want to react to it, hence the nolint. //nolint:errcheck json.NewEncoder(out).Encode(entry) } // traceWorkspace updates the workspace span if the workspace has OpenTracing information associated with it. // The resulting context may be associated with trace information that can be used to trace the effects of this status // update throughout the rest of the system. func (m *Monitor) traceWorkspace(occasion string, wso *workspaceObjects) opentracing.Span { var traceID string if traceID == "" && wso.PLIS != nil { traceID = wso.PLIS.Annotations[wsk8s.TraceIDAnnotation] } if traceID == "" && wso.Pod != nil { traceID = wso.Pod.Annotations[wsk8s.TraceIDAnnotation] } spanCtx := tracing.FromTraceID(traceID) if spanCtx == nil { // no trace information available return opentracing.NoopTracer{}.StartSpan("noop") } span := opentracing.StartSpan(fmt.Sprintf("/workspace/%s", occasion), opentracing.FollowsFrom(spanCtx)) if wso.Pod != nil { tracing.ApplyOWI(span, wsk8s.GetOWIFromObject(&wso.Pod.ObjectMeta)) } tracing.LogKV(span, "occasion", occasion) // OpenTracing does not support creating a span from a SpanContext https://github.com/opentracing/specification/issues/81. // Until that changes we just finish the span immediately after calling on-change. return span } // waitForWorkspaceReady waits until the workspace's content and Theia to become available. func (m *Monitor) waitForWorkspaceReady(ctx context.Context, pod *corev1.Pod) (err error) { span, ctx := tracing.FromContext(ctx, "waitForWorkspaceReady") defer tracing.FinishSpan(span, &err) workspaceID, ok := pod.Annotations[workspaceIDAnnotation] if !ok { m.OnError(xerrors.Errorf("pod %s has no %s annotation", pod.Name, workspaceIDAnnotation)) return } r, err := m.probeWorkspaceReady(ctx, pod) if err != nil { return err } if r == nil { // we're already probing/waiting for this workspace to get ready return } tracing.LogEvent(span, "probeDone") probeResult := *r if probeResult == WorkspaceProbeStopped { // Workspace probe was stopped most likely because the workspace itself was stopped. // Should this assumption be wrong we'll clean the dangling workspace when it times out. return nil } // Theia is available - let's wait until the workspace is initialized snc, err := m.manager.connectToWorkspaceDaemon(ctx, workspaceObjects{Pod: pod}) if err != nil { return xerrors.Errorf("cannot connect to workspace daemon: %w", err) } // Note: we don't have to use the same cancelable context that we used for the original Init call. // If the init call gets canceled, WaitForInit will return as well. We're synchronizing through // wsdaemon here. err = retryIfUnavailable(ctx, func(ctx context.Context) error { _, err = snc.WaitForInit(ctx, &wsdaemon.WaitForInitRequest{Id: workspaceID}) return err }) if st, ok := grpc_status.FromError(err); ok && st.Code() == codes.NotFound { // Looks like we have missed the CREATING phase in which we'd otherwise start the workspace content initialization. // Let's see if we're initializing already. If so, there's something very wrong because ws-daemon does not know about // this workspace yet. In that case we'll run another desperate attempt to initialize the workspace. m.initializerMapLock.Lock() if _, alreadyInitializing := m.initializerMap[pod.Name]; alreadyInitializing { // we're already initializing but wsdaemon does not know about this workspace. That's very bad. log.WithFields(wsk8s.GetOWIFromObject(&pod.ObjectMeta)).Error("we were already initializing but wsdaemon does not know about this workspace (bug in ws-daemon?). Trying again!") delete(m.initializerMap, pod.Name) } m.initializerMapLock.Unlock() // It's ok - maybe we were restarting in that time. Instead of waiting for things to finish, we'll just start the // initialization now. err = m.initializeWorkspaceContent(ctx, pod) } else { err = handleGRPCError(ctx, err) } if err != nil { return xerrors.Errorf("cannot wait for workspace to initialize: %w", err) } m.initializerMapLock.Lock() delete(m.initializerMap, pod.Name) m.initializerMapLock.Unlock() tracing.LogEvent(span, "contentInitDone") // workspace is ready - mark it as such err = m.manager.markWorkspace(ctx, workspaceID, deleteMark(workspaceNeverReadyAnnotation)) if err != nil { return xerrors.Errorf("cannot workspace: %w", err) } return nil } // probeWorkspaceReady continually HTTP GETs a workspace's ready URL until we've tried a certain number of times // or the workspace responded with status code 200. func (m *Monitor) probeWorkspaceReady(ctx context.Context, pod *corev1.Pod) (result *WorkspaceProbeResult, err error) { span, ctx := tracing.FromContext(ctx, "probeWorkspaceReady") defer tracing.FinishSpan(span, &err) workspaceID, ok := pod.Annotations[workspaceIDAnnotation] if !ok { return nil, xerrors.Errorf("pod %s has no %s annotation", pod.Name, workspaceIDAnnotation) } wsurl, ok := pod.Annotations[workspaceURLAnnotation] if !ok { return nil, xerrors.Errorf("pod %s has no %s annotation", pod.Name, workspaceURLAnnotation) } workspaceURL, err := url.Parse(wsurl) if err != nil { return nil, xerrors.Errorf("cannot probe workspace - this will result in a broken experience for a user: %w", err) } probeTimeout, err := time.ParseDuration(m.manager.Config.InitProbe.Timeout) if err != nil { probeTimeout = 5 * time.Second log.WithFields(wsk8s.GetOWIFromObject(&pod.ObjectMeta)).WithError(err).WithField("defaultProbeTimeout", probeTimeout).Warn("Cannot parse init probe timeout. This is a configuration problem. Using default.") } // Probe preparation, i.e. checking if a probe exists already and if it doesn't registering a new one has to be atomic with // regards to the probeMapLock. Ensure both operations are within the same locked section. m.probeMapLock.Lock() _, alreadyProbing := m.probeMap[pod.Name] if alreadyProbing { m.probeMapLock.Unlock() return nil, nil } ctx, cancelProbe := context.WithCancel(ctx) m.probeMap[pod.Name] = cancelProbe m.probeMapLock.Unlock() // The probe run will block until either the probe finds the pod ready or the probe itself is stopped. // Because of that it's best to run probeWorkspaceReady as a go routine. probe := NewWorkspaceReadyProbe(workspaceID, *workspaceURL) probe.Timeout = probeTimeout if m.manager.Config.InitProbe.Disabled { // While under test we may not have a publicly exposed workspace, hence use // the probe bypass to get over this stage. // // Note: this code-path should never run in production. probe.bypass = func() WorkspaceProbeResult { return WorkspaceProbeReady } } probeResult := probe.Run(ctx) span.LogFields(tracelog.String("result", string(probeResult))) // we're done probing: deregister probe from probe map m.probeMapLock.Lock() delete(m.probeMap, pod.Name) m.probeMapLock.Unlock() return &probeResult, nil } // initializeWorkspaceContent talks to a ws-daemon daemon on the node of the pod and initializes the workspace content. // If we're already initializing the workspace, thus function will return immediately. If we were not initializing, // prior to this call this function returns once initialization is complete. func (m *Monitor) initializeWorkspaceContent(ctx context.Context, pod *corev1.Pod) (err error) { span, ctx := tracing.FromContext(ctx, "initializeWorkspace") defer tracing.FinishSpan(span, &err) _, fullWorkspaceBackup := pod.Labels[fullWorkspaceBackupAnnotation] span.SetTag("fullWorkspaceBackup", fullWorkspaceBackup) _, withUsernamespace := pod.Annotations[withUsernamespaceAnnotation] span.SetTag("withUsernamespace", withUsernamespace) workspaceID, ok := pod.Annotations[workspaceIDAnnotation] if !ok { return xerrors.Errorf("pod %s has no %s annotation", pod.Name, workspaceIDAnnotation) } workspaceMeta := getWorkspaceMetadata(pod) if workspaceMeta.Owner == "" { return xerrors.Errorf("pod %s has no owner", pod.Name) } var ( initializer csapi.WorkspaceInitializer snc wsdaemon.WorkspaceContentServiceClient contentManifest []byte ) // The function below deliniates the initializer lock. It's just there so that we can // defer the unlock call, thus making sure we actually call it. err = func() error { m.initializerMapLock.Lock() defer m.initializerMapLock.Unlock() _, alreadyInitializing := m.initializerMap[pod.Name] if alreadyInitializing { return nil } initializerRaw, ok := pod.Annotations[workspaceInitializerAnnotation] if !ok { return xerrors.Errorf("pod %s has no %s annotation", pod.Name, workspaceInitializerAnnotation) } initializerPB, err := base64.StdEncoding.DecodeString(initializerRaw) if err != nil { return xerrors.Errorf("cannot decode init config: %w", err) } err = proto.Unmarshal(initializerPB, &initializer) if err != nil { return xerrors.Errorf("cannot unmarshal init config: %w", err) } if fullWorkspaceBackup { _, mf, err := m.manager.Content.GetContentLayer(ctx, workspaceMeta.Owner, workspaceMeta.MetaId, &initializer) if err != nil { return xerrors.Errorf("cannot download workspace content manifest: %w", err) } if mf != nil { contentManifest, err = json.Marshal(mf) } if err != nil { return xerrors.Errorf("cannot remarshal workspace content manifest: %w", err) } } // connect to the appropriate ws-daemon snc, err = m.manager.connectToWorkspaceDaemon(ctx, workspaceObjects{Pod: pod}) if err != nil { return err } // mark that we're already initialising this workspace m.initializerMap[pod.Name] = struct{}{} return nil }() if err != nil { return xerrors.Errorf("cannot initialize workspace: %w", err) } if err == nil && snc == nil { // we are already initialising span.LogKV("done", "already initializing") return nil } err = retryIfUnavailable(ctx, func(ctx context.Context) error { _, err = snc.InitWorkspace(ctx, &wsdaemon.InitWorkspaceRequest{ Id: workspaceID, Metadata: &wsdaemon.WorkspaceMetadata{ Owner: workspaceMeta.Owner, MetaId: workspaceMeta.MetaId, }, Initializer: &initializer, FullWorkspaceBackup: fullWorkspaceBackup, ContentManifest: contentManifest, UserNamespaced: withUsernamespace, }) return err }) if st, ok := grpc_status.FromError(err); ok && st.Code() == codes.AlreadyExists { // we're already initializing, things are good - we'll wait for it later err = nil } else { err = handleGRPCError(ctx, err) } if err != nil { return xerrors.Errorf("cannot initialize workspace: %w", err) } return nil } // retryIfUnavailable makes multiple attempts to execute op if op returns an UNAVAILABLE gRPC status code func retryIfUnavailable(ctx context.Context, op func(ctx context.Context) error) (err error) { span, ctx := tracing.FromContext(ctx, "retryIfUnavailable") defer tracing.FinishSpan(span, &err) for i := 0; i < wsdaemonMaxAttempts; i++ { err := op(ctx) span.LogKV("attempt", i) if st, ok := grpc_status.FromError(err); ok && st.Code() == codes.Unavailable { // service is unavailable - try again after some time time.Sleep(wsdaemonRetryInterval) } else if err != nil { // some other error happened, we'done done here return err } else { // err is nil, we're done here return nil } } // we've maxed out our retry attempts return grpc_status.Error(codes.Unavailable, "workspace content initialization is currently unavailable") } // finalizeWorkspaceContent talks to a ws-daemon daemon on the node of the pod and initializes the workspace content. func (m *Monitor) finalizeWorkspaceContent(ctx context.Context, wso *workspaceObjects) { span, ctx := tracing.FromContext(ctx, "finalizeWorkspaceContent") defer tracing.FinishSpan(span, nil) workspaceID, ok := wso.WorkspaceID() if !ok { tracing.LogError(span, xerrors.Errorf("cannot find %s annotation", workspaceIDAnnotation)) log.WithFields(wso.GetOWI()).Errorf("cannot find %s annotation", workspaceIDAnnotation) } var fullWorkspaceBackup bool if wso.Pod != nil { if _, ok := wso.Pod.Labels[fullWorkspaceBackupAnnotation]; ok { fullWorkspaceBackup = true } } if wso.PLIS != nil { if _, ok := wso.PLIS.Labels[fullWorkspaceBackupAnnotation]; ok { fullWorkspaceBackup = true } } if fullWorkspaceBackup { err := m.manager.patchPodLifecycleIndependentState(ctx, workspaceID, func(plis *podLifecycleIndependentState) (needsUpdate bool) { plis.FinalBackupComplete = true needsUpdate = true return }) if err != nil { log.WithError(err).Error("was unable to set pod lifecycle independent state - this will break someone's experience") } return } doBackup := wso.WasEverReady() && !wso.IsWorkspaceHeadless() doFinalize := func() (worked bool, gitStatus *csapi.GitStatus, err error) { m.finalizerMapLock.Lock() _, alreadyFinalizing := m.finalizerMap[workspaceID] if alreadyFinalizing { m.finalizerMapLock.Unlock() return false, nil, nil } // Maybe the workspace never made it to a phase where we actually initialized a workspace. // Assuming that once we've had a hostIP we've spoken to ws-daemon it's safe to assume that if // we don't have a hostIP we don't need to dipose the workspace. // Obviously that only holds if we do not require a backup. If we do require one, we want to // fail as loud as we can in this case. if !doBackup && wso.HostIP() == "" { // we don't need a backup and have never spoken to ws-daemon: we're good here. m.finalizerMapLock.Unlock() return true, &csapi.GitStatus{}, nil } // we're not yet finalizing - start the process snc, err := m.manager.connectToWorkspaceDaemon(ctx, *wso) if err != nil { m.finalizerMapLock.Unlock() return true, nil, err } ctx, cancelReq := context.WithTimeout(ctx, time.Duration(m.manager.Config.Timeouts.ContentFinalization)) m.finalizerMap[workspaceID] = cancelReq m.finalizerMapLock.Unlock() // DiposeWorkspace will "degenerate" to a simple wait if the finalization/disposal process is already running. // This is unlike the initialization process where we wait for things to finish in a later phase. resp, err := snc.DisposeWorkspace(ctx, &wsdaemon.DisposeWorkspaceRequest{ Id: workspaceID, Backup: doBackup, }) if resp != nil { gitStatus = resp.GitStatus } // we're done disposing - remove from the finalizerMap m.finalizerMapLock.Lock() delete(m.finalizerMap, workspaceID) m.finalizerMapLock.Unlock() return true, gitStatus, err } var ( dataloss bool backupError error gitStatus *csapi.GitStatus ) for i := 0; i < wsdaemonMaxAttempts; i++ { tracing.LogKV(span, "attempt", strconv.Itoa(i)) didSometing, gs, err := doFinalize() if !didSometing { // someone else is managing finalization process ... we don't have to bother return } // by default we assume the worst case scenario. If things aren't just as bad, we'll tune it down below. dataloss = true backupError = handleGRPCError(ctx, err) gitStatus = gs // At this point one of three things may have happened: // 1. the context deadline was exceeded, e.g. due to misconfiguration (not enough time to upload) or network issues. We'll try again. // 2. the service was unavailable, in which case we'll try again. // 3. none of the above, in which case we'll give up st, isGRPCError := grpc_status.FromError(err) if !isGRPCError { break } if (err != nil && strings.Contains(err.Error(), context.DeadlineExceeded.Error())) || st.Code() == codes.Unavailable || st.Code() == codes.Canceled { // service is currently unavailable or we did not finish in time - let's wait some time and try again time.Sleep(wsdaemonRetryInterval) continue } // service was available, we've tried to do the work and failed. Tell the world about it. if doBackup && isGRPCError { switch st.Code() { case codes.DataLoss: // ws-daemon told us that it's lost data dataloss = true case codes.FailedPrecondition: // the workspace content was not in the state we thought it was dataloss = true } } break } err := m.manager.patchPodLifecycleIndependentState(ctx, workspaceID, func(plis *podLifecycleIndependentState) (needsUpdate bool) { plis.FinalBackupComplete = true needsUpdate = true if plis.LastPodStatus != nil { plis.LastPodStatus.Repo = gitStatus needsUpdate = true } if backupError != nil { if dataloss { plis.FinalBackupFailure = backupError.Error() needsUpdate = true } else { // internal errors make no difference to the user experience. The backup still worked, we just messed up some // state management or cleanup. No need to worry the user. log.WithError(backupError).WithFields(wso.GetOWI()).Warn("internal error while disposing workspace content") tracing.LogError(span, backupError) } } return }) if err != nil { log.WithError(err).WithFields(wso.GetOWI()).Error("was unable to set pod lifecycle independent state - this will break someone's experience") } } // deleteDanglingServices removes services for which there is no corresponding workspace pod anymore func (m *Monitor) deleteDanglingServices(ctx context.Context) error { var endpoints corev1.EndpointsList err := m.manager.Clientset.List(ctx, &endpoints, workspaceObjectListOptions(m.manager.Config.Namespace)) if err != nil { return xerrors.Errorf("deleteDanglingServices: %w", err) } propagationPolicy := metav1.DeletePropagationForeground for _, e := range endpoints.Items { hasReadyEndpoint := false for _, s := range e.Subsets { hasReadyEndpoint = len(s.Addresses) > 0 } if hasReadyEndpoint { continue } workspaceID, ok := e.Labels[wsk8s.WorkspaceIDLabel] if !ok { m.OnError(fmt.Errorf("service endpoint %s does not have %s label", e.Name, wsk8s.WorkspaceIDLabel)) continue } _, err := m.manager.findWorkspacePod(ctx, workspaceID) if !isKubernetesObjNotFoundError(err) { continue } if m.manager.Config.DryRun { log.WithFields(log.OWI("", "", workspaceID)).WithField("name", e.Name).Info("should have deleted dangling service but this is a dry run") continue } // this relies on the Kubernetes convention that endpoints have the same name as their services err = m.manager.Clientset.Delete(ctx, &e, &client.DeleteOptions{PropagationPolicy: &propagationPolicy}) if err != nil && !isKubernetesObjNotFoundError(err) { m.OnError(xerrors.Errorf("deleteDanglingServices: %w", err)) continue } log.WithFields(log.OWI("", "", workspaceID)).WithField("name", e.Name).Info("deleted dangling service") } return nil } // deleteDanglingPodLifecycleIndependentState removes PLIS config maps for which no pod exists and which have exceded lonelyPLISSurvivalTime func (m *Monitor) deleteDanglingPodLifecycleIndependentState(ctx context.Context) error { var pods corev1.PodList err := m.manager.Clientset.List(ctx, &pods, workspaceObjectListOptions(m.manager.Config.Namespace)) if err != nil { return xerrors.Errorf("deleteDanglingPodLifecycleIndependentState: %w", err) } podIdx := make(map[string]*corev1.Pod) for _, p := range pods.Items { workspaceID, ok := p.Labels[wsk8s.WorkspaceIDLabel] if !ok { log.WithFields(wsk8s.GetOWIFromObject(&p.ObjectMeta)).WithField("pod", p).Warn("found workspace object pod without workspaceID label") continue } podIdx[workspaceID] = &p } var plisConfigmaps corev1.ConfigMapList err = m.manager.Clientset.List(ctx, &plisConfigmaps, workspaceObjectListOptions(m.manager.Config.Namespace)) if err != nil { return xerrors.Errorf("deleteDanglingPodLifecycleIndependentState: %w", err) } for _, cfgmap := range plisConfigmaps.Items { workspaceID, ok := cfgmap.Labels[wsk8s.WorkspaceIDLabel] if !ok { m.OnError(xerrors.Errorf("PLIS config map %s does not have %s label", cfgmap.Name, wsk8s.WorkspaceIDLabel)) continue } _, hasPod := podIdx[workspaceID] if hasPod { continue } referenceTime := cfgmap.CreationTimestamp.Time plis, err := unmarshalPodLifecycleIndependentState(&cfgmap) if err != nil { m.OnError(xerrors.Errorf("cannot get PLIS configmap age: %w", err)) continue } if plis != nil && plis.StoppingSince != nil { referenceTime = *plis.StoppingSince } age := time.Since(referenceTime) if age < lonelyPLISSurvivalTime { continue } // Note: some workspace probably failed to stop if we have a dangling PLIS. // Prior to deletion we should send a final stopped update. propagationPolicy := metav1.DeletePropagationForeground err = m.manager.Clientset.Delete(ctx, &cfgmap, &client.DeleteOptions{PropagationPolicy: &propagationPolicy}) if err != nil { m.OnError(xerrors.Errorf("cannot delete too old PLIS config map: %w", err)) continue } log.WithFields(log.OWI("", "", workspaceID)).WithField("age", age).WithField("name", cfgmap.Name).Info("deleted dangling PLIS config map") } return nil } // markTimedoutWorkspaces finds workspaces which haven't been active recently and marks them as timed out func (m *Monitor) markTimedoutWorkspaces(ctx context.Context) (err error) { span, ctx := tracing.FromContext(ctx, "markTimedoutWorkspaces") defer tracing.FinishSpan(span, nil) var pods corev1.PodList err = m.manager.Clientset.List(ctx, &pods, workspaceObjectListOptions(m.manager.Config.Namespace)) if err != nil { return xerrors.Errorf("stopTimedoutWorkspaces: %w", err) } errs := make([]string, 0) idx := make(map[string]struct{}) for _, pod := range pods.Items { workspaceID, ok := pod.Annotations[workspaceIDAnnotation] if !ok { log.WithFields(wsk8s.GetOWIFromObject(&pod.ObjectMeta)).WithError(err).Errorf("while checking if timed out: found workspace without %s annotation", workspaceIDAnnotation) errs = append(errs, fmt.Sprintf("cannot check if pod %s is timed out: has no %s annotation", pod.Name, workspaceIDAnnotation)) continue } idx[workspaceID] = struct{}{} if _, timedout := pod.Annotations[workspaceTimedOutAnnotation]; timedout { // workspace is already marked as timedout continue } timedout, err := m.manager.isWorkspaceTimedOut(workspaceObjects{Pod: &pod}) if err != nil { errs = append(errs, fmt.Sprintf("workspaceId=%s: %q", workspaceID, err)) continue } if timedout == "" { continue } err = m.manager.markWorkspace(ctx, workspaceID, addMark(workspaceTimedOutAnnotation, timedout)) if err != nil { errs = append(errs, fmt.Sprintf("workspaceId=%s: %q", workspaceID, err)) // don't skip the next step - even if we did not mark the workspace as timed out, we still want to stop it } } // timeout PLIS only workspaces var allPlis corev1.ConfigMapList err = m.manager.Clientset.List(ctx, &allPlis, workspaceObjectListOptions(m.manager.Config.Namespace)) if err != nil { return xerrors.Errorf("stopTimedoutWorkspaces: %w", err) } for _, plis := range allPlis.Items { workspaceID, ok := plis.Annotations[workspaceIDAnnotation] if !ok { log.WithFields(wsk8s.GetOWIFromObject(&plis.ObjectMeta)).WithError(err).Errorf("while checking if timed out: found workspace PLIS without %s annotation", workspaceIDAnnotation) errs = append(errs, fmt.Sprintf("cannot check if PLIS %s is timed out: has no %s annotation", plis.Name, workspaceIDAnnotation)) continue } if _, ok := idx[workspaceID]; ok { // PLIS still has a corresponding pod, thus we resort to the regular "mark as timed out" mechanism continue } timedout, err := m.manager.isWorkspaceTimedOut(workspaceObjects{PLIS: &plis}) if xerrors.Is(err, errNoPLIS) { // The pod is gone and the PLIS hasn't been patched yet - there's not much we can do here, except // to ignore the workspace. // // Note: although tempting it would be dangerous to try and patch the PLIS now, because we'd race // the stopping/stopped PLIS patching, possibly destroying state along the way. Patching the PLIS // is not an atomic operation. continue } if err != nil { errs = append(errs, fmt.Sprintf("workspaceId=%s: %q", workspaceID, err)) continue } if timedout == "" { continue } // we have PLIS-only workspace which is timed out. Patching the PLIS config map will trigger actOnConfigMapEvent which in turn will remove the PLIS. err = m.manager.patchPodLifecycleIndependentState(ctx, workspaceID, nil, addMark(workspaceTimedOutAnnotation, timedout)) if err != nil { errs = append(errs, fmt.Sprintf("workspaceId=%s: %q", workspaceID, err)) } } if len(errs) > 0 { return xerrors.Errorf("error during periodic run:\n%s", strings.Join(errs, "\n\t")) } return nil } // Stop ends the monitor's involvement. A stopped monitor cannot be started again. func (m *Monitor) Stop() { if m.ticker != nil { m.ticker.Stop() } } func workspaceObjectListOptions(namespace string) *client.ListOptions { return &client.ListOptions{ Namespace: namespace, LabelSelector: labels.SelectorFromSet(labels.Set{ markerLabel: "true", }), } } func handleGRPCError(ctx context.Context, err error) error { if err == nil { return err } grpcErr, ok := grpc_status.FromError(err) if !ok { return err } if grpcErr.Code() == codes.Unavailable { span, _ := tracing.FromContext(ctx, "handleGRPCError") tracing.FinishSpan(span, &err) return xerrors.Errorf("workspace initialization is currently unavailable - please try again") } return xerrors.Errorf(grpcErr.Message()) }