mirror of
https://github.com/google/earthengine-api.git
synced 2025-12-08 19:26:12 +00:00
135 lines
4.2 KiB
Python
135 lines
4.2 KiB
Python
"""A wrapper for ConfusionMatrices."""
|
|
from __future__ import annotations
|
|
|
|
from typing import Any, Dict, Optional, Union
|
|
|
|
from ee import _arg_types
|
|
from ee import apifunction
|
|
from ee import computedobject
|
|
from ee import ee_array
|
|
from ee import ee_list
|
|
from ee import ee_number
|
|
|
|
|
|
class ConfusionMatrix(computedobject.ComputedObject):
|
|
"""An object to represent an Earth Engine ConfusionMatrix.
|
|
|
|
Examples:
|
|
# Construct a confusion matrix. Rows correspond to actual values, columns to
|
|
# predicted values.
|
|
matrix = ee.Array([[32, 0, 0, 0, 1, 0],
|
|
[ 0, 5, 0, 0, 1, 0],
|
|
[ 0, 0, 1, 3, 0, 0],
|
|
[ 0, 1, 4, 26, 8, 0],
|
|
[ 0, 0, 0, 7, 15, 0],
|
|
[ 0, 0, 0, 1, 0, 5]])
|
|
ee.ConfusionMatrix(matrix)
|
|
"""
|
|
|
|
_initialized: bool = False
|
|
|
|
def __init__(
|
|
self,
|
|
array: Union[
|
|
ee_array.Array,
|
|
_arg_types.ConfusionMatrix,
|
|
computedobject.ComputedObject,
|
|
],
|
|
order: Optional[_arg_types.List] = None,
|
|
):
|
|
"""Creates a ConfusionMatrix wrapper.
|
|
|
|
Creates a confusion matrix. Axis 0 (the rows) of the matrix correspond to
|
|
the actual values, and Axis 1 (the columns) to the predicted values.
|
|
|
|
Args:
|
|
array: A square, 2D array of integers, representing the confusion matrix.
|
|
Note that unlike the ee.Array constructor, this argument cannot take a
|
|
list.
|
|
order: The row and column size and order, for non-contiguous or non-zero
|
|
based matrices.
|
|
"""
|
|
self.initialize()
|
|
|
|
if isinstance(array, computedobject.ComputedObject) and order is None:
|
|
if self.is_func_returning_same(array):
|
|
# If it is a call that already returns a ConfusionMatrix, just cast.
|
|
super().__init__(array.func, array.args, array.varName)
|
|
return
|
|
|
|
args: Dict[str, Any] = {'array': array}
|
|
if order is not None:
|
|
args['order'] = order
|
|
|
|
func = apifunction.ApiFunction(self.name())
|
|
super().__init__(func, func.promoteArgs(args))
|
|
|
|
@classmethod
|
|
def initialize(cls) -> None:
|
|
"""Imports API functions to this class."""
|
|
if not cls._initialized:
|
|
apifunction.ApiFunction.importApi(cls, cls.name(), cls.name())
|
|
cls._initialized = True
|
|
|
|
@classmethod
|
|
def reset(cls) -> None:
|
|
"""Removes imported API functions from this class."""
|
|
apifunction.ApiFunction.clearApi(cls)
|
|
cls._initialized = False
|
|
|
|
@staticmethod
|
|
def name() -> str:
|
|
return 'ConfusionMatrix'
|
|
|
|
def accuracy(self) -> ee_number.Number:
|
|
"""Returns the accuracy of a confusion matrix defined as correct / total."""
|
|
|
|
return apifunction.ApiFunction.call_(self.name() + '.accuracy', self)
|
|
|
|
def array(self) -> ee_array.Array:
|
|
"""Returns a confusion matrix as an Array."""
|
|
|
|
return apifunction.ApiFunction.call_(self.name() + '.array', self)
|
|
|
|
def consumersAccuracy(self) -> ee_array.Array:
|
|
"""Returns an array of consumer's accuracies.
|
|
|
|
Computes the consumer's accuracy (reliability) of a confusion matrix defined
|
|
as (correct / total) for each row.
|
|
"""
|
|
|
|
return apifunction.ApiFunction.call_(
|
|
self.name() + '.consumersAccuracy', self
|
|
)
|
|
|
|
def fscore(self, beta: Optional[_arg_types.Number] = None) -> ee_array.Array:
|
|
"""Returns the F-beta score for the confusion matrix.
|
|
|
|
Args:
|
|
beta: A factor indicating how much more important recall is than
|
|
precision. The standard F-score is equivalent to setting beta to one.
|
|
"""
|
|
|
|
return apifunction.ApiFunction.call_(self.name() + '.fscore', self, beta)
|
|
|
|
def kappa(self) -> ee_number.Number:
|
|
"""Returns the Kappa statistic for the confusion matrix."""
|
|
|
|
return apifunction.ApiFunction.call_(self.name() + '.kappa', self)
|
|
|
|
def order(self) -> ee_list.List:
|
|
"""Returns the name and order of the rows and columns of the matrix."""
|
|
|
|
return apifunction.ApiFunction.call_(self.name() + '.order', self)
|
|
|
|
def producersAccuracy(self) -> ee_array.Array:
|
|
"""Returns an array of producer's accuracies.
|
|
|
|
Computes the producer's accuracy of a confusion matrix defined as (correct /
|
|
total) for each column.
|
|
"""
|
|
|
|
return apifunction.ApiFunction.call_(
|
|
self.name() + '.producersAccuracy', self
|
|
)
|