mirror of
https://github.com/google/earthengine-api.git
synced 2025-12-08 19:26:12 +00:00
4753 lines
146 KiB
Python
4753 lines
146 KiB
Python
#!/usr/bin/env python3
|
|
"""Test for the ee.image module."""
|
|
|
|
import json
|
|
from typing import Any, Dict
|
|
from unittest import mock
|
|
|
|
import unittest
|
|
import ee
|
|
from ee import _cloud_api_utils
|
|
from ee import apitestcase
|
|
from ee import ee_exception
|
|
from ee import serializer
|
|
|
|
EPSG_3857 = 'EPSG:3857'
|
|
EPSG_4326 = 'EPSG:4326'
|
|
|
|
# ee.Image('a').serialize()
|
|
IMAGE = {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Image.load',
|
|
'arguments': {'id': {'constantValue': 'a'}},
|
|
}
|
|
}
|
|
IMAGE_B = {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Image.load',
|
|
'arguments': {'id': {'constantValue': 'b'}},
|
|
}
|
|
}
|
|
IMAGE_C = {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Image.load',
|
|
'arguments': {'id': {'constantValue': 'c'}},
|
|
}
|
|
}
|
|
|
|
|
|
def make_expression_graph(
|
|
function_invocation_value: Dict[str, Any],
|
|
) -> Dict[str, Any]:
|
|
return {
|
|
'result': '0',
|
|
'values': {'0': {'functionInvocationValue': function_invocation_value}},
|
|
}
|
|
|
|
|
|
class ImageTest(apitestcase.ApiTestCase):
|
|
|
|
def test_constructors(self):
|
|
"""Verifies that constructors understand valid parameters."""
|
|
from_constant = ee.Image(1)
|
|
self.assertEqual(
|
|
ee.ApiFunction.lookup('Image.constant'), from_constant.func)
|
|
self.assertEqual({'value': 1}, from_constant.args)
|
|
|
|
array_constant = ee.Array([1, 2])
|
|
from_array_constant = ee.Image(array_constant)
|
|
self.assertEqual(
|
|
ee.ApiFunction.lookup('Image.constant'), from_array_constant.func)
|
|
self.assertEqual({'value': array_constant}, from_array_constant.args)
|
|
|
|
from_id = ee.Image('abcd')
|
|
self.assertEqual(ee.ApiFunction.lookup('Image.load'), from_id.func)
|
|
self.assertEqual({'id': 'abcd'}, from_id.args)
|
|
|
|
from_array = ee.Image([1, 2])
|
|
self.assertEqual(ee.ApiFunction.lookup('Image.addBands'), from_array.func)
|
|
self.assertEqual({
|
|
'dstImg': ee.Image(1),
|
|
'srcImg': ee.Image(2)
|
|
}, from_array.args)
|
|
|
|
from_computed_object = ee.Image(ee.ComputedObject(None, {'x': 'y'}))
|
|
self.assertEqual({'x': 'y'}, from_computed_object.args)
|
|
|
|
original = ee.Image(1)
|
|
from_other_image = ee.Image(original)
|
|
self.assertEqual(from_other_image, original)
|
|
|
|
from_nothing = ee.Image()
|
|
self.assertEqual(ee.ApiFunction.lookup('Image.mask'), from_nothing.func)
|
|
self.assertEqual({
|
|
'image': ee.Image(0),
|
|
'mask': ee.Image(0)
|
|
}, from_nothing.args)
|
|
|
|
from_id_and_version = ee.Image('abcd', 123)
|
|
self.assertEqual(
|
|
ee.ApiFunction.lookup('Image.load'), from_id_and_version.func)
|
|
self.assertEqual({'id': 'abcd', 'version': 123}, from_id_and_version.args)
|
|
|
|
from_variable = ee.Image(ee.CustomFunction.variable(None, 'foo'))
|
|
self.assertIsInstance(from_variable, ee.Image)
|
|
self.assertEqual({
|
|
'type': 'ArgumentRef',
|
|
'value': 'foo'
|
|
}, from_variable.encode(None))
|
|
|
|
def test_image_signatures(self):
|
|
"""Verifies that the API functions are added to ee.Image."""
|
|
self.assertTrue(hasattr(ee.Image(1), 'addBands'))
|
|
|
|
def test_imperative_functions(self):
|
|
"""Verifies that imperative functions return ready values."""
|
|
image = ee.Image(1)
|
|
self.assertEqual({'value': 'fakeValue'}, image.getInfo())
|
|
map_id = image.getMapId()
|
|
self.assertEqual('fakeMapId', map_id['mapid'])
|
|
self.assertEqual(image, map_id['image'])
|
|
|
|
def test_get_map_id_visualization(self):
|
|
"""Verifies that imperative functions return ready values."""
|
|
image = ee.Image(1)
|
|
image.getMapId({'min': 0})
|
|
|
|
self.assertEqual(
|
|
ee.Image(1).visualize(min=0).serialize(),
|
|
self.last_mapid_call['data']['image'].serialize())
|
|
|
|
def test_combine(self):
|
|
"""Verifies the behavior of ee.Image.combine_()."""
|
|
image1 = ee.Image([1, 2])
|
|
image2 = ee.Image([3, 4])
|
|
combined = ee.Image.combine_([image1, image2], ['a', 'b', 'c', 'd'])
|
|
|
|
self.assertEqual(ee.ApiFunction.lookup('Image.select'), combined.func)
|
|
self.assertEqual(ee.List(['.*']), combined.args['bandSelectors'])
|
|
self.assertEqual(ee.List(['a', 'b', 'c', 'd']), combined.args['newNames'])
|
|
self.assertEqual(
|
|
ee.ApiFunction.lookup('Image.addBands'), combined.args['input'].func)
|
|
self.assertEqual({
|
|
'dstImg': image1,
|
|
'srcImg': image2
|
|
}, combined.args['input'].args)
|
|
|
|
def test_select(self):
|
|
"""Verifies regression in the behavior of empty ee.Image.select()."""
|
|
image = ee.Image([1, 2]).select()
|
|
self.assertEqual(ee.ApiFunction.lookup('Image.select'), image.func)
|
|
self.assertEqual(ee.List([]), image.args['bandSelectors'])
|
|
|
|
def test_rename(self):
|
|
"""Verifies image.rename varargs handling."""
|
|
image = ee.Image([1, 2]).rename('a', 'b')
|
|
self.assertEqual(ee.ApiFunction.lookup('Image.rename'), image.func)
|
|
self.assertEqual(ee.List(['a', 'b']), image.args['names'])
|
|
|
|
image = ee.Image([1, 2]).rename(['a', 'b'])
|
|
self.assertEqual(ee.ApiFunction.lookup('Image.rename'), image.func)
|
|
self.assertEqual(ee.List(['a', 'b']), image.args['names'])
|
|
|
|
image = ee.Image([1]).rename('a')
|
|
self.assertEqual(ee.ApiFunction.lookup('Image.rename'), image.func)
|
|
self.assertEqual(ee.List(['a']), image.args['names'])
|
|
|
|
def test_expression(self):
|
|
"""Verifies the behavior of ee.Image.expression()."""
|
|
image = ee.Image([1, 2]).expression('a', {'b': 'c'})
|
|
expression_func = image.func
|
|
|
|
# The call is buried in a one-time override of .encode so we have to call
|
|
# it rather than comparing the object structure.
|
|
def dummy_encoder(x):
|
|
if isinstance(x, ee.encodable.Encodable):
|
|
return x.encode(dummy_encoder)
|
|
elif isinstance(x, ee.encodable.EncodableFunction):
|
|
return x.encode_invocation(dummy_encoder)
|
|
else:
|
|
return x
|
|
|
|
self.assertEqual({
|
|
'type': 'Invocation',
|
|
'functionName': 'Image.parseExpression',
|
|
'arguments': {
|
|
'expression': 'a',
|
|
'argName': 'DEFAULT_EXPRESSION_IMAGE',
|
|
'vars': ['DEFAULT_EXPRESSION_IMAGE', 'b']
|
|
}
|
|
}, dummy_encoder(expression_func))
|
|
|
|
def test_expression_in_cloud_api(self):
|
|
"""Verifies the behavior of ee.Image.expression() in the Cloud API."""
|
|
image = ee.Image(1).expression('a', {'b': 'c'})
|
|
|
|
self.assertEqual({
|
|
'result': '0',
|
|
'values': {
|
|
'0': {
|
|
'functionInvocationValue': {
|
|
'arguments': {
|
|
'b': {
|
|
'functionInvocationValue': {
|
|
'arguments': {
|
|
'id': {
|
|
'constantValue': 'c'
|
|
}
|
|
},
|
|
'functionName': 'Image.load'
|
|
}
|
|
},
|
|
'DEFAULT_EXPRESSION_IMAGE': {
|
|
'functionInvocationValue': {
|
|
'arguments': {
|
|
'value': {
|
|
'constantValue': 1
|
|
}
|
|
},
|
|
'functionName': 'Image.constant'
|
|
}
|
|
}
|
|
},
|
|
'functionReference': '1'
|
|
}
|
|
},
|
|
'1': {
|
|
'functionInvocationValue': {
|
|
'arguments': {
|
|
'expression': {
|
|
'constantValue': 'a'
|
|
},
|
|
'argName': {
|
|
'valueReference': '2'
|
|
},
|
|
'vars': {
|
|
'arrayValue': {
|
|
'values': [{
|
|
'valueReference': '2'
|
|
}, {
|
|
'constantValue': 'b'
|
|
}]
|
|
}
|
|
}
|
|
},
|
|
'functionName': 'Image.parseExpression'
|
|
}
|
|
},
|
|
'2': {
|
|
'constantValue': 'DEFAULT_EXPRESSION_IMAGE'
|
|
}
|
|
}
|
|
}, serializer.encode(image, for_cloud_api=True))
|
|
|
|
def test_download(self):
|
|
"""Verifies Download ID and URL generation."""
|
|
ee.Image(1).getDownloadURL()
|
|
|
|
self.assertEqual('/download', self.last_download_call['url'])
|
|
self.assertEqual(
|
|
ee.Image(1).serialize(),
|
|
self.last_download_call['data']['image'].serialize())
|
|
|
|
|
|
class CloudThumbnailAndExportImageTest(apitestcase.ApiTestCase):
|
|
|
|
def setUp(self): # pylint: disable=g-missing-super-call
|
|
self.InitializeApi(should_mock=False)
|
|
self.cloud_api_resource = mock.MagicMock()
|
|
self.cloud_api_resource.projects().thumbnails().create(
|
|
).execute.return_value = {
|
|
'name': 'thumbName'
|
|
}
|
|
|
|
self.base_image = ee.Image(1)
|
|
self.geo_json = {
|
|
'type':
|
|
'Polygon',
|
|
'coordinates': [[
|
|
[-112.587890625, 44.94924926661151],
|
|
[-114.873046875, 39.48708498168749],
|
|
[-103.623046875, 41.82045509614031],
|
|
]],
|
|
}
|
|
self.expected_geometry = ee.Geometry(self.geo_json, geodesic=False)
|
|
|
|
def assertImageEqual(self, expected, actual):
|
|
self.assertDictEqual(
|
|
serializer.encode(expected),
|
|
serializer.encode(actual))
|
|
|
|
@unittest.skip('Does not work on github')
|
|
def test_thumb_with_dimensions_region_crs(self):
|
|
"""Verifies Thumbnail ID and URL generation in the Cloud API."""
|
|
|
|
with apitestcase.UsingCloudApi(cloud_api_resource=self.cloud_api_resource):
|
|
url = self.base_image.getThumbURL({
|
|
'dimensions': [13, 42],
|
|
'region': self.geo_json,
|
|
'crs': EPSG_4326,
|
|
})
|
|
|
|
self.assertEqual('None/%s/thumbName:getPixels' % _cloud_api_utils.VERSION,
|
|
url)
|
|
_, kwargs = self.cloud_api_resource.projects().thumbnails(
|
|
).create.call_args
|
|
self.assertEqual(
|
|
kwargs['body']['expression'],
|
|
serializer.encode(
|
|
self.base_image.setDefaultProjection(
|
|
crs=EPSG_4326, crsTransform=[1, 0, 0, 0, -1, 0]
|
|
).clipToBoundsAndScale(
|
|
geometry=ee.Geometry(self.geo_json, geodesic=False),
|
|
width=13,
|
|
height=42,
|
|
)
|
|
),
|
|
)
|
|
self.assertEqual(kwargs['parent'], 'projects/earthengine-legacy')
|
|
|
|
@unittest.skip('Does not work on github')
|
|
def test_thumb_with_dimensions_region_json(self):
|
|
# Try it with the region as a GeoJSON string.
|
|
with apitestcase.UsingCloudApi(cloud_api_resource=self.cloud_api_resource):
|
|
self.base_image.getThumbURL({
|
|
'dimensions': [13, 42],
|
|
'region': json.dumps(self.geo_json),
|
|
})
|
|
|
|
_, kwargs = self.cloud_api_resource.projects().thumbnails(
|
|
).create.call_args
|
|
self.assertEqual(
|
|
kwargs['body']['expression'],
|
|
serializer.encode(
|
|
self.base_image.clipToBoundsAndScale(
|
|
geometry=self.expected_geometry, width=13, height=42)))
|
|
self.assertEqual(kwargs['parent'], 'projects/earthengine-legacy')
|
|
|
|
@unittest.skip('Does not work on github')
|
|
def test_thumb_with_dimensions_list_coords(self):
|
|
# Try it with the region as a list of coordinates.
|
|
with apitestcase.UsingCloudApi(cloud_api_resource=self.cloud_api_resource):
|
|
self.base_image.getThumbURL({
|
|
'dimensions': [13, 42],
|
|
'region': [[-180, -90], [-180, 90], [180, 90]],
|
|
})
|
|
|
|
_, kwargs = self.cloud_api_resource.projects().thumbnails(
|
|
).create.call_args
|
|
expected_geometry = ee.Geometry.Polygon(
|
|
[[-180, -90], [-180, 90], [180, 90]], proj=None, geodesic=False)
|
|
self.assertEqual(
|
|
kwargs['body']['expression'],
|
|
serializer.encode(
|
|
self.base_image.clipToBoundsAndScale(
|
|
geometry=expected_geometry, width=13, height=42)))
|
|
self.assertEqual(kwargs['parent'], 'projects/earthengine-legacy')
|
|
|
|
@unittest.skip('Does not work on github')
|
|
def test_thumb_with_dimensions_list_min_max(self):
|
|
# Try it with the region as a list of coordinates.
|
|
with apitestcase.UsingCloudApi(cloud_api_resource=self.cloud_api_resource):
|
|
self.base_image.getThumbURL({
|
|
'dimensions': [13, 42],
|
|
'region': [-180, -90, 180, 90],
|
|
})
|
|
|
|
_, kwargs = self.cloud_api_resource.projects().thumbnails(
|
|
).create.call_args
|
|
expected_geometry = ee.Geometry.Rectangle(
|
|
[-180, -90, 180, 90], proj=None, geodesic=False)
|
|
self.assertEqual(
|
|
kwargs['body']['expression'],
|
|
serializer.encode(
|
|
self.base_image.clipToBoundsAndScale(
|
|
geometry=expected_geometry, width=13, height=42)))
|
|
self.assertEqual(kwargs['parent'], 'projects/earthengine-legacy')
|
|
|
|
@unittest.skip('Does not work on github')
|
|
def test_thumb_with_visualization_params(self):
|
|
with apitestcase.UsingCloudApi(cloud_api_resource=self.cloud_api_resource):
|
|
self.base_image.getThumbURL({
|
|
'dimensions': [13, 42],
|
|
'region': self.geo_json,
|
|
'min': 0
|
|
})
|
|
_, kwargs = self.cloud_api_resource.projects().thumbnails(
|
|
).create.call_args
|
|
|
|
self.assertEqual(
|
|
kwargs['body']['expression'],
|
|
serializer.encode(
|
|
self.base_image.clipToBoundsAndScale(
|
|
geometry=self.expected_geometry, width=13,
|
|
height=42).visualize(min=0)))
|
|
|
|
def test_build_download_id_image_builds_image_per_band(self):
|
|
test_image = ee.Image('foo')
|
|
|
|
# Format is file per band and bands specified: build image out of individual
|
|
# band images.
|
|
params = {
|
|
'format':
|
|
'ZIPPED_GEO_TIFF_PER_BAND',
|
|
'bands': [{
|
|
'id': 'B1',
|
|
'dimensions': 123,
|
|
}, {
|
|
'id': 'B2',
|
|
'dimensions': 456,
|
|
}, {
|
|
'id': 'B3',
|
|
'dimensions': 789,
|
|
}],
|
|
}
|
|
image_str = test_image._build_download_id_image(params).serialize()
|
|
self.assertEqual(2, image_str.count('addBands'))
|
|
self.assertEqual(3, image_str.count('maxDimension'))
|
|
self.assertEqual(1, image_str.count('123'))
|
|
self.assertEqual(1, image_str.count('456'))
|
|
self.assertEqual(1, image_str.count('789'))
|
|
|
|
# Override the parameters supplied in the top level with the bands
|
|
# parameters
|
|
params = {
|
|
'format': 'ZIPPED_GEO_TIFF_PER_BAND',
|
|
'bands': [{
|
|
'id': 'B1',
|
|
'dimensions': 123,
|
|
}, {
|
|
'id': 'B2',
|
|
'dimensions': 456,
|
|
}, {
|
|
'id': 'B3',
|
|
}],
|
|
'dimensions': 999,
|
|
}
|
|
image_str = test_image._build_download_id_image(params).serialize()
|
|
self.assertEqual(2, image_str.count('addBands'))
|
|
self.assertEqual(3, image_str.count('maxDimension'))
|
|
self.assertEqual(1, image_str.count('123'))
|
|
self.assertEqual(1, image_str.count('456'))
|
|
self.assertEqual(0, image_str.count('789'))
|
|
self.assertEqual(1, image_str.count('999'))
|
|
|
|
def test_build_download_id_image_transforms_given_image(self):
|
|
test_image = ee.Image('foo')
|
|
|
|
# Format is file per band and bands specified: build image out of individual
|
|
# band images.
|
|
params = {
|
|
'format': 'ZIPPED_GEO_TIFF_PER_BAND',
|
|
'bands': [],
|
|
'dimensions': 123,
|
|
}
|
|
image_str = test_image._build_download_id_image(params).serialize()
|
|
self.assertEqual(0, image_str.count('addBands'))
|
|
self.assertEqual(1, image_str.count('maxDimension'))
|
|
self.assertEqual(1, image_str.count('123'))
|
|
|
|
# Format is file per band and no bands specified: apply transforms directly
|
|
# to image.
|
|
params = {
|
|
'format': 'ZIPPED_GEO_TIFF_PER_BAND',
|
|
'dimensions': 123,
|
|
}
|
|
image_str = test_image._build_download_id_image(params).serialize()
|
|
self.assertEqual(0, image_str.count('addBands'))
|
|
self.assertEqual(1, image_str.count('maxDimension'))
|
|
self.assertEqual(1, image_str.count('123'))
|
|
|
|
# Format is a single tiff: apply transforms directly to image and ignore
|
|
# band transformation properties.
|
|
params = {
|
|
'format': 'ZIPPED_GEO_TIFF',
|
|
'bands': [{
|
|
'id': 'B1',
|
|
'dimensions': 123,
|
|
}, {
|
|
'id': 'B2',
|
|
'dimensions': 456,
|
|
}, {
|
|
'id': 'B3',
|
|
'dimensions': 789,
|
|
}],
|
|
'dimensions': 999,
|
|
}
|
|
image_str = test_image._build_download_id_image(params).serialize()
|
|
self.assertEqual(0, image_str.count('addBands'))
|
|
self.assertEqual(1, image_str.count('maxDimension'))
|
|
self.assertEqual(0, image_str.count('123'))
|
|
self.assertEqual(0, image_str.count('456'))
|
|
self.assertEqual(0, image_str.count('789'))
|
|
self.assertEqual(1, image_str.count('999'))
|
|
|
|
def test_build_download_id_image_handles_invalid_parameters(self):
|
|
# No band ID in band dictionary.
|
|
params = {
|
|
'format': 'ZIPPED_GEO_TIFF_PER_BAND',
|
|
'bands': [{
|
|
'id': 'B1',
|
|
'dimensions': 123,
|
|
}, {
|
|
'id': 'B2',
|
|
'dimensions': 456,
|
|
}, {
|
|
'dimensions': 789,
|
|
}],
|
|
'dimensions': 999,
|
|
}
|
|
with self.assertRaisesRegex(
|
|
ee_exception.EEException, 'Each band dictionary must have an id.'
|
|
):
|
|
ee.Image('foo')._build_download_id_image(params)
|
|
|
|
def test_build_download_id_image_handles_dimensions_and_scale(self):
|
|
test_image = ee.Image('foo')
|
|
dimensions = 123
|
|
scale = 456
|
|
|
|
# File per band: ignores scale parameter if dimensions specified.
|
|
params = {
|
|
'format': 'ZIPPED_GEO_TIFF_PER_BAND',
|
|
'dimensions': dimensions,
|
|
'scale': scale,
|
|
}
|
|
image_str = test_image._build_download_id_image(params).serialize()
|
|
self.assertEqual(1, image_str.count(str(dimensions)))
|
|
self.assertEqual(0, image_str.count(str(scale)))
|
|
|
|
# File per band: ignores scale parameter if dimensions specified in band.
|
|
params = {
|
|
'format': 'ZIPPED_GEO_TIFF_PER_BAND',
|
|
'bands': [{
|
|
'id': 'B1',
|
|
'dimensions': dimensions
|
|
}],
|
|
'scale': scale,
|
|
}
|
|
image_str = test_image._build_download_id_image(params).serialize()
|
|
self.assertEqual(1, image_str.count(str(dimensions)))
|
|
self.assertEqual(0, image_str.count(str(scale)))
|
|
|
|
# Single tiff: ignores scale parameter if dimensions specified.
|
|
params = {
|
|
'format': 'ZIPPED_GEO_TIFF',
|
|
'dimensions': dimensions,
|
|
'scale': scale,
|
|
}
|
|
image_str = test_image._build_download_id_image(params).serialize()
|
|
self.assertEqual(1, image_str.count(str(dimensions)))
|
|
self.assertEqual(0, image_str.count(str(scale)))
|
|
|
|
# Single tiff: ignores all parameters in bands.
|
|
params = {
|
|
'format': 'ZIPPED_GEO_TIFF',
|
|
'bands': [{
|
|
'id': 'B1',
|
|
'dimensions': dimensions
|
|
}],
|
|
'scale': scale,
|
|
}
|
|
image_str = test_image._build_download_id_image(params).serialize()
|
|
self.assertEqual(0, image_str.count(str(dimensions)))
|
|
self.assertEqual(1, image_str.count(str(scale)))
|
|
|
|
# Single tiff: ignores all parameters in bands.
|
|
params = {
|
|
'format': 'ZIPPED_GEO_TIFF',
|
|
'bands': [{
|
|
'id': 'B1',
|
|
'scale': scale
|
|
}],
|
|
'dimensions': dimensions,
|
|
}
|
|
image_str = test_image._build_download_id_image(params).serialize()
|
|
self.assertEqual(1, image_str.count(str(dimensions)))
|
|
self.assertEqual(0, image_str.count(str(scale)))
|
|
|
|
@unittest.skip('Does not work on github')
|
|
def test_download_url(self):
|
|
"""Verifies that the getDownloadURL request is constructed correctly."""
|
|
|
|
with apitestcase.UsingCloudApi(cloud_api_resource=self.cloud_api_resource):
|
|
url = self.base_image.getDownloadURL()
|
|
_, kwargs = self.cloud_api_resource.projects().thumbnails(
|
|
).create.call_args
|
|
self.assertEqual(
|
|
serializer.encode(self.base_image, for_cloud_api=True),
|
|
kwargs['body']['expression'])
|
|
self.assertEqual('ZIPPED_GEO_TIFF_PER_BAND', kwargs['body']['fileFormat'])
|
|
self.assertEqual('projects/earthengine-legacy', kwargs['parent'])
|
|
self.assertEqual('None/%s/thumbName:getPixels' % _cloud_api_utils.VERSION,
|
|
url)
|
|
|
|
def test_prepare_for_export_simple(self):
|
|
"""Verifies proper handling of export-related parameters."""
|
|
|
|
with apitestcase.UsingCloudApi():
|
|
image, params = self.base_image.prepare_for_export({'something': 'else'})
|
|
self.assertImageEqual(self.base_image, image)
|
|
self.assertEqual({'something': 'else'}, params)
|
|
|
|
def test_prepare_for_export_with_crs_and_transform(self):
|
|
with apitestcase.UsingCloudApi():
|
|
image, params = self.base_image.prepare_for_export({
|
|
'crs': 'ABCD',
|
|
'crs_transform': '1,2,3,4,5,6'
|
|
})
|
|
self.assertImageEqual(
|
|
self.base_image.reproject(
|
|
crs='ABCD', crsTransform=[1, 2, 3, 4, 5, 6]), image)
|
|
self.assertEqual({}, params)
|
|
|
|
def test_prepare_for_export_invalid_crs_and_transform(self):
|
|
with apitestcase.UsingCloudApi():
|
|
with self.assertRaises(ee_exception.EEException):
|
|
self.base_image.prepare_for_export({'crs_transform': '1,2,3,4,5,6'})
|
|
with self.assertRaises(ValueError):
|
|
self.base_image.prepare_for_export({
|
|
'crs': 'ABCD',
|
|
'crs_transform': 'x'
|
|
})
|
|
|
|
def test_prepare_for_export_with_polygon(self):
|
|
with apitestcase.UsingCloudApi():
|
|
polygon = ee.Geometry.Polygon(9, 8, 7, 6, 3, 2)
|
|
image, params = self.base_image.prepare_for_export({
|
|
'dimensions': '3x2',
|
|
'region': polygon
|
|
})
|
|
expected = self.base_image.clipToBoundsAndScale(
|
|
width=3, height=2, geometry=polygon)
|
|
self.assertImageEqual(expected, image)
|
|
self.assertEqual({}, params)
|
|
|
|
def test_prepare_for_export_with_scale_and_region(self):
|
|
with apitestcase.UsingCloudApi():
|
|
polygon = ee.Geometry.Polygon(9, 8, 7, 6, 3, 2)
|
|
image, params = self.base_image.prepare_for_export({
|
|
'scale': 8,
|
|
'region': polygon.toGeoJSONString(),
|
|
'something': 'else'
|
|
})
|
|
expected_polygon = ee.Geometry(polygon.toGeoJSON(), geodesic=False)
|
|
self.assertImageEqual(
|
|
self.base_image.clipToBoundsAndScale(
|
|
scale=8, geometry=expected_polygon), image)
|
|
self.assertEqual({'something': 'else'}, params)
|
|
|
|
def test_prepare_for_export_with_region_dimensions_crs_and_transform(self):
|
|
with apitestcase.UsingCloudApi():
|
|
polygon = ee.Geometry.Polygon(9, 8, 7, 6, 3, 2)
|
|
image, params = self.base_image.prepare_for_export({
|
|
'crs': 'ABCD',
|
|
'crs_transform': '[1,2,3,4,5,6]',
|
|
'dimensions': [3, 2],
|
|
'region': polygon.toGeoJSONString(),
|
|
'something': 'else'
|
|
})
|
|
expected_polygon = ee.Geometry(polygon.toGeoJSON(), geodesic=False)
|
|
projected = self.base_image.reproject(
|
|
crs='ABCD', crsTransform=[1, 2, 3, 4, 5, 6])
|
|
|
|
self.assertImageEqual(
|
|
projected.clipToBoundsAndScale(
|
|
width=3, height=2, geometry=expected_polygon), image)
|
|
self.assertEqual({'something': 'else'}, params)
|
|
|
|
def test_prepare_for_export_with_dimensions_crs_and_transform(self):
|
|
with apitestcase.UsingCloudApi():
|
|
# Special case of crs+transform+two dimensions
|
|
image, params = self.base_image.prepare_for_export({
|
|
'crs': 'ABCD',
|
|
'crs_transform': [1, 2, 3, 4, 5, 6],
|
|
'dimensions': [3, 2],
|
|
'something': 'else'
|
|
})
|
|
reprojected_image = self.base_image.reproject(
|
|
crs='ABCD', crsTransform=[1, 2, 3, 4, 5, 6])
|
|
|
|
self.assertEqual(
|
|
reprojected_image.clipToBoundsAndScale(
|
|
geometry=ee.Geometry.Rectangle(
|
|
coords=[0, 0, 3, 2],
|
|
proj=reprojected_image.projection(),
|
|
geodesic=False,
|
|
evenOdd=True)), image)
|
|
self.assertEqual({'something': 'else'}, params)
|
|
|
|
def test_prepare_for_export_with_only_region(self):
|
|
with apitestcase.UsingCloudApi():
|
|
polygon = ee.Geometry.Polygon(9, 8, 7, 6, 3, 2)
|
|
image, params = self.base_image.prepare_for_export({
|
|
'region': polygon,
|
|
'something': 'else'
|
|
})
|
|
|
|
self.assertEqual(
|
|
self.base_image.clip(polygon), image)
|
|
self.assertEqual({'something': 'else'}, params)
|
|
|
|
def test_prepare_for_export_with_crs_no_transform(self):
|
|
with apitestcase.UsingCloudApi():
|
|
# CRS with no crs_transform causes a "soft" reprojection. Make sure that
|
|
# the (crs, crsTransform, dimensions) special case doesn't trigger.
|
|
image, params = self.base_image.prepare_for_export({
|
|
'crs': 'ABCD',
|
|
'dimensions': [3, 2],
|
|
'something': 'else'
|
|
})
|
|
projected = self.base_image.setDefaultProjection(
|
|
crs='ABCD', crsTransform=[1, 0, 0, 0, -1, 0])
|
|
|
|
self.assertEqual(projected.clipToBoundsAndScale(width=3, height=2), image)
|
|
self.assertEqual({'something': 'else'}, params)
|
|
|
|
def test_morphological_operators(self):
|
|
"""Verifies the focal operators are installed with aliases."""
|
|
ee.Image(0).focal_min().focalMin()
|
|
|
|
def test_select_opt_params(self):
|
|
result = (
|
|
ee.Image(1)
|
|
.select(opt_selectors=['selector_a', 4], opt_names=['name_a', 'name_b'])
|
|
.serialize()
|
|
)
|
|
self.assertIn(
|
|
'"bandSelectors": {"constantValue": ["selector_a", 4]}', result
|
|
)
|
|
self.assertIn('"newNames": {"constantValue": ["name_a", "name_b"]}', result)
|
|
|
|
def test_expression_opt_params(self):
|
|
result = (
|
|
ee.Image(1)
|
|
.expression(expression='abc(0)', opt_map={'bcd': 'cef'})
|
|
.serialize()
|
|
)
|
|
# The values are nested too deep to compare the entire node.
|
|
self.assertIn('bcd', result)
|
|
self.assertIn('cef', result)
|
|
|
|
|
|
class SerializeTest(apitestcase.ApiTestCase):
|
|
|
|
def test_abs(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.abs',
|
|
})
|
|
expression = ee.Image('a').abs()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_acos(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.acos',
|
|
})
|
|
expression = ee.Image('a').acos()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_add(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.add',
|
|
})
|
|
expression = ee.Image('a').add('b')
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').add(image2='b')
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_add_bands(self):
|
|
names = ['one', 'two']
|
|
overwrite = True
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'dstImg': IMAGE,
|
|
'srcImg': IMAGE_B,
|
|
'names': {'constantValue': names},
|
|
'overwrite': {'constantValue': overwrite},
|
|
},
|
|
'functionName': 'Image.addBands',
|
|
})
|
|
expression = ee.Image('a').addBands('b', names, overwrite)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').addBands(
|
|
srcImg='b', names=names, overwrite=overwrite
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_and(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.and',
|
|
})
|
|
expression = ee.Image('a').And('b')
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').And(image2='b')
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_accum(self):
|
|
axis = 1
|
|
reducer = ee.Reducer.sum()
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'axis': {'constantValue': axis},
|
|
'reducer': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Reducer.sum',
|
|
'arguments': {},
|
|
}
|
|
},
|
|
},
|
|
'functionName': 'Image.arrayAccum',
|
|
})
|
|
expression = ee.Image('a').arrayAccum(axis, reducer)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').arrayAccum(axis=axis, reducer=reducer)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_argmax(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
},
|
|
'functionName': 'Image.arrayArgmax',
|
|
})
|
|
expression = ee.Image('a').arrayArgmax()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_cat(self):
|
|
axis = 1
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
'axis': {'constantValue': axis},
|
|
},
|
|
'functionName': 'Image.arrayCat',
|
|
})
|
|
expression = ee.Image('a').arrayCat('b', axis)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').arrayCat(image2='b', axis=axis)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_dimensions(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
},
|
|
'functionName': 'Image.arrayDimensions',
|
|
})
|
|
expression = ee.Image('a').arrayDimensions()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_dot_product(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.arrayDotProduct',
|
|
})
|
|
expression = ee.Image('a').arrayDotProduct('b')
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').arrayDotProduct(image2='b')
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_flatten(self):
|
|
coordinate_labels = ['b', 'c']
|
|
separator = 'a separator'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'coordinateLabels': {'constantValue': coordinate_labels},
|
|
'separator': {'constantValue': separator},
|
|
},
|
|
'functionName': 'Image.arrayFlatten',
|
|
})
|
|
expression = ee.Image('a').arrayFlatten(coordinate_labels, separator)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').arrayFlatten(
|
|
coordinateLabels=coordinate_labels, separator=separator
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_get(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'position': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.arrayGet',
|
|
})
|
|
expression = ee.Image('a').arrayGet('b')
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').arrayGet(position='b')
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_length(self):
|
|
axis = 1
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'axis': {'constantValue': axis},
|
|
},
|
|
'functionName': 'Image.arrayLength',
|
|
})
|
|
expression = ee.Image('a').arrayLength(axis)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').arrayLength(axis=axis)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_lengths(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
},
|
|
'functionName': 'Image.arrayLengths',
|
|
})
|
|
expression = ee.Image('a').arrayLengths()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_mask(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'mask': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.arrayMask',
|
|
})
|
|
expression = ee.Image('a').arrayMask('b')
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').arrayMask(mask='b')
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_pad(self):
|
|
lengths = [1, 2]
|
|
pad = 3
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'lengths': {'constantValue': lengths},
|
|
'pad': {'constantValue': pad},
|
|
},
|
|
'functionName': 'Image.arrayPad',
|
|
})
|
|
expression = ee.Image('a').arrayPad(lengths, pad)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').arrayPad(lengths=lengths, pad=pad)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_project(self):
|
|
axes = [1, 2]
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'axes': {'constantValue': axes},
|
|
},
|
|
'functionName': 'Image.arrayProject',
|
|
})
|
|
expression = ee.Image('a').arrayProject(axes)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').arrayProject(axes=axes)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_reduce(self):
|
|
reducer = ee.Reducer.sum()
|
|
axes = [1, 2]
|
|
field_axes = 3
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'reducer': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Reducer.sum',
|
|
'arguments': {},
|
|
}
|
|
},
|
|
'axes': {'constantValue': axes},
|
|
'fieldAxis': {'constantValue': field_axes},
|
|
},
|
|
'functionName': 'Image.arrayReduce',
|
|
})
|
|
expression = ee.Image('a').arrayReduce(reducer, axes, field_axes)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').arrayReduce(
|
|
reducer=reducer, axes=axes, fieldAxis=field_axes
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_repeat(self):
|
|
axis = 1
|
|
copies = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'axis': {'constantValue': axis},
|
|
'copies': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.arrayRepeat',
|
|
})
|
|
expression = ee.Image('a').arrayRepeat(axis, copies)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').arrayRepeat(axis=axis, copies=copies)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_reshape(self):
|
|
lengths = 'b'
|
|
dimensions = 1
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'lengths': IMAGE_B,
|
|
'dimensions': {'constantValue': dimensions},
|
|
},
|
|
'functionName': 'Image.arrayReshape',
|
|
})
|
|
expression = ee.Image('a').arrayReshape(lengths, dimensions)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').arrayReshape(
|
|
lengths=lengths, dimensions=dimensions
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_slice(self):
|
|
axis = 1
|
|
start = 'b'
|
|
end = 'c'
|
|
step = 2
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'axis': {'constantValue': axis},
|
|
'start': IMAGE_B,
|
|
'end': IMAGE_C,
|
|
'step': {'constantValue': step},
|
|
},
|
|
'functionName': 'Image.arraySlice',
|
|
})
|
|
expression = ee.Image('a').arraySlice(axis, start, end, step)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').arraySlice(
|
|
axis=axis, start=start, end=end, step=step
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_sort(self):
|
|
keys = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'keys': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.arraySort',
|
|
})
|
|
expression = ee.Image('a').arraySort(keys)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').arraySort(keys)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_array_transpose(self):
|
|
axis1 = 1
|
|
axis2 = 2
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'axis1': {'constantValue': axis1},
|
|
'axis2': {'constantValue': axis2},
|
|
},
|
|
'functionName': 'Image.arrayTranspose',
|
|
})
|
|
expression = ee.Image('a').arrayTranspose(axis1, axis2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').arrayTranspose(axis1=axis1, axis2=axis2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_asin(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.asin',
|
|
})
|
|
expression = ee.Image('a').asin()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_atan(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.atan',
|
|
})
|
|
expression = ee.Image('a').atan()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_atan2(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.atan2',
|
|
})
|
|
expression = ee.Image('a').atan2(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').atan2(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_band_names(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
},
|
|
'functionName': 'Image.bandNames',
|
|
})
|
|
expression = ee.Image('a').bandNames()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_band_types(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
},
|
|
'functionName': 'Image.bandTypes',
|
|
})
|
|
expression = ee.Image('a').bandTypes()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_bit_count(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.bitCount',
|
|
})
|
|
expression = ee.Image('a').bitCount()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_bits_to_array_image(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
},
|
|
'functionName': 'Image.bitsToArrayImage',
|
|
})
|
|
expression = ee.Image('a').bitsToArrayImage()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_bitwise_and(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.bitwiseAnd',
|
|
})
|
|
expression = ee.Image('a').bitwiseAnd(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').bitwiseAnd(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_bitwise_not(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.bitwiseNot',
|
|
})
|
|
expression = ee.Image('a').bitwiseNot()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_bitwise_or(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.bitwiseOr',
|
|
})
|
|
expression = ee.Image('a').bitwiseOr(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').bitwiseOr(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_bitwise_xor(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.bitwiseXor',
|
|
})
|
|
expression = ee.Image('a').bitwiseXor(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').bitwiseXor(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_blend(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'bottom': IMAGE,
|
|
'top': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.blend',
|
|
})
|
|
expression = ee.Image('a').blend('b')
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').blend('b')
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_byte(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.byte',
|
|
})
|
|
expression = ee.Image('a').byte()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_cast(self):
|
|
band_types = {'a': 'int16'}
|
|
band_order = ['b', 'c']
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'bandTypes': {'constantValue': band_types},
|
|
'bandOrder': {'constantValue': band_order},
|
|
},
|
|
'functionName': 'Image.cast',
|
|
})
|
|
expression = ee.Image('a').cast(band_types, band_order)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').cast(bandTypes=band_types, bandOrder=band_order)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_cat(self):
|
|
images = ['a', 'b']
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'dstImg': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Image.load',
|
|
'arguments': {'id': {'constantValue': 'a'}},
|
|
}
|
|
},
|
|
'srcImg': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Image.load',
|
|
'arguments': {'id': {'constantValue': 'b'}},
|
|
}
|
|
},
|
|
},
|
|
# Note that this is not "cat".
|
|
'functionName': 'Image.addBands',
|
|
})
|
|
expression = ee.Image.cat(images)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
# cat uses varargs, so no kwargs.
|
|
|
|
def test_cbrt(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.cbrt',
|
|
})
|
|
expression = ee.Image('a').cbrt()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_ceil(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.ceil',
|
|
})
|
|
expression = ee.Image('a').ceil()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_change_proj(self):
|
|
src_proj = EPSG_3857
|
|
dst_proj = EPSG_4326
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'srcProj': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Projection',
|
|
'arguments': {'crs': {'constantValue': EPSG_3857}},
|
|
}
|
|
},
|
|
'dstProj': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Projection',
|
|
'arguments': {'crs': {'constantValue': EPSG_4326}},
|
|
}
|
|
},
|
|
},
|
|
'functionName': 'Image.changeProj',
|
|
})
|
|
expression = ee.Image('a').changeProj(src_proj, dst_proj)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').changeProj(srcProj=src_proj, dstProj=dst_proj)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_clamp(self):
|
|
low = 1
|
|
high = 2
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'low': {'constantValue': low},
|
|
'high': {'constantValue': high},
|
|
},
|
|
'functionName': 'Image.clamp',
|
|
})
|
|
expression = ee.Image('a').clamp(low, high)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').clamp(low=low, high=high)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_classify(self):
|
|
classifier = ee.Classifier.decisionTree('')
|
|
output_name = 'output name'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'classifier': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Classifier.decisionTree',
|
|
'arguments': {'treeString': {'constantValue': ''}},
|
|
}
|
|
},
|
|
'outputName': {'constantValue': output_name},
|
|
},
|
|
'functionName': 'Image.classify',
|
|
})
|
|
expression = ee.Image('a').classify(classifier, output_name)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').classify(
|
|
classifier=classifier, outputName=output_name
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_clip(self):
|
|
point = ee.Geometry.Point([1, 2])
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'geometry': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'GeometryConstructors.Point',
|
|
'arguments': {'coordinates': {'constantValue': [1, 2]}},
|
|
}
|
|
},
|
|
},
|
|
'functionName': 'Image.clip',
|
|
})
|
|
expression = ee.Image('a').clip(point)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').clip(clip_geometry=point)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_clip_to_bounds_and_scale(self):
|
|
point = ee.Geometry.Point([1, 2])
|
|
width = 3
|
|
height = 4
|
|
max_dimension = 5
|
|
scale = 6
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'geometry': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'GeometryConstructors.Point',
|
|
'arguments': {'coordinates': {'constantValue': [1, 2]}},
|
|
}
|
|
},
|
|
'width': {'constantValue': width},
|
|
'height': {'constantValue': height},
|
|
'maxDimension': {'constantValue': max_dimension},
|
|
'scale': {'constantValue': scale},
|
|
},
|
|
'functionName': 'Image.clipToBoundsAndScale',
|
|
})
|
|
expression = ee.Image('a').clipToBoundsAndScale(
|
|
point, width, height, max_dimension, scale
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').clipToBoundsAndScale(
|
|
geometry=point,
|
|
width=width,
|
|
height=height,
|
|
maxDimension=max_dimension,
|
|
scale=scale,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_clip_to_collection(self):
|
|
featurecollection = ee.FeatureCollection(ee.Feature(None))
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'collection': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Collection',
|
|
'arguments': {
|
|
'features': {
|
|
'arrayValue': {
|
|
'values': [{
|
|
'functionInvocationValue': {
|
|
'functionName': 'Feature',
|
|
'arguments': {},
|
|
}
|
|
}]
|
|
}
|
|
}
|
|
},
|
|
}
|
|
},
|
|
},
|
|
'functionName': 'Image.clipToCollection',
|
|
})
|
|
expression = ee.Image('a').clipToCollection(featurecollection)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').clipToCollection(collection=featurecollection)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_cluster(self):
|
|
clusterer = ee.Clusterer.wekaCobweb()
|
|
output_name = 'output name'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'clusterer': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Clusterer.wekaCobweb',
|
|
'arguments': {},
|
|
}
|
|
},
|
|
'outputName': {'constantValue': output_name},
|
|
},
|
|
'functionName': 'Image.cluster',
|
|
})
|
|
expression = ee.Image('a').cluster(clusterer, output_name)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').cluster(
|
|
clusterer=clusterer, outputName=output_name
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_connected_components(self):
|
|
connectedness = ee.Kernel.square(1)
|
|
max_size = 2
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'connectedness': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
'maxSize': {'constantValue': max_size},
|
|
},
|
|
'functionName': 'Image.connectedComponents',
|
|
})
|
|
expression = ee.Image('a').connectedComponents(connectedness, max_size)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').connectedComponents(
|
|
connectedness=connectedness, maxSize=max_size
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_connected_pixel_count(self):
|
|
max_size = 1
|
|
eight_connected = True
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'maxSize': {'constantValue': max_size},
|
|
'eightConnected': {'constantValue': eight_connected},
|
|
},
|
|
'functionName': 'Image.connectedPixelCount',
|
|
})
|
|
expression = ee.Image('a').connectedPixelCount(max_size, eight_connected)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').connectedPixelCount(
|
|
maxSize=max_size, eightConnected=eight_connected
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_constant(self):
|
|
value = 1
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': {'constantValue': value},
|
|
},
|
|
'functionName': 'Image.constant',
|
|
})
|
|
expression = ee.Image('a').constant(value)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image.constant(value=value)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_convolve(self):
|
|
kernel = ee.Kernel.square(1)
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'kernel': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
},
|
|
'functionName': 'Image.convolve',
|
|
})
|
|
expression = ee.Image('a').convolve(kernel)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').convolve(kernel=kernel)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_copy_properties(self):
|
|
source = ee.Image('b')
|
|
properties = ['c', 'd']
|
|
exclude = ['e', 'f']
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'destination': IMAGE,
|
|
'source': IMAGE_B,
|
|
'properties': {'constantValue': properties},
|
|
'exclude': {'constantValue': exclude},
|
|
},
|
|
'functionName': 'Image.copyProperties',
|
|
})
|
|
expression = ee.Image('a').copyProperties(source, properties, exclude)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').copyProperties(
|
|
source=source, properties=properties, exclude=exclude
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_cos(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.cos',
|
|
})
|
|
expression = ee.Image('a').cos()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_cosh(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.cosh',
|
|
})
|
|
expression = ee.Image('a').cosh()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_cumulative_cost(self):
|
|
source = 'b'
|
|
max_distance = 2
|
|
geodetic_distance = 3
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'cost': IMAGE,
|
|
'source': IMAGE_B,
|
|
'maxDistance': {'constantValue': max_distance},
|
|
'geodeticDistance': {'constantValue': geodetic_distance},
|
|
},
|
|
'functionName': 'Image.cumulativeCost',
|
|
})
|
|
expression = ee.Image('a').cumulativeCost(
|
|
source, max_distance, geodetic_distance
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').cumulativeCost(
|
|
source=source,
|
|
maxDistance=max_distance,
|
|
geodeticDistance=geodetic_distance,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_date(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
},
|
|
'functionName': 'Image.date',
|
|
})
|
|
expression = ee.Image('a').date()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_derivative(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
},
|
|
'functionName': 'Image.derivative',
|
|
})
|
|
expression = ee.Image('a').derivative()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_digamma(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.digamma',
|
|
})
|
|
expression = ee.Image('a').digamma()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_directional_distance_transform(self):
|
|
angle = 1
|
|
max_distance = 2
|
|
label_band = 'label band'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'source': IMAGE,
|
|
'angle': {'constantValue': angle},
|
|
'maxDistance': {'constantValue': max_distance},
|
|
'labelBand': {'constantValue': label_band},
|
|
},
|
|
'functionName': 'Image.directionalDistanceTransform',
|
|
})
|
|
expression = ee.Image('a').directionalDistanceTransform(
|
|
angle, max_distance, label_band
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').directionalDistanceTransform(
|
|
angle=angle, maxDistance=max_distance, labelBand=label_band
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_displace(self):
|
|
displacement = 'b'
|
|
mode = 'bilinear'
|
|
max_offset = 1
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'displacement': IMAGE_B,
|
|
'mode': {'constantValue': mode},
|
|
'maxOffset': {'constantValue': max_offset},
|
|
},
|
|
'functionName': 'Image.displace',
|
|
})
|
|
expression = ee.Image('a').displace(displacement, mode, max_offset)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').displace(
|
|
displacement=displacement, mode=mode, maxOffset=max_offset
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_displacement(self):
|
|
reference_image = 'b'
|
|
max_offset = 1
|
|
projection = EPSG_4326
|
|
patch_width = 2
|
|
stiffness = 3
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'referenceImage': IMAGE_B,
|
|
'maxOffset': {'constantValue': max_offset},
|
|
'projection': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Projection',
|
|
'arguments': {'crs': {'constantValue': projection}},
|
|
}
|
|
},
|
|
'patchWidth': {'constantValue': patch_width},
|
|
'stiffness': {'constantValue': stiffness},
|
|
},
|
|
'functionName': 'Image.displacement',
|
|
})
|
|
expression = ee.Image('a').displacement(
|
|
reference_image, max_offset, projection, patch_width, stiffness
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').displacement(
|
|
referenceImage=reference_image,
|
|
maxOffset=max_offset,
|
|
projection=projection,
|
|
patchWidth=patch_width,
|
|
stiffness=stiffness,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_distance(self):
|
|
kernel = ee.Kernel.square(1)
|
|
skip_masked = True
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'kernel': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
'skipMasked': {'constantValue': skip_masked},
|
|
},
|
|
'functionName': 'Image.distance',
|
|
})
|
|
expression = ee.Image('a').distance(kernel, skip_masked)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').distance(kernel=kernel, skipMasked=skip_masked)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_divide(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.divide',
|
|
})
|
|
expression = ee.Image('a').divide(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').divide(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_double(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.double',
|
|
})
|
|
expression = ee.Image('a').double()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_entropy(self):
|
|
kernel = ee.Kernel.square(1)
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'kernel': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
},
|
|
'functionName': 'Image.entropy',
|
|
})
|
|
expression = ee.Image('a').entropy(kernel)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').entropy(kernel=kernel)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_eq(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.eq',
|
|
})
|
|
expression = ee.Image('a').eq(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').eq(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_erf(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.erf',
|
|
})
|
|
expression = ee.Image('a').erf()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_erf_inv(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.erfInv',
|
|
})
|
|
expression = ee.Image('a').erfInv()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_erfc(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.erfc',
|
|
})
|
|
expression = ee.Image('a').erfc()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_erfc_inv(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.erfcInv',
|
|
})
|
|
expression = ee.Image('a').erfcInv()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_exp(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.exp',
|
|
})
|
|
expression = ee.Image('a').exp()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_fast_distance_transform(self):
|
|
neighborhood = 1
|
|
units = 'pixels'
|
|
metric = 'manhattan'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'neighborhood': {'constantValue': neighborhood},
|
|
'units': {'constantValue': units},
|
|
'metric': {'constantValue': metric},
|
|
},
|
|
'functionName': 'Image.fastDistanceTransform',
|
|
})
|
|
expression = ee.Image('a').fastDistanceTransform(
|
|
neighborhood, units, metric
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').fastDistanceTransform(
|
|
neighborhood=neighborhood, units=units, metric=metric
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_first(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.first',
|
|
})
|
|
expression = ee.Image('a').first(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').first(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_first_non_zero(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.firstNonZero',
|
|
})
|
|
expression = ee.Image('a').firstNonZero(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').firstNonZero(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_float(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.float',
|
|
})
|
|
expression = ee.Image('a').float()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_floor(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.floor',
|
|
})
|
|
expression = ee.Image('a').floor()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_focal_max(self):
|
|
radius = 1
|
|
kernel_type = 'plus'
|
|
units = 'meters'
|
|
iterations = 2
|
|
kernel = ee.Kernel.square(1)
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'radius': {'constantValue': radius},
|
|
'kernelType': {'constantValue': kernel_type},
|
|
'units': {'constantValue': units},
|
|
'iterations': {'constantValue': iterations},
|
|
'kernel': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
},
|
|
'functionName': 'Image.focalMax',
|
|
})
|
|
expression = ee.Image('a').focalMax(
|
|
radius, kernel_type, units, iterations, kernel
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').focalMax(
|
|
radius=radius,
|
|
kernelType=kernel_type,
|
|
units=units,
|
|
iterations=iterations,
|
|
kernel=kernel,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_focal_mean(self):
|
|
radius = 1
|
|
kernel_type = 'plus'
|
|
units = 'meters'
|
|
iterations = 2
|
|
kernel = ee.Kernel.square(1)
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'radius': {'constantValue': radius},
|
|
'kernelType': {'constantValue': kernel_type},
|
|
'units': {'constantValue': units},
|
|
'iterations': {'constantValue': iterations},
|
|
'kernel': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
},
|
|
'functionName': 'Image.focalMean',
|
|
})
|
|
expression = ee.Image('a').focalMean(
|
|
radius, kernel_type, units, iterations, kernel
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').focalMean(
|
|
radius=radius,
|
|
kernelType=kernel_type,
|
|
units=units,
|
|
iterations=iterations,
|
|
kernel=kernel,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_focal_median(self):
|
|
radius = 1
|
|
kernel_type = 'plus'
|
|
units = 'meters'
|
|
iterations = 2
|
|
kernel = ee.Kernel.square(1)
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'radius': {'constantValue': radius},
|
|
'kernelType': {'constantValue': kernel_type},
|
|
'units': {'constantValue': units},
|
|
'iterations': {'constantValue': iterations},
|
|
'kernel': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
},
|
|
'functionName': 'Image.focalMedian',
|
|
})
|
|
expression = ee.Image('a').focalMedian(
|
|
radius, kernel_type, units, iterations, kernel
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').focalMedian(
|
|
radius=radius,
|
|
kernelType=kernel_type,
|
|
units=units,
|
|
iterations=iterations,
|
|
kernel=kernel,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_focal_min(self):
|
|
radius = 1
|
|
kernel_type = 'plus'
|
|
units = 'meters'
|
|
iterations = 2
|
|
kernel = ee.Kernel.square(1)
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'radius': {'constantValue': radius},
|
|
'kernelType': {'constantValue': kernel_type},
|
|
'units': {'constantValue': units},
|
|
'iterations': {'constantValue': iterations},
|
|
'kernel': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
},
|
|
'functionName': 'Image.focalMin',
|
|
})
|
|
expression = ee.Image('a').focalMin(
|
|
radius, kernel_type, units, iterations, kernel
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').focalMin(
|
|
radius=radius,
|
|
kernelType=kernel_type,
|
|
units=units,
|
|
iterations=iterations,
|
|
kernel=kernel,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_focal_mode(self):
|
|
radius = 1
|
|
kernel_type = 'plus'
|
|
units = 'meters'
|
|
iterations = 2
|
|
kernel = ee.Kernel.square(1)
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'radius': {'constantValue': radius},
|
|
'kernelType': {'constantValue': kernel_type},
|
|
'units': {'constantValue': units},
|
|
'iterations': {'constantValue': iterations},
|
|
'kernel': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
},
|
|
'functionName': 'Image.focalMode',
|
|
})
|
|
expression = ee.Image('a').focalMode(
|
|
radius, kernel_type, units, iterations, kernel
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').focalMode(
|
|
radius=radius,
|
|
kernelType=kernel_type,
|
|
units=units,
|
|
iterations=iterations,
|
|
kernel=kernel,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_gamma(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.gamma',
|
|
})
|
|
expression = ee.Image('a').gamma()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_gammainc(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.gammainc',
|
|
})
|
|
expression = ee.Image('a').gammainc(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').gammainc(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_geometry(self):
|
|
max_error = 1
|
|
proj = EPSG_4326
|
|
geodesics = True
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'feature': IMAGE,
|
|
'maxError': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'ErrorMargin',
|
|
'arguments': {'value': {'constantValue': 1}},
|
|
}
|
|
},
|
|
'proj': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Projection',
|
|
'arguments': {'crs': {'constantValue': proj}},
|
|
}
|
|
},
|
|
'geodesics': {'constantValue': geodesics},
|
|
},
|
|
'functionName': 'Image.geometry',
|
|
})
|
|
expression = ee.Image('a').geometry(max_error, proj, geodesics)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').geometry(
|
|
maxError=max_error, proj=proj, geodesics=geodesics
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_glcm_texture(self):
|
|
size = 1
|
|
kernel = ee.Kernel.square(1)
|
|
average = True
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'size': {'constantValue': size},
|
|
'kernel': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
'average': {'constantValue': average},
|
|
},
|
|
'functionName': 'Image.glcmTexture',
|
|
})
|
|
expression = ee.Image('a').glcmTexture(size, kernel, average)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').glcmTexture(
|
|
size=size, kernel=kernel, average=average
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_gradient(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
},
|
|
'functionName': 'Image.gradient',
|
|
})
|
|
expression = ee.Image('a').gradient()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_gt(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.gt',
|
|
})
|
|
expression = ee.Image('a').gt(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').gt(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_gte(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.gte',
|
|
})
|
|
expression = ee.Image('a').gte(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').gte(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_hers_descriptor(self):
|
|
selectors = ['b', 'c']
|
|
buckets = 1
|
|
peak_width_scale = 2
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'element': IMAGE,
|
|
'selectors': {'constantValue': selectors},
|
|
'buckets': {'constantValue': buckets},
|
|
'peakWidthScale': {'constantValue': peak_width_scale},
|
|
},
|
|
'functionName': 'Image.hersDescriptor',
|
|
})
|
|
expression = ee.Image('a').hersDescriptor(
|
|
selectors, buckets, peak_width_scale
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').hersDescriptor(
|
|
selectors=selectors, buckets=buckets, peakWidthScale=peak_width_scale
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_hers_feature(self):
|
|
reference = {'b': 'c'}
|
|
peak_width_scale = 1
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'reference': {'constantValue': reference},
|
|
'peakWidthScale': {'constantValue': peak_width_scale},
|
|
},
|
|
'functionName': 'Image.hersFeature',
|
|
})
|
|
expression = ee.Image('a').hersFeature(reference, peak_width_scale)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').hersFeature(
|
|
reference=reference, peakWidthScale=peak_width_scale
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_hers_image(self):
|
|
image2 = 'b'
|
|
radius = 1
|
|
buckets = 2
|
|
peak_width_scale = 3
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'image2': IMAGE_B,
|
|
'radius': {'constantValue': radius},
|
|
'buckets': {'constantValue': buckets},
|
|
'peakWidthScale': {'constantValue': peak_width_scale},
|
|
},
|
|
'functionName': 'Image.hersImage',
|
|
})
|
|
expression = ee.Image('a').hersImage(
|
|
image2, radius, buckets, peak_width_scale
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').hersImage(
|
|
image2=image2,
|
|
radius=radius,
|
|
buckets=buckets,
|
|
peakWidthScale=peak_width_scale,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_hsv_to_rgb(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
},
|
|
'functionName': 'Image.hsvToRgb',
|
|
})
|
|
expression = ee.Image('a').hsvToRgb()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_hypot(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.hypot',
|
|
})
|
|
expression = ee.Image('a').hypot(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').hypot(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_id(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'element': IMAGE,
|
|
},
|
|
'functionName': 'Image.id',
|
|
})
|
|
expression = ee.Image('a').id()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_int(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.int',
|
|
})
|
|
expression = ee.Image('a').int()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_int16(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.int16',
|
|
})
|
|
expression = ee.Image('a').int16()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_int32(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.int32',
|
|
})
|
|
expression = ee.Image('a').int32()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_int64(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.int64',
|
|
})
|
|
expression = ee.Image('a').int64()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_int8(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.int8',
|
|
})
|
|
expression = ee.Image('a').int8()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_interpolate(self):
|
|
x = [1, 2]
|
|
y = [3, 4]
|
|
behavior = 'clamp'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'x': {'constantValue': x},
|
|
'y': {'constantValue': y},
|
|
'behavior': {'constantValue': behavior},
|
|
},
|
|
'functionName': 'Image.interpolate',
|
|
})
|
|
expression = ee.Image('a').interpolate(x, y, behavior)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').interpolate(x=x, y=y, behavior=behavior)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_lanczos(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.lanczos',
|
|
})
|
|
expression = ee.Image('a').lanczos()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_left_shift(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.leftShift',
|
|
})
|
|
expression = ee.Image('a').leftShift(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').leftShift(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_link_collection(self):
|
|
image_collection = ee.ImageCollection('b')
|
|
linked_bands = 'a band'
|
|
linked_properties = 'a property'
|
|
match_property_name = 'a match property name'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'imageCollection': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'ImageCollection.load',
|
|
'arguments': {'id': {'constantValue': 'b'}},
|
|
}
|
|
},
|
|
'linkedBands': {'constantValue': linked_bands},
|
|
'linkedProperties': {'constantValue': linked_properties},
|
|
'matchPropertyName': {'constantValue': match_property_name},
|
|
},
|
|
'functionName': 'Image.linkCollection',
|
|
})
|
|
expression = ee.Image('a').linkCollection(
|
|
image_collection, linked_bands, linked_properties, match_property_name
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').linkCollection(
|
|
imageCollection=image_collection,
|
|
linkedBands=linked_bands,
|
|
linkedProperties=linked_properties,
|
|
matchPropertyName=match_property_name,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_load(self):
|
|
asset_id = 'a'
|
|
version = 1
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'id': {'constantValue': asset_id},
|
|
'version': {'constantValue': version},
|
|
},
|
|
'functionName': 'Image.load',
|
|
})
|
|
expression = ee.Image.load(asset_id, version)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image.load(id=asset_id, version=version)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_load_geotiff(self):
|
|
uri = 'a'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'uri': {'constantValue': uri},
|
|
},
|
|
'functionName': 'Image.loadGeoTIFF',
|
|
})
|
|
expression = ee.Image.loadGeoTIFF(uri)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').loadGeoTIFF(uri=uri)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_log(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.log',
|
|
})
|
|
expression = ee.Image('a').log()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_log10(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.log10',
|
|
})
|
|
expression = ee.Image('a').log10()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_long(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.long',
|
|
})
|
|
expression = ee.Image('a').long()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_lt(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.lt',
|
|
})
|
|
expression = ee.Image('a').lt(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').lt(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_lte(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.lte',
|
|
})
|
|
expression = ee.Image('a').lte(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').lte(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_mask(self):
|
|
mask = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'mask': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.mask',
|
|
})
|
|
expression = ee.Image('a').mask(mask)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').mask(mask=mask)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_matrix_cholesky_decomposition(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
},
|
|
'functionName': 'Image.matrixCholeskyDecomposition',
|
|
})
|
|
expression = ee.Image('a').matrixCholeskyDecomposition()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_matrix_determinant(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.matrixDeterminant',
|
|
})
|
|
expression = ee.Image('a').matrixDeterminant()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_matrix_diagonal(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.matrixDiagonal',
|
|
})
|
|
expression = ee.Image('a').matrixDiagonal()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_matrix_fnorm(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.matrixFnorm',
|
|
})
|
|
expression = ee.Image('a').matrixFnorm()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_matrix_identity(self):
|
|
size = 1
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'size': {'constantValue': size},
|
|
},
|
|
'functionName': 'Image.matrixIdentity',
|
|
})
|
|
expression = ee.Image.matrixIdentity(size)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_matrix_inverse(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.matrixInverse',
|
|
})
|
|
expression = ee.Image('a').matrixInverse()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_matrix_lu_decomposition(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
},
|
|
'functionName': 'Image.matrixLUDecomposition',
|
|
})
|
|
expression = ee.Image('a').matrixLUDecomposition()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_matrix_multiply(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.matrixMultiply',
|
|
})
|
|
expression = ee.Image('a').matrixMultiply(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').matrixMultiply(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_matrix_pseudo_inverse(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.matrixPseudoInverse',
|
|
})
|
|
expression = ee.Image('a').matrixPseudoInverse()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_matrix_qr_decomposition(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
},
|
|
'functionName': 'Image.matrixQRDecomposition',
|
|
})
|
|
expression = ee.Image('a').matrixQRDecomposition()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_matrix_singular_value_decomposition(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
},
|
|
'functionName': 'Image.matrixSingularValueDecomposition',
|
|
})
|
|
expression = ee.Image('a').matrixSingularValueDecomposition()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_matrix_solve(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.matrixSolve',
|
|
})
|
|
expression = ee.Image('a').matrixSolve(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').matrixSolve(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_matrix_to_diag(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.matrixToDiag',
|
|
})
|
|
expression = ee.Image('a').matrixToDiag()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_matrix_trace(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.matrixTrace',
|
|
})
|
|
expression = ee.Image('a').matrixTrace()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_matrix_transpose(self):
|
|
axis1 = 1
|
|
axis2 = 2
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'axis1': {'constantValue': axis1},
|
|
'axis2': {'constantValue': axis2},
|
|
},
|
|
'functionName': 'Image.matrixTranspose',
|
|
})
|
|
expression = ee.Image('a').matrixTranspose(axis1, axis2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').matrixTranspose(axis1=axis1, axis2=axis2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_max(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.max',
|
|
})
|
|
expression = ee.Image('a').max(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').max(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_medial_axis(self):
|
|
neighborhood = 1
|
|
units = 'pixels'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'neighborhood': {'constantValue': neighborhood},
|
|
'units': {'constantValue': units},
|
|
},
|
|
'functionName': 'Image.medialAxis',
|
|
})
|
|
expression = ee.Image('a').medialAxis(neighborhood, units)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').medialAxis(
|
|
neighborhood=neighborhood, units=units
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_metadata(self):
|
|
property = 'a property'
|
|
name = 'a name'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'property': {'constantValue': property},
|
|
'name': {'constantValue': name},
|
|
},
|
|
'functionName': 'Image.metadata',
|
|
})
|
|
expression = ee.Image('a').metadata(property, name)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').metadata(property=property, name=name)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_min(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.min',
|
|
})
|
|
expression = ee.Image('a').min(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').min(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_mod(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.mod',
|
|
})
|
|
expression = ee.Image('a').mod(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').mod(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_multiply(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.multiply',
|
|
})
|
|
expression = ee.Image('a').multiply(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').multiply(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_neighborhood_to_array(self):
|
|
kernel = ee.Kernel.square(1)
|
|
default_value = 1
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'kernel': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
'defaultValue': {'constantValue': default_value},
|
|
},
|
|
'functionName': 'Image.neighborhoodToArray',
|
|
})
|
|
expression = ee.Image('a').neighborhoodToArray(kernel, default_value)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').neighborhoodToArray(
|
|
kernel=kernel, defaultValue=default_value
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_neighborhood_to_bands(self):
|
|
kernel = ee.Kernel.square(1)
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'kernel': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
},
|
|
'functionName': 'Image.neighborhoodToBands',
|
|
})
|
|
expression = ee.Image('a').neighborhoodToBands(kernel)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').neighborhoodToBands(kernel=kernel)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_neq(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.neq',
|
|
})
|
|
expression = ee.Image('a').neq(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').neq(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_normalized_difference(self):
|
|
band_names = ['b', 'c']
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'bandNames': {'constantValue': band_names},
|
|
},
|
|
'functionName': 'Image.normalizedDifference',
|
|
})
|
|
expression = ee.Image('a').normalizedDifference(band_names)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').normalizedDifference(bandNames=band_names)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_not(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.not',
|
|
})
|
|
expression = ee.Image('a').Not()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_or(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.or',
|
|
})
|
|
expression = ee.Image('a').Or(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').Or(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_paint(self):
|
|
featurecollection = ee.FeatureCollection('b')
|
|
color = 'cadetblue'
|
|
width = 1
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'featureCollection': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Collection.loadTable',
|
|
'arguments': {'tableId': {'constantValue': 'b'}},
|
|
}
|
|
},
|
|
'color': {'constantValue': color},
|
|
'width': {'constantValue': width},
|
|
},
|
|
'functionName': 'Image.paint',
|
|
})
|
|
expression = ee.Image('a').paint(featurecollection, color, width)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').paint(
|
|
featureCollection=featurecollection, color=color, width=width
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_pixel_coordinates(self):
|
|
projection = EPSG_4326
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'projection': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Projection',
|
|
'arguments': {'crs': {'constantValue': projection}},
|
|
}
|
|
}
|
|
},
|
|
'functionName': 'Image.pixelCoordinates',
|
|
})
|
|
expression = ee.Image('a').pixelCoordinates(projection)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').pixelCoordinates(projection=projection)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_polynomial(self):
|
|
coefficients = [1, 2]
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'coefficients': {'constantValue': coefficients},
|
|
},
|
|
'functionName': 'Image.polynomial',
|
|
})
|
|
expression = ee.Image('a').polynomial(coefficients)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').polynomial(coefficients=coefficients)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_pow(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.pow',
|
|
})
|
|
expression = ee.Image('a').pow(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').pow(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_projection(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
},
|
|
'functionName': 'Image.projection',
|
|
})
|
|
expression = ee.Image('a').projection()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_random(self):
|
|
seed = 1
|
|
distribution = 'normal'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'seed': {'constantValue': seed},
|
|
'distribution': {'constantValue': distribution},
|
|
},
|
|
'functionName': 'Image.random',
|
|
})
|
|
expression = ee.Image.random(seed, distribution)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image().random(seed=seed, distribution=distribution)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_random_visualizer(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
},
|
|
'functionName': 'Image.randomVisualizer',
|
|
})
|
|
expression = ee.Image('a').randomVisualizer()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_reduce(self):
|
|
reducer = ee.Reducer.sum()
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'reducer': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Reducer.sum',
|
|
'arguments': {},
|
|
}
|
|
},
|
|
},
|
|
'functionName': 'Image.reduce',
|
|
})
|
|
expression = ee.Image('a').reduce(reducer)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').reduce(reducer=reducer)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_reduce_connected_components(self):
|
|
reducer = ee.Reducer.sum()
|
|
label_band = 'b'
|
|
max_size = 1
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'reducer': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Reducer.sum',
|
|
'arguments': {},
|
|
}
|
|
},
|
|
'labelBand': {'constantValue': label_band},
|
|
'maxSize': {'constantValue': max_size},
|
|
},
|
|
'functionName': 'Image.reduceConnectedComponents',
|
|
})
|
|
expression = ee.Image('a').reduceConnectedComponents(
|
|
reducer, label_band, max_size
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').reduceConnectedComponents(
|
|
reducer=reducer, labelBand=label_band, maxSize=max_size
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_reduce_neighborhood(self):
|
|
reducer = ee.Reducer.sum()
|
|
kernel = ee.Kernel.square(1)
|
|
input_weight = 'mask'
|
|
skip_masked = True
|
|
optimization = 'boxcar'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'reducer': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Reducer.sum',
|
|
'arguments': {},
|
|
}
|
|
},
|
|
'kernel': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
'inputWeight': {'constantValue': input_weight},
|
|
'skipMasked': {'constantValue': skip_masked},
|
|
'optimization': {'constantValue': optimization},
|
|
},
|
|
'functionName': 'Image.reduceNeighborhood',
|
|
})
|
|
expression = ee.Image('a').reduceNeighborhood(
|
|
reducer, kernel, input_weight, skip_masked, optimization
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').reduceNeighborhood(
|
|
reducer=reducer,
|
|
kernel=kernel,
|
|
inputWeight=input_weight,
|
|
skipMasked=skip_masked,
|
|
optimization=optimization,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_reduce_region(self):
|
|
reducer = ee.Reducer.sum()
|
|
geometry = ee.Geometry.Point([1, 2])
|
|
scale = 1
|
|
crs = EPSG_4326
|
|
crs_transform = [3, 4, 5, 6, 7, 8]
|
|
best_effort = True
|
|
max_pixels = 9
|
|
tile_scale = 10
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'reducer': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Reducer.sum',
|
|
'arguments': {},
|
|
}
|
|
},
|
|
'geometry': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'GeometryConstructors.Point',
|
|
'arguments': {'coordinates': {'constantValue': [1, 2]}},
|
|
}
|
|
},
|
|
'scale': {'constantValue': scale},
|
|
'crs': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Projection',
|
|
'arguments': {'crs': {'constantValue': crs}},
|
|
}
|
|
},
|
|
'crsTransform': {'constantValue': crs_transform},
|
|
'bestEffort': {'constantValue': best_effort},
|
|
'maxPixels': {'constantValue': max_pixels},
|
|
'tileScale': {'constantValue': tile_scale},
|
|
},
|
|
'functionName': 'Image.reduceRegion',
|
|
})
|
|
expression = ee.Image('a').reduceRegion(
|
|
reducer,
|
|
geometry,
|
|
scale,
|
|
crs,
|
|
crs_transform,
|
|
best_effort,
|
|
max_pixels,
|
|
tile_scale,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').reduceRegion(
|
|
reducer=reducer,
|
|
geometry=geometry,
|
|
scale=scale,
|
|
crs=crs,
|
|
crsTransform=crs_transform,
|
|
bestEffort=best_effort,
|
|
maxPixels=max_pixels,
|
|
tileScale=tile_scale,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_reduce_regions(self):
|
|
reducer = ee.Reducer.sum()
|
|
featurecollection = ee.FeatureCollection(ee.Feature(None))
|
|
scale = 1
|
|
crs = EPSG_4326
|
|
crs_transform = [3, 4, 5, 6, 7, 8]
|
|
tile_scale = 10
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'collection': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Collection',
|
|
'arguments': {
|
|
'features': {
|
|
'arrayValue': {
|
|
'values': [{
|
|
'functionInvocationValue': {
|
|
'functionName': 'Feature',
|
|
'arguments': {},
|
|
}
|
|
}]
|
|
}
|
|
}
|
|
},
|
|
}
|
|
},
|
|
'reducer': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Reducer.sum',
|
|
'arguments': {},
|
|
}
|
|
},
|
|
'scale': {'constantValue': scale},
|
|
'crs': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Projection',
|
|
'arguments': {'crs': {'constantValue': crs}},
|
|
}
|
|
},
|
|
'crsTransform': {'constantValue': crs_transform},
|
|
'tileScale': {'constantValue': tile_scale},
|
|
},
|
|
'functionName': 'Image.reduceRegions',
|
|
})
|
|
expression = ee.Image('a').reduceRegions(
|
|
featurecollection, reducer, scale, crs, crs_transform, tile_scale
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').reduceRegions(
|
|
collection=featurecollection,
|
|
reducer=reducer,
|
|
scale=scale,
|
|
crs=crs,
|
|
crsTransform=crs_transform,
|
|
tileScale=tile_scale,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_reduce_resolution(self):
|
|
reducer = ee.Reducer.sum()
|
|
best_effort = True
|
|
max_pixels = 1
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'reducer': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Reducer.sum',
|
|
'arguments': {},
|
|
}
|
|
},
|
|
'bestEffort': {'constantValue': best_effort},
|
|
'maxPixels': {'constantValue': max_pixels},
|
|
},
|
|
'functionName': 'Image.reduceResolution',
|
|
})
|
|
expression = ee.Image('a').reduceResolution(
|
|
reducer, best_effort, max_pixels
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').reduceResolution(
|
|
reducer=reducer, bestEffort=best_effort, maxPixels=max_pixels
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_reduce_to_vectors(self):
|
|
reducer = ee.Reducer.sum()
|
|
geometry = ee.Geometry.Point([1, 2])
|
|
scale = 3
|
|
geometry_type = 'bb'
|
|
eight_connected = True
|
|
label_property = 'a label property'
|
|
crs = EPSG_4326
|
|
crs_transform = [4, 5, 6, 7, 8, 9]
|
|
best_effort = True
|
|
max_pixels = 10
|
|
tile_scale = 11
|
|
geometry_in_native_projection = True
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'reducer': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Reducer.sum',
|
|
'arguments': {},
|
|
}
|
|
},
|
|
'geometry': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'GeometryConstructors.Point',
|
|
'arguments': {'coordinates': {'constantValue': [1, 2]}},
|
|
}
|
|
},
|
|
'scale': {'constantValue': scale},
|
|
'geometryType': {'constantValue': geometry_type},
|
|
'eightConnected': {'constantValue': eight_connected},
|
|
'labelProperty': {'constantValue': label_property},
|
|
'crs': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Projection',
|
|
'arguments': {'crs': {'constantValue': crs}},
|
|
}
|
|
},
|
|
'crsTransform': {'constantValue': crs_transform},
|
|
'bestEffort': {'constantValue': best_effort},
|
|
'maxPixels': {'constantValue': max_pixels},
|
|
'tileScale': {'constantValue': tile_scale},
|
|
'geometryInNativeProjection': {
|
|
'constantValue': geometry_in_native_projection
|
|
},
|
|
},
|
|
'functionName': 'Image.reduceToVectors',
|
|
})
|
|
expression = ee.Image('a').reduceToVectors(
|
|
reducer,
|
|
geometry,
|
|
scale,
|
|
geometry_type,
|
|
eight_connected,
|
|
label_property,
|
|
crs,
|
|
crs_transform,
|
|
best_effort,
|
|
max_pixels,
|
|
tile_scale,
|
|
geometry_in_native_projection,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').reduceToVectors(
|
|
reducer=reducer,
|
|
geometry=geometry,
|
|
scale=scale,
|
|
geometryType=geometry_type,
|
|
eightConnected=eight_connected,
|
|
labelProperty=label_property,
|
|
crs=crs,
|
|
crsTransform=crs_transform,
|
|
bestEffort=best_effort,
|
|
maxPixels=max_pixels,
|
|
tileScale=tile_scale,
|
|
geometryInNativeProjection=geometry_in_native_projection,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_regexp_rename(self):
|
|
regex = 'a regex'
|
|
replacement = 'a replacement'
|
|
all = True
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'regex': {'constantValue': regex},
|
|
'replacement': {'constantValue': replacement},
|
|
'all': {'constantValue': all},
|
|
},
|
|
'functionName': 'Image.regexpRename',
|
|
})
|
|
expression = ee.Image('a').regexpRename(regex, replacement, all)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').regexpRename(
|
|
regex=regex, replacement=replacement, all=all
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_register(self):
|
|
reference_image = 'b'
|
|
max_offset = 1
|
|
patch_width = 2
|
|
stiffness = 3
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'referenceImage': IMAGE_B,
|
|
'maxOffset': {'constantValue': max_offset},
|
|
'patchWidth': {'constantValue': patch_width},
|
|
'stiffness': {'constantValue': stiffness},
|
|
},
|
|
'functionName': 'Image.register',
|
|
})
|
|
expression = ee.Image('a').register(
|
|
reference_image, max_offset, patch_width, stiffness
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').register(
|
|
referenceImage=reference_image,
|
|
maxOffset=max_offset,
|
|
patchWidth=patch_width,
|
|
stiffness=stiffness,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_remap(self):
|
|
# `from` is a reserved word.
|
|
from_list = [1, 2]
|
|
to = [3, 4]
|
|
default_value = 5
|
|
band_name = 'a band name'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'from': {'constantValue': from_list},
|
|
'to': {'constantValue': to},
|
|
'defaultValue': {'constantValue': default_value},
|
|
'bandName': {'constantValue': band_name},
|
|
},
|
|
'functionName': 'Image.remap',
|
|
})
|
|
expression = ee.Image('a').remap(from_list, to, default_value, band_name)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').remap(
|
|
to=to,
|
|
defaultValue=default_value,
|
|
bandName=band_name,
|
|
**{'from': from_list}
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_rename(self):
|
|
names = ['b', 'c']
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'names': {'constantValue': names},
|
|
},
|
|
'functionName': 'Image.rename',
|
|
})
|
|
expression = ee.Image('a').rename(names)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
# var_args, so no kwargs
|
|
|
|
def test_reproject(self):
|
|
crs = EPSG_4326
|
|
crs_transform = [1, 2, 3, 4, 5, 6]
|
|
scale = 7
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'crs': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Projection',
|
|
'arguments': {'crs': {'constantValue': crs}},
|
|
}
|
|
},
|
|
'crsTransform': {'constantValue': crs_transform},
|
|
'scale': {'constantValue': scale},
|
|
},
|
|
'functionName': 'Image.reproject',
|
|
})
|
|
expression = ee.Image('a').reproject(crs, crs_transform, scale)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').reproject(
|
|
crs=crs, crsTransform=crs_transform, scale=scale
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_resample(self):
|
|
mode = 'bicubic'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'mode': {'constantValue': mode},
|
|
},
|
|
'functionName': 'Image.resample',
|
|
})
|
|
expression = ee.Image('a').resample(mode)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').resample(mode=mode)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_rgb_to_hsv(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
},
|
|
'functionName': 'Image.rgbToHsv',
|
|
})
|
|
expression = ee.Image('a').rgbToHsv()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_right_shift(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.rightShift',
|
|
})
|
|
expression = ee.Image('a').rightShift(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').rightShift(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_round(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.round',
|
|
})
|
|
expression = ee.Image('a').round()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_rsed_transform(self):
|
|
neighborhood = 1
|
|
units = 'pixels'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'neighborhood': {'constantValue': neighborhood},
|
|
'units': {'constantValue': units},
|
|
},
|
|
'functionName': 'Image.rsedTransform',
|
|
})
|
|
expression = ee.Image('a').rsedTransform(neighborhood, units)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').rsedTransform(
|
|
neighborhood=neighborhood, units=units
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_sample(self):
|
|
region = ee.Geometry.Point([1, 2])
|
|
scale = 3
|
|
projection = EPSG_4326
|
|
factor = 4
|
|
num_pixels = 5
|
|
seed = 6
|
|
drop_nulls = True
|
|
tile_scale = 7
|
|
geometries = False
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'region': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'GeometryConstructors.Point',
|
|
'arguments': {'coordinates': {'constantValue': [1, 2]}},
|
|
}
|
|
},
|
|
'scale': {'constantValue': scale},
|
|
'projection': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Projection',
|
|
'arguments': {'crs': {'constantValue': projection}},
|
|
}
|
|
},
|
|
'factor': {'constantValue': factor},
|
|
'numPixels': {'constantValue': num_pixels},
|
|
'seed': {'constantValue': seed},
|
|
'dropNulls': {'constantValue': drop_nulls},
|
|
'tileScale': {'constantValue': tile_scale},
|
|
'geometries': {'constantValue': geometries},
|
|
},
|
|
'functionName': 'Image.sample',
|
|
})
|
|
expression = ee.Image('a').sample(
|
|
region,
|
|
scale,
|
|
projection,
|
|
factor,
|
|
num_pixels,
|
|
seed,
|
|
drop_nulls,
|
|
tile_scale,
|
|
geometries,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').sample(
|
|
region=region,
|
|
scale=scale,
|
|
projection=projection,
|
|
factor=factor,
|
|
numPixels=num_pixels,
|
|
seed=seed,
|
|
dropNulls=drop_nulls,
|
|
tileScale=tile_scale,
|
|
geometries=geometries,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_sample_rectangle(self):
|
|
point = [1, 2]
|
|
region = ee.Geometry.Point(point)
|
|
properties = ['b', 'c']
|
|
default_value = 3
|
|
default_array_value = [4, 5]
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'region': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'GeometryConstructors.Point',
|
|
'arguments': {'coordinates': {'constantValue': point}},
|
|
}
|
|
},
|
|
'properties': {'constantValue': properties},
|
|
'defaultValue': {'constantValue': default_value},
|
|
'defaultArrayValue': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Array',
|
|
'arguments': {
|
|
'values': {'constantValue': default_array_value}
|
|
},
|
|
}
|
|
},
|
|
},
|
|
'functionName': 'Image.sampleRectangle',
|
|
})
|
|
expression = ee.Image('a').sampleRectangle(
|
|
region, properties, default_value, default_array_value
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').sampleRectangle(
|
|
region=region,
|
|
properties=properties,
|
|
defaultValue=default_value,
|
|
defaultArrayValue=default_array_value,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_sample_regions(self):
|
|
featurecollection = ee.FeatureCollection(ee.Feature(None))
|
|
properties = ['b', 'c']
|
|
scale = 3
|
|
projection = EPSG_4326
|
|
tile_scale = 4
|
|
geometries = False
|
|
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'collection': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Collection',
|
|
'arguments': {
|
|
'features': {
|
|
'arrayValue': {
|
|
'values': [{
|
|
'functionInvocationValue': {
|
|
'functionName': 'Feature',
|
|
'arguments': {},
|
|
}
|
|
}]
|
|
}
|
|
}
|
|
},
|
|
}
|
|
},
|
|
'geometries': {'constantValue': geometries},
|
|
'projection': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Projection',
|
|
'arguments': {'crs': {'constantValue': projection}},
|
|
}
|
|
},
|
|
'properties': {'constantValue': properties},
|
|
'scale': {'constantValue': scale},
|
|
'tileScale': {'constantValue': tile_scale},
|
|
},
|
|
'functionName': 'Image.sampleRegions',
|
|
})
|
|
expression = ee.Image('a').sampleRegions(
|
|
featurecollection, properties, scale, projection, tile_scale, geometries
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').sampleRegions(
|
|
collection=featurecollection,
|
|
properties=properties,
|
|
scale=scale,
|
|
projection=projection,
|
|
tileScale=tile_scale,
|
|
geometries=geometries,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_select(self):
|
|
band_selectors = ['b', 'c']
|
|
new_names = ['d', 'e']
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'bandSelectors': {'constantValue': band_selectors},
|
|
'newNames': {'constantValue': new_names},
|
|
},
|
|
'functionName': 'Image.select',
|
|
})
|
|
expression = ee.Image('a').select(band_selectors, new_names)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
# var_args, so now kwargs.
|
|
|
|
def test_self_mask(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
},
|
|
'functionName': 'Image.selfMask',
|
|
})
|
|
expression = ee.Image('a').selfMask()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_set_default_projection(self):
|
|
crs = EPSG_4326
|
|
crs_transform = [1, 2, 3, 4, 5, 6]
|
|
scale = 7
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'crs': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Projection',
|
|
'arguments': {'crs': {'constantValue': crs}},
|
|
}
|
|
},
|
|
'crsTransform': {'constantValue': crs_transform},
|
|
'scale': {'constantValue': scale},
|
|
},
|
|
'functionName': 'Image.setDefaultProjection',
|
|
})
|
|
expression = ee.Image('a').setDefaultProjection(crs, crs_transform, scale)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').setDefaultProjection(
|
|
crs=crs, crsTransform=crs_transform, scale=scale
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_short(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.short',
|
|
})
|
|
expression = ee.Image('a').short()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_signum(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.signum',
|
|
})
|
|
expression = ee.Image('a').signum()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_sin(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.sin',
|
|
})
|
|
expression = ee.Image('a').sin()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_sinh(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.sinh',
|
|
})
|
|
expression = ee.Image('a').sinh()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_sld_style(self):
|
|
sld_xml = 'some xml'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'sldXml': {'constantValue': sld_xml},
|
|
},
|
|
'functionName': 'Image.sldStyle',
|
|
})
|
|
expression = ee.Image('a').sldStyle(sld_xml)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').sldStyle(sldXml=sld_xml)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_slice(self):
|
|
start = 1
|
|
end = 2
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'start': {'constantValue': start},
|
|
'end': {'constantValue': end},
|
|
},
|
|
'functionName': 'Image.slice',
|
|
})
|
|
expression = ee.Image('a').slice(start, end)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').slice(start=start, end=end)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_spectral_dilation(self):
|
|
metric = 'sid'
|
|
kernel = ee.Kernel.square(1)
|
|
use_centroid = True
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'metric': {'constantValue': metric},
|
|
'kernel': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
'useCentroid': {'constantValue': use_centroid},
|
|
},
|
|
'functionName': 'Image.spectralDilation',
|
|
})
|
|
expression = ee.Image('a').spectralDilation(metric, kernel, use_centroid)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').spectralDilation(
|
|
metric=metric, kernel=kernel, useCentroid=use_centroid
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_spectral_distance(self):
|
|
image2 = 'b'
|
|
metric = 'emd'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
'metric': {'constantValue': metric},
|
|
},
|
|
'functionName': 'Image.spectralDistance',
|
|
})
|
|
expression = ee.Image('a').spectralDistance(image2, metric)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').spectralDistance(image2=image2, metric=metric)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_spectral_erosion(self):
|
|
metric = 'sid'
|
|
kernel = ee.Kernel.square(1)
|
|
use_centroid = True
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'metric': {'constantValue': metric},
|
|
'kernel': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
'useCentroid': {'constantValue': use_centroid},
|
|
},
|
|
'functionName': 'Image.spectralErosion',
|
|
})
|
|
expression = ee.Image('a').spectralErosion(metric, kernel, use_centroid)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').spectralErosion(
|
|
metric=metric, kernel=kernel, useCentroid=use_centroid
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_spectral_gradient(self):
|
|
metric = 'sid'
|
|
kernel = ee.Kernel.square(1)
|
|
use_centroid = True
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'metric': {'constantValue': metric},
|
|
'kernel': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Kernel.square',
|
|
'arguments': {'radius': {'constantValue': 1}},
|
|
}
|
|
},
|
|
'useCentroid': {'constantValue': use_centroid},
|
|
},
|
|
'functionName': 'Image.spectralGradient',
|
|
})
|
|
expression = ee.Image('a').spectralGradient(metric, kernel, use_centroid)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').spectralGradient(
|
|
metric=metric, kernel=kernel, useCentroid=use_centroid
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_sqrt(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.sqrt',
|
|
})
|
|
expression = ee.Image('a').sqrt()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_stratified_sample(self):
|
|
num_points = 1
|
|
class_band = 'band'
|
|
point = [7, 8]
|
|
region = ee.Geometry.Point(point)
|
|
scale = 2
|
|
projection = EPSG_4326
|
|
seed = 3
|
|
class_values = ['b', 'c']
|
|
class_points = [4, 5]
|
|
drop_nulls = False
|
|
tile_scale = 6
|
|
geometries = True
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'numPoints': {'constantValue': num_points},
|
|
'classBand': {'constantValue': class_band},
|
|
'region': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'GeometryConstructors.Point',
|
|
'arguments': {'coordinates': {'constantValue': point}},
|
|
}
|
|
},
|
|
'scale': {'constantValue': scale},
|
|
'projection': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Projection',
|
|
'arguments': {'crs': {'constantValue': projection}},
|
|
}
|
|
},
|
|
'seed': {'constantValue': seed},
|
|
'classValues': {'constantValue': class_values},
|
|
'classPoints': {'constantValue': class_points},
|
|
'dropNulls': {'constantValue': drop_nulls},
|
|
'tileScale': {'constantValue': tile_scale},
|
|
'geometries': {'constantValue': geometries},
|
|
},
|
|
'functionName': 'Image.stratifiedSample',
|
|
})
|
|
expression = ee.Image('a').stratifiedSample(
|
|
num_points,
|
|
class_band,
|
|
region,
|
|
scale,
|
|
projection,
|
|
seed,
|
|
class_values,
|
|
class_points,
|
|
drop_nulls,
|
|
tile_scale,
|
|
geometries,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').stratifiedSample(
|
|
numPoints=num_points,
|
|
classBand=class_band,
|
|
region=region,
|
|
scale=scale,
|
|
projection=projection,
|
|
seed=seed,
|
|
classValues=class_values,
|
|
classPoints=class_points,
|
|
dropNulls=drop_nulls,
|
|
tileScale=tile_scale,
|
|
geometries=geometries,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_subtract(self):
|
|
image2 = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image1': IMAGE,
|
|
'image2': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.subtract',
|
|
})
|
|
expression = ee.Image('a').subtract(image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').subtract(image2=image2)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_tan(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.tan',
|
|
})
|
|
expression = ee.Image('a').tan()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_tanh(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.tanh',
|
|
})
|
|
expression = ee.Image('a').tanh()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_to_array(self):
|
|
axis = 1
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'axis': {'constantValue': axis},
|
|
},
|
|
'functionName': 'Image.toArray',
|
|
})
|
|
expression = ee.Image('a').toArray(axis)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').toArray(axis=axis)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_to_byte(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.toByte',
|
|
})
|
|
expression = ee.Image('a').toByte()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_to_double(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.toDouble',
|
|
})
|
|
expression = ee.Image('a').toDouble()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_to_float(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.toFloat',
|
|
})
|
|
expression = ee.Image('a').toFloat()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_to_int(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.toInt',
|
|
})
|
|
expression = ee.Image('a').toInt()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_to_int16(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.toInt16',
|
|
})
|
|
expression = ee.Image('a').toInt16()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_to_int32(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.toInt32',
|
|
})
|
|
expression = ee.Image('a').toInt32()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_to_int64(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.toInt64',
|
|
})
|
|
expression = ee.Image('a').toInt64()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_to_int8(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.toInt8',
|
|
})
|
|
expression = ee.Image('a').toInt8()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_to_long(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.toLong',
|
|
})
|
|
expression = ee.Image('a').toLong()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_to_short(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.toShort',
|
|
})
|
|
expression = ee.Image('a').toShort()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_to_uint16(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.toUint16',
|
|
})
|
|
expression = ee.Image('a').toUint16()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_to_uint32(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.toUint32',
|
|
})
|
|
expression = ee.Image('a').toUint32()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_to_uint8(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.toUint8',
|
|
})
|
|
expression = ee.Image('a').toUint8()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_translate(self):
|
|
x = 1
|
|
y = 2
|
|
units = 'pixels'
|
|
proj = EPSG_4326
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'x': {'constantValue': x},
|
|
'y': {'constantValue': y},
|
|
'units': {'constantValue': units},
|
|
'proj': {
|
|
'functionInvocationValue': {
|
|
'functionName': 'Projection',
|
|
'arguments': {'crs': {'constantValue': proj}},
|
|
}
|
|
},
|
|
},
|
|
'functionName': 'Image.translate',
|
|
})
|
|
expression = ee.Image('a').translate(x, y, units, proj)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').translate(x=x, y=y, units=units, proj=proj)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_trigamma(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.trigamma',
|
|
})
|
|
expression = ee.Image('a').trigamma()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_uint16(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.uint16',
|
|
})
|
|
expression = ee.Image('a').uint16()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_uint32(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.uint32',
|
|
})
|
|
expression = ee.Image('a').uint32()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_uint8(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'value': IMAGE,
|
|
},
|
|
'functionName': 'Image.uint8',
|
|
})
|
|
expression = ee.Image('a').uint8()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_unit_scale(self):
|
|
low = 1
|
|
high = 2
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'low': {'constantValue': low},
|
|
'high': {'constantValue': high},
|
|
},
|
|
'functionName': 'Image.unitScale',
|
|
})
|
|
expression = ee.Image('a').unitScale(low, high)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').unitScale(low=low, high=high)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_unmask(self):
|
|
value = 'b'
|
|
same_footprint = True
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'value': IMAGE_B,
|
|
'sameFootprint': {'constantValue': same_footprint},
|
|
},
|
|
'functionName': 'Image.unmask',
|
|
})
|
|
expression = ee.Image('a').unmask(value, same_footprint)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').unmask(value=value, sameFootprint=same_footprint)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_unmix(self):
|
|
endmembers = ['b', 'c']
|
|
sum_to_one = False
|
|
non_negative = True
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'endmembers': {'constantValue': endmembers},
|
|
'nonNegative': {'constantValue': non_negative},
|
|
'sumToOne': {'constantValue': sum_to_one},
|
|
},
|
|
'functionName': 'Image.unmix',
|
|
})
|
|
expression = ee.Image('a').unmix(endmembers, sum_to_one, non_negative)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').unmix(
|
|
endmembers=endmembers, sumToOne=sum_to_one, nonNegative=non_negative
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_update_mask(self):
|
|
mask = 'b'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'mask': IMAGE_B,
|
|
},
|
|
'functionName': 'Image.updateMask',
|
|
})
|
|
expression = ee.Image('a').updateMask(mask)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').updateMask(mask=mask)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_visualize(self):
|
|
bands = ['b', 'c']
|
|
gain = [1, 2]
|
|
bias = [3, 4]
|
|
min_values = [5, 6]
|
|
max_values = [7, 8]
|
|
gamma = [9, 10]
|
|
opacity = 11
|
|
palette = ['red', 'blue']
|
|
force_rgb_output = True
|
|
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
'bands': {'constantValue': bands},
|
|
'gain': {'constantValue': gain},
|
|
'bias': {'constantValue': bias},
|
|
'min': {'constantValue': min_values},
|
|
'max': {'constantValue': max_values},
|
|
'gamma': {'constantValue': gamma},
|
|
'opacity': {'constantValue': opacity},
|
|
'palette': {'constantValue': palette},
|
|
'forceRgbOutput': {'constantValue': force_rgb_output},
|
|
},
|
|
'functionName': 'Image.visualize',
|
|
})
|
|
|
|
expression = ee.Image('a').visualize(
|
|
bands,
|
|
gain,
|
|
bias,
|
|
min_values,
|
|
max_values,
|
|
gamma,
|
|
opacity,
|
|
palette,
|
|
force_rgb_output,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').visualize(
|
|
bands=bands,
|
|
gain=gain,
|
|
bias=bias,
|
|
min=min_values,
|
|
max=max_values,
|
|
gamma=gamma,
|
|
opacity=opacity,
|
|
palette=palette,
|
|
forceRgbOutput=force_rgb_output,
|
|
)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_where(self):
|
|
test = 'b'
|
|
value = 'c'
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'input': IMAGE,
|
|
'test': IMAGE_B,
|
|
'value': IMAGE_C,
|
|
},
|
|
'functionName': 'Image.where',
|
|
})
|
|
expression = ee.Image('a').where(test, value)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
expression = ee.Image('a').where(test=test, value=value)
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
def test_zero_crossing(self):
|
|
expect = make_expression_graph({
|
|
'arguments': {
|
|
'image': IMAGE,
|
|
},
|
|
'functionName': 'Image.zeroCrossing',
|
|
})
|
|
expression = ee.Image('a').zeroCrossing()
|
|
result = json.loads(expression.serialize())
|
|
self.assertEqual(expect, result)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|