"""A wrapper for ConfusionMatrices.""" from __future__ import annotations from typing import Any, Dict, Optional, Union from ee import _arg_types from ee import apifunction from ee import computedobject from ee import ee_array from ee import ee_list from ee import ee_number class ConfusionMatrix(computedobject.ComputedObject): """An object to represent an Earth Engine ConfusionMatrix. Examples: # Construct a confusion matrix. Rows correspond to actual values, columns to # predicted values. matrix = ee.Array([[32, 0, 0, 0, 1, 0], [ 0, 5, 0, 0, 1, 0], [ 0, 0, 1, 3, 0, 0], [ 0, 1, 4, 26, 8, 0], [ 0, 0, 0, 7, 15, 0], [ 0, 0, 0, 1, 0, 5]]) ee.ConfusionMatrix(matrix) """ _initialized: bool = False def __init__( self, array: Union[ ee_array.Array, _arg_types.ConfusionMatrix, computedobject.ComputedObject, ], order: Optional[_arg_types.List] = None, ): """Creates a ConfusionMatrix wrapper. Creates a confusion matrix. Axis 0 (the rows) of the matrix correspond to the actual values, and Axis 1 (the columns) to the predicted values. Args: array: A square, 2D array of integers, representing the confusion matrix. Note that unlike the ee.Array constructor, this argument cannot take a list. order: The row and column size and order, for non-contiguous or non-zero based matrices. """ self.initialize() if isinstance(array, computedobject.ComputedObject) and order is None: if self.is_func_returning_same(array): # If it is a call that already returns a ConfusionMatrix, just cast. super().__init__(array.func, array.args, array.varName) return args: Dict[str, Any] = {'array': array} if order is not None: args['order'] = order func = apifunction.ApiFunction(self.name()) super().__init__(func, func.promoteArgs(args)) @classmethod def initialize(cls) -> None: """Imports API functions to this class.""" if not cls._initialized: apifunction.ApiFunction.importApi(cls, cls.name(), cls.name()) cls._initialized = True @classmethod def reset(cls) -> None: """Removes imported API functions from this class.""" apifunction.ApiFunction.clearApi(cls) cls._initialized = False @staticmethod def name() -> str: return 'ConfusionMatrix' def accuracy(self) -> ee_number.Number: """Returns the accuracy of a confusion matrix defined as correct / total.""" return apifunction.ApiFunction.call_(self.name() + '.accuracy', self) def array(self) -> ee_array.Array: """Returns a confusion matrix as an Array.""" return apifunction.ApiFunction.call_(self.name() + '.array', self) def consumersAccuracy(self) -> ee_array.Array: """Returns an array of consumer's accuracies. Computes the consumer's accuracy (reliability) of a confusion matrix defined as (correct / total) for each row. """ return apifunction.ApiFunction.call_( self.name() + '.consumersAccuracy', self ) def fscore(self, beta: Optional[_arg_types.Number] = None) -> ee_array.Array: """Returns the F-beta score for the confusion matrix. Args: beta: A factor indicating how much more important recall is than precision. The standard F-score is equivalent to setting beta to one. """ return apifunction.ApiFunction.call_(self.name() + '.fscore', self, beta) def kappa(self) -> ee_number.Number: """Returns the Kappa statistic for the confusion matrix.""" return apifunction.ApiFunction.call_(self.name() + '.kappa', self) def order(self) -> ee_list.List: """Returns the name and order of the rows and columns of the matrix.""" return apifunction.ApiFunction.call_(self.name() + '.order', self) def producersAccuracy(self) -> ee_array.Array: """Returns an array of producer's accuracies. Computes the producer's accuracy of a confusion matrix defined as (correct / total) for each column. """ return apifunction.ApiFunction.call_( self.name() + '.producersAccuracy', self )