#!/usr/bin/env python """Landcover cleanup. Display the MODIS land cover classification image with appropriate colors. """ import ee import ee.mapclient ee.Initialize() ee.mapclient.centerMap(-113.41842, 40.055489, 6) # Force projection of 500 meters/pixel, which is the native MODIS resolution. VECTORIZATION_SCALE = 500 image1 = ee.Image('MODIS/051/MCD12Q1/2001_01_01') image2 = image1.select(['Land_Cover_Type_1']) image3 = image2.reproject('EPSG:4326', None, 500) image4 = image3.focal_mode() image5 = image4.focal_max(3).focal_min(5).focal_max(3) image6 = image5.reproject('EPSG:4326', None, 500) PALETTE = [ 'aec3d4', # water '152106', '225129', '369b47', '30eb5b', '387242', # forest '6a2325', 'c3aa69', 'b76031', 'd9903d', '91af40', # shrub, grass, savannah '111149', # wetlands 'cdb33b', # croplands 'cc0013', # urban '33280d', # crop mosaic 'd7cdcc', # snow and ice 'f7e084', # barren '6f6f6f' # tundra ] vis_params = {'min': 0, 'max': 17, 'palette': PALETTE} ee.mapclient.addToMap(image2, vis_params, 'IGBP classification') ee.mapclient.addToMap(image3, vis_params, 'Reprojected') ee.mapclient.addToMap(image4, vis_params, 'Mode') ee.mapclient.addToMap(image5, vis_params, 'Smooth') ee.mapclient.addToMap(image6, vis_params, 'Smooth')