big.js/doc/bigAPI.html
Michael Mclaughlin 0b79acd7aa Rename Big.E_POS to Big.PE, Big.E_NEG to Big.NE.
Refactor error messaging. Throw if null is passed to toFixed etc. and amend tests accordingly. Clean-up and reformat.
2017-09-27 22:14:56 +01:00

1229 lines
37 KiB
HTML

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8">
<meta name="Author" content="M Mclaughlin">
<title>big.js API</title>
<style>
html{font-family:sans-serif;font-size:100%}
body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;
line-height:1.65em;background:#fefff5;color:#000;min-height:100%;margin:0}
.nav{background:#fff;position:fixed;top:0;bottom:0;left:0;width:130px;
overflow-y:auto;padding:15px 0 30px 20px; border-right: 1px solid #69d2e7}
div.container{width:700px;margin:30px 0 50px 190px}
p{margin:0 0 1em;width:700px}
pre,ul{margin:1em 0}
h1,h2,h3,h4,h5{margin:0;padding:1.5em 0 0}
h1,h2{padding:.75em 0 1em}
h1{font-size:2.75em;color:#fa6900}
h2{font-size:2.25em;color:#fa6900}
h3{font-size:1.75em;color:#69d2e7}
h4{font-size:1.75em;color:#fa6900;padding-bottom:.75em}
h5{font-size:1.2em;padding-bottom:.3em}
h6{font-size:1.1em;margin:0;padding:0.5em 0}
dd dt{font-size:1.2em}
dt{padding-top:.5em}
dd{padding-top:.35em}
b{font-weight:700}
a,a:visited{color:#444;text-decoration:none}
a:active,a:hover{outline:0;color:#000}
a:hover{text-decoration:underline}
.nav a,.nav b,.nav a:visited{display:block;color:#fa6900;font-weight:700;
margin-top:15px}
.nav b{color:#69d2e7;margin-top:20px;cursor:default;width:auto}
ul{list-style-type:none;padding:0 0 0 20px}
.nav ul{line-height:14px;padding-left:0;margin:5px 0 0}
.nav ul a,.nav ul a:visited{display:inline;color:#000;font-family:Verdana,
Geneva,sans-serif;font-size:11px;font-weight:400;margin:0}
.inset,ul.inset{margin-left:20px}
code.inset{font-size:.9em}
.nav li{cursor:pointer;width:auto;margin:0 0 3px}
span.alias{font-style:italic;margin-left:20px}
table{border-collapse:collapse;border-spacing:0;border:2px solid #a7dbd8;
margin:1.75em 0;padding:0}
td,th{text-align:left;margin:0;padding:2px 10px;border:1px dotted #a7dbd8}
th{border-top:2px solid #a7dbd8;border-bottom:2px solid #a7dbd8;color:#f38630}
pre{background:#fff;white-space:pre-wrap;word-wrap:break-word;
border-left:5px solid #a7dbd8;padding:1px 0 1px 15px;margin:1.2em 0}
code,pre{font-family:Monaco,Consolas,"Lucida Console",monospace;
font-weight:400}
.end{margin-bottom:25px}
.nav-title{color:#fa6900}
.centre{text-align:center}
.error{color:#f00}
</style>
</head>
<body>
<div class="nav">
<a class='nav-title' href="#">big.js</a>
<b> CONSTRUCTOR </b>
<ul>
<li><a href="#big">Big</a></li>
</ul>
<a href="#constructor-properties">Properties</a>
<ul>
<li><a href="#dp" >DP</a></li>
<li><a href="#rm" >RM</a></li>
<li><a href="#eneg">NE</a></li>
<li><a href="#epos">PE</a></li>
</ul>
<b> INSTANCE </b>
<a href="#prototype-methods">Methods</a>
<ul>
<li><a href="#abs" >abs</a></li>
<li><a href="#cmp" >cmp</a></li>
<li><a href="#div" >div</a></li>
<li><a href="#eq" >eq</a></li>
<li><a href="#gt" >gt</a></li>
<li><a href="#gte" >gte</a></li>
<li><a href="#lt" >lt</a></li>
<li><a href="#lte" >lte</a></li>
<li><a href="#minus" >minus</a></li>
<li><a href="#mod" >mod</a></li>
<li><a href="#plus" >plus</a></li>
<li><a href="#pow" >pow</a></li>
<li><a href="#round" >round</a></li>
<li><a href="#sqrt" >sqrt</a></li>
<li><a href="#times" >times</a></li>
<li><a href="#toE" >toExponential</a></li>
<li><a href="#toF" >toFixed</a></li>
<li><a href="#toP" >toPrecision</a></li>
<li><a href="#toS" >toString</a></li>
<li><a href="#valueOf">valueOf</a></li>
<li><a href="#toJSON" >toJSON</a></li>
</ul>
<a href="#instance-properties">Properties</a>
<ul>
<li><a href="#coefficient">c : coefficient</a></li>
<li><a href="#exponent" >e : exponent</a></li>
<li><a href="#sign" >s : sign</a></li>
</ul>
<a href="#Errors">Errors</a>
<a class='end' href="#faq">FAQ</a>
</div>
<div class="container">
<h1>big.js</h1>
<p>
A small, fast, easy-to-use library for arbitrary-precision decimal
arithmetic.
</p>
<p><a href="https://github.com/MikeMcl/big.js/">Hosted on GitHub</a>.</p>
<h2>API</h2>
<p>
In all examples below, <code>var</code> and semicolons are not shown, and
if a commented-out value is in quotes it means <code>toString</code> has
been called on the preceding expression.
</p>
<h3>CONSTRUCTOR</h3>
<h5 id="big">
Big<code class='inset'>Big( value ) &rArr; <i>Big</i></code>
</h5>
<dl>
<dt><code>value</code></dt>
<dd>
<i>number|string|Big</i>
</dd>
<dd>
A decimal value.
</dd>
<dd>
String values may be in exponential, as well as normal (non-exponential)
notation.
</dd>
<dd>
There is no limit to the number of digits of a <em>string</em> value
(other than that of Javascript's maximum array size), but the largest
recommended exponent magnitude is 1e+6.
</dd>
<dd>
<code>Infinity</code>, <code>NaN</code> and hexadecimal literal
strings, e.g. '0xff', are <u>not</u> valid.<br>
String values in octal literal form will be interpreted as decimals,
e.g. '011' is 11, not 9.
</dd>
</dl>
<p>Returns a new instance of a Big number object.</p>
<p>
Throws <code class='error'>NaN</code> on an invalid <code>value</code>.
</p>
<pre>
x = new Big(9) // '9'
y = new Big(x) // '9'
Big(435.345) // 'new' is optional
new Big('5032485723458348569331745.33434346346912144534543')
new Big('4.321e+4') // '43210'
new Big('-735.0918e-430') // '-7.350918e-428'</pre>
<h4 id="constructor-properties">Properties</h4>
<h5 id="dp">DP</h5>
<p>
<i>number</i> : integer, 0 to 1e+6 inclusive<br />
Default value: <code>20</code>
</p>
<p>
The <u>maximum</u> number of decimal places of the results of operations
involving division.<br />
It is relevant only to the <code>div</code> and <code>sqrt</code> methods,
and the <code>pow</code> method when the exponent is negative.
</p>
<p>
The value will be checked for validity when one of the above methods is
called.<br /> An error will be thrown if the value is found to be invalid.
</p>
<pre>Big.DP = 40</pre>
<h5 id="rm">RM</h5>
<p>
<i>number</i> : 0, 1, 2 or 3<br />
Default value: <code>1</code>
</p>
<p>
The rounding mode used in the above operations and by
<a href='#round'><code>round</code></a>,
<a href='#toE'><code>toExponential</code></a>,
<a href='#toF'><code>toFixed</code></a> and
<a href='#toP'><code>toPrecision</code></a>.
</p>
<table>
<tr>
<th>Value</th>
<th>Description</th>
<th>BigDecimal equivalent</th>
</tr>
<tr>
<td class='centre'>0</td>
<td>
Rounds towards zero.<br />
I.e. truncate, no rounding.
</td>
<td id="round-down">ROUND_DOWN</td>
</tr>
<tr>
<td class='centre'>1</td>
<td>
Rounds towards nearest neighbour.<br />
If equidistant, rounds away from zero.
</td>
<td id="round-half-up">ROUND_HALF_UP</td>
</tr>
<tr>
<td class='centre'>2</td>
<td>
Rounds towards nearest neighbour.<br />
If equidistant, rounds towards even neighbour.
</td>
<td id="round-half-even">ROUND_HALF_EVEN</td>
</tr>
<tr>
<td class='centre'>3</td>
<td>Rounds away from zero.</td>
<td id="round-up">ROUND_UP</td>
</tr>
</table>
<p>
The value will be checked for validity when one of the above methods is
called.<br /> An error will be thrown if the value is found to be invalid.
</p>
<pre>Big.RM = 0</pre>
<h5 id="eneg">NE</h5>
<p>
<i>number</i> : integer, -1e+6 to 0 inclusive<br />
Default value: <code>-7</code>
</p>
<p>
The negative exponent value at and below which
<a href='#toS'><code>toString</code></a> returns exponential notation.
</p>
<pre>
Big.NE = -7
x = new Big(0.00000123) // '0.00000123' e is -6
x = new Big(0.000000123) // '1.23e-7'</pre>
<p>
JavaScript numbers use exponential notation for negative exponents of
<code>-7</code> and below.
</p>
<p>
Regardless of the value of <code>Big.NE</code>, the
<a href='#toF'><code>toFixed</code></a> method will always return a value
in normal notation and the <a href='#toE'><code>toExponential</code></a>
method will always return a value in exponential form.
</p>
<h5 id="epos">PE</h5>
<p>
<i>number</i> : integer, 0 to 1e+6 inclusive<br />
Default value: <code>21</code>
</p>
<p>
The positive exponent value at and above which
<a href='#toS'><code>toString</code></a> returns exponential notation.
</p>
<pre>
Big.PE = 2
x = new Big(12.3) // '12.3' e is 1
x = new Big(123) // '1.23e+2'</pre>
<p>
JavaScript numbers use exponential notation for positive exponents of
<code>21</code> and above.
</p>
<p>
Regardless of the value of <code>Big.PE</code>, the
<a href='#toF'><code>toFixed</code></a> method will always return a value
in normal notation and the <a href='#toE'><code>toExponential</code></a>
method will always return a value in exponential form.
</p>
<h3>INSTANCE</h3>
<h4 id="prototype-methods">Methods</h4>
<p>
The methods inherited by a Big number instance from its constructor's
prototype object.
</p>
<p>
A Big number is immutable in the sense that it is not changed by its
methods.
</p>
<h5 id="abs">abs<code class='inset'>.abs() &rArr; <i>Big</i></code></h5>
<p>
Returns a Big number whose value is the absolute value, i.e. the
magnitude, of this Big number.
</p>
<pre>
x = new Big(-0.8)
x.abs() // '0.8'</pre>
<h5 id="cmp">
cmp<code class='inset'>.cmp( n ) &rArr; <i>number</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i><br /></p>
<table>
<tr>
<th>Returns</th>
<th colspan=2>&nbsp;</th>
</tr>
<tr>
<td class='centre'>1</td>
<td>
If the value of this Big number is greater than the value of
<code>n</code>
</td>
</tr>
<tr>
<td class='centre'>-1</td>
<td>
If the value of this Big number is less than the value of
<code>n</code>
</td>
</tr>
<tr>
<td class='centre'>0</td>
<td>If this Big number and <code>n</code> have the same value</td>
</tr>
</table>
<p>Throws <code class='error'>NaN</code> if <code>n</code> is invalid.</p>
<pre>
x = new Big(6)
y = new Big(5)
x.cmp(y) // 1
y.cmp(x.minus(1)) // 0</pre>
<h5 id="div">div<code class='inset'>.div(n) &rArr; <i>Big</i></code></h5>
<p><code>n</code> : <i>number|string|Big</i><br /></p>
<p>
Returns a Big number whose value is the value of this Big number divided
by <code>n</code>.
</p>
<p>
If the result has more fraction digits than is specified by
<a href='#dp'><code>Big.DP</code></a>, it will be rounded to
<a href='#dp'><code>Big.DP</code></a> decimal places using rounding mode
<a href='#rm'><code>Big.RM</code></a>.
</p>
<p>
Throws <code class='error'>NaN</code> if <code>n</code> is invalid.<br />
Throws <code class='error'>&plusmn;Infinity</code> on division by zero.<br />
Throws <code class='error'>NaN</code> on division of zero by zero.
</p>
<pre>
x = new Big(355)
y = new Big(113)
x.div(y) // '3.14159292035398230088'
Big.DP = 2
x.div(y) // '3.14'
x.div(5) // '71'</pre>
<h5 id="eq">eq<code class='inset'>.eq(n) &rArr; <i>boolean</i></code></h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns <code>true</code> if the value of this Big equals the value
of <code>n</code>, otherwise returns <code>false</code>.
</p>
<p>Throws <code class='error'>NaN</code> if <code>n</code> is invalid.</p>
<pre>
0 === 1e-324 // true
x = new Big(0)
x.eq('1e-324') // false
Big(-0).eq(x) // true ( -0 === 0 )</pre>
<h5 id="gt">
gt<code class='inset'>.gt(n) &rArr; <i>boolean</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns <code>true</code> if the value of this Big is greater than
the value of <code>n</code>, otherwise returns <code>false</code>.
</p>
<p>Throws <code class='error'>NaN</code> if <code>n</code> is invalid.</p>
<pre>
0.1 &gt; 0.3 - 0.2 // true
x = new Big(0.1)
x.gt(Big(0.3).minus(0.2)) // false
Big(0).gt(x) // false</pre>
<h5 id="gte">
gte<code class='inset'>.gte(n) &rArr; <i>boolean</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns <code>true</code> if the value of this Big is greater than
or equal to the value of <code>n</code>, otherwise returns
<code>false</code>.
</p>
<p>Throws <code class='error'>NaN</code> if <code>n</code> is invalid.</p>
<pre>
0.3 - 0.2 &gt;= 0.1 // false
x = new Big(0.3).minus(0.2)
x.gte(0.1) // true
Big(1).gte(x) // true</pre>
<h5 id="lt">
lt<code class='inset'>.lt(n) &rArr; <i>boolean</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns <code>true</code> if the value of this Big is less than the
value of <code>n</code>, otherwise returns <code>false</code>.
</p>
<p>Throws <code class='error'>NaN</code> if <code>n</code> is invalid.</p>
<pre>
0.3 - 0.2 &lt; 0.1 // true
x = new Big(0.3).minus(0.2)
x.lt(0.1) // false
Big(0).lt(x) // true</pre>
<h5 id="lte">
lte<code class='inset'>.lte(n) &rArr; <i>boolean</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns <code>true</code> if the value of this Big is less than or
equal to the value of <code>n</code>, otherwise returns
<code>false</code>.
</p>
<p>Throws <code class='error'>NaN</code> if <code>n</code> is invalid.</p>
<pre>
0.1 &lt;= 0.3 - 0.2 // false
x = new Big(0.1)
x.lte(Big(0.3).minus(0.2)) // true
Big(-1).lte(x) // true</pre>
<h5 id="minus">
minus<code class='inset'>.minus(n) &rArr; <i>Big</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns a Big number whose value is the value of this Big number minus
<code>n</code>.
</p>
<p>Throws <code class='error'>NaN</code> if <code>n</code> is invalid.</p>
<pre>
0.3 - 0.1 // 0.19999999999999998
x = new Big(0.3)
x.minus(0.1) // '0.2'</pre>
<h5 id="mod">mod<code class='inset'>.mod(n) &rArr; <i>Big</i></code></h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns a Big number whose value is the value of this Big number modulo
<code>n</code>, i.e. the integer remainder of dividing this Big number by
<code>n</code>.
</p>
<p>
The result will have the same sign as this Big number, and it will match
that of Javascript's % operator (within the limits of its precision) and
BigDecimal's remainder method.
</p>
<p>
Throws <code class='error'>NaN</code> if <code>n</code> is negative or
otherwise invalid.
</p>
<pre>
1 % 0.9 // 0.09999999999999998
x = new Big(1)
x.mod(0.9) // '0.1'</pre>
<h5 id="plus">
plus<code class='inset'>.plus(n) &rArr; <i>Big</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns a Big number whose value is the value of this Big number plus
<code>n</code>.
</p>
<p>Throws <code class='error'>NaN</code> if <code>n</code> is invalid.</p>
<pre>
0.1 + 0.2 // 0.30000000000000004
x = new Big(0.1)
y = x.plus(0.2) // '0.3'
Big(0.7).plus(x).plus(y) // '1.1'</pre>
<h5 id="pow">pow<code class='inset'>.pow( exp ) &rArr; <i>Big</i></code>
</h5>
<p>
<code>exp</code> : <i>number</i> : integer, -1e+6 to 1e+6 inclusive
</p>
<p>
Returns a Big number whose value is the value of this Big number raised to
the power <code>exp</code>.
</p>
<p>
If <code>exp</code> is negative and the result has more fraction digits
than is specified by <a href='#dp'><code>Big.DP</code></a>, it will be
rounded to <a href='#dp'><code>Big.DP</code></a> decimal places using
rounding mode <a href='#rm'><code>Big.RM</code></a>.
</p>
<p>
Throws if <code>exp</code> is invalid.
</p>
<p>
Note: High value exponents may cause this method to be slow to return.
</p>
<pre>
Math.pow(0.7, 2) // 0.48999999999999994
x = new Big(0.7)
x.pow(2) // '0.49'
Big.DP = 20
Big(3).pow(-2) // '0.11111111111111111111'
new Big(123.456).pow(1000).toString().length // 5099
new Big(2).pow(1e+6) // Time taken (Node.js): 9 minutes 34 secs.</pre>
<h5 id="round">
round<code class='inset'>.round( [dp [, rm]] )
&rArr; <i>Big</i></code>
</h5>
<p>
<code>dp</code> : <i>number</i> : integer, 0 to 1e+6 inclusive
<br />
<code>rm</code> : <i>number</i> : 0, 1, 2 or 3
</p>
<p>
Returns a Big number whose value is the value of this Big number rounded
using rounding mode <code>rm</code> to a maximum of <code>dp</code>
decimal places.
</p>
<p>
if <code>dp</code> is omitted or is undefined, the return value is
<code>n</code> rounded to a whole number.<br />
if <code>rm</code> is omitted or is undefined, the current
<a href='#rm'><code>Big.RM</code></a> setting is used.
</p>
<p>
Throws if <code>dp</code> or <code>rm</code> is invalid.
</p>
<pre>
x = 123.45
Math.round(x) // 123
y = new Big(x)
y.round() // '123'
y.round(2) // '123.45'
y.round(10) // '123.45'
y.round(1, 0) // '123.4'
y.round(1, 1) // '123.5'
y.round(1, 2) // '123.4'
y.round(1, 3) // '123.5'
y // '123.45'</pre>
<h5 id="sqrt">sqrt<code class='inset'>.sqrt() &rArr; <i>Big</i></code></h5>
<p>
Returns a Big number whose value is the square root of this Big number.
</p>
<p>
If the result has more fraction digits than is specified by
<a href='#dp'><code>Big.DP</code></a>, it will be rounded to
<a href='#dp'><code>Big.DP</code></a> decimal places using rounding mode
<a href='#rm'><code>Big.RM</code></a>.
</p>
<p>Throws <code class='error'>NaN</code> if this Big number is negative.</p>
<pre>
x = new Big(16)
x.sqrt() // '4'
y = new Big(3)
y.sqrt() // '1.73205080756887729353'</pre>
<h5 id="times">
times<code class='inset'>.times(n) &rArr; <i>Big</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i><br /></p>
<p>
Returns a Big number whose value is the value of this Big number times
<code>n</code>.
</p>
<p>Throws <code class='error'>NaN</code> if <code>n</code> is invalid.</p>
<pre>
0.6 * 3 // 1.7999999999999998
x = new Big(0.6)
y = x.times(3) // '1.8'
Big('7e+500').times(y) // '1.26e+501'</pre>
<h5 id="toE">
toExponential<code class='inset'>.toExponential( [dp] ) &rArr;
<i>string</i></code>
</h5>
<p><code>dp</code> : <i>number</i> : integer, 0 to 1e+6 inclusive</p>
<p>
Returns a string representing the value of this Big number in exponential
notation to a fixed number of decimal places <code>dp</code>.
</p>
<p>
If the value of this Big number in exponential notation has more digits to
the right of the decimal point than is specified by <code>dp</code>, the
return value will be rounded to <code>dp</code> decimal places using
rounding mode <a href='#rm'><code>Big.RM</code></a>.
</p>
<p>
If the value of this Big number in exponential notation has fewer digits
to the right of the decimal point than is specified by <code>dp</code>,
the return value will be appended with zeros accordingly.
</p>
<p>
If <code>dp</code> is omitted or is undefined, the number of digits
after the decimal point defaults to the minimum number of digits
necessary to represent the value exactly.
</p>
<p>
Throws if <code>dp</code> is invalid.
</p>
<pre>
x = 45.6
y = new Big(x)
x.toExponential() // '4.56e+1'
y.toExponential() // '4.56e+1'
x.toExponential(0) // '5e+1'
y.toExponential(0) // '5e+1'
x.toExponential(1) // '4.6e+1'
y.toExponential(1) // '4.6e+1'
x.toExponential(3) // '4.560e+1'
y.toExponential(3) // '4.560e+1'</pre>
<h5 id="toF">
toFixed<code class='inset'>.toFixed( [dp] ) &rArr;
<i>string</i></code>
</h5>
<p>
<code>dp</code> : <i>number</i> : integer, 0 to 1e+6 inclusive
</p>
<p>
Returns a string representing the value of this Big number in normal
notation to a fixed number of decimal places <code>dp</code>.
</p>
<p>
If the value of this Big number in normal notation has more digits to the
right of the decimal point than is specified by <code>dp</code>, the
return value will be rounded to <code>dp</code> decimal places using
rounding mode <a href='#rm'><code>Big.RM</code></a>.
</p>
<p>
If the value of this Big number in normal notation has fewer fraction
digits then is specified by <code>dp</code>, the return value will be
appended with zeros accordingly.
</p>
<p>
Unlike <code>Number.prototype.toFixed</code>, which returns
exponential notation if a number is greater or equal to 10<sup>21</sup>,
this method will always return normal notation.
</p>
<p>
If <code>dp</code> is omitted or is undefined, the return value is
simply the value in normal notation. This is also unlike
<code>Number.prototype.toFixed</code>, which returns the value to zero
decimal places.
</p>
<p>
Throws if <code>dp</code> is invalid.
</p>
<pre>
x = 45.6
y = new Big(x)
x.toFixed() // '46'
y.toFixed() // '45.6'
y.toFixed(0) // '46'
x.toFixed(3) // '45.600'
y.toFixed(3) // '45.600'</pre>
<h5 id="toP">
toPrecision<code class='inset'>.toPrecision( [sd] ) &rArr;
<i>string</i></code>
</h5>
<p><code>sd</code> : <i>number</i> : integer, 1 to 1e+6 inclusive</p>
<p>
Returns a string representing the value of this Big number to the
specified number of significant digits <code>sd</code>.
</p>
<p>
If the value of this Big number has more digits than is specified by
<code>sd</code>, the return value will be rounded to <code>sd</code>
significant digits using rounding mode
<a href='#rm'><code>Big.RM</code></a>.
</p>
<p>
If the value of this Big number has fewer digits than is specified by
<code>sd</code>, the return value will be appended with zeros accordingly.
</p>
<p>
If <code>sd</code> is less than the number of digits necessary to
represent the integer part of the value in normal notation,
exponential notation is used.
</p>
<p>
If <code>sd</code> is omitted or is undefined, the return value is
the same as <code>.toString()</code>.
</p>
<p>
Throws if <code>sd</code> is invalid.
</p>
<pre>
x = 45.6
y = new Big(x)
x.toPrecision() // '45.6'
y.toPrecision() // '45.6'
x.toPrecision(1) // '5e+1'
y.toPrecision(1) // '5e+1'
x.toPrecision(5) // '45.600'
y.toPrecision(5) // '45.600'</pre>
<h5 id="toS">
toString<code class='inset'>.toString() &rArr; <i>string</i></code>
</h5>
<p>
Returns a string representing the value of this Big number.
</p>
<p>
If this Big number has a positive exponent that is equal to or greater
than 21, or a negative exponent equal to or less than -7, exponential
notation is returned.
</p>
<p>
The point at which <code>toString</code> returns exponential rather than
normal notation can be adjusted by changing the value of
<a href='#epos'><code>Big.PE</code></a> and
<a href='#eneg'><code>Big.NE</code></a>. By default, Big numbers
correspond to Javascript's number type in this regard.
</p>
<pre>
x = new Big('9.99e+20')
x.toString() // '999000000000000000000'
y = new Big('1E21')
y.toString() // '1e+21'
</pre>
<h5 id="valueOf">
valueOf<code class='inset'>.valueOf() &rArr; <i>string</i></code>
</h5>
<p>
As <code>toString</code>.
</p>
<pre>
x = new Big('177.7e+457')
x.valueOf() // '1.777e+459'</pre>
<h5 id="toJSON">
toJSON<code class='inset'>.toJSON() &rArr; <i>string</i></code>
</h5>
<p>
As <code>toString</code>.
</p>
<pre>
x = new Big('177.7e+457')
y = new Big(235.4325)
z = new Big('0.0098074')
str = JSON.stringify( [x, y, z] )
JSON.parse( str, function ( k, v ) { return k === '' ? v : new Big(v) } )
// Returns an array of three Big numbers.</pre>
<h4 id="instance-properties">Properties</h4>
<p>
A Big number is an object with three properties:
</p>
<table>
<tr>
<th>Property</th>
<th>Description</th>
<th>Type</th>
<th>Value</th>
</tr>
<tr>
<td class='centre' id='coefficient'><b>c</b></td>
<td>coefficient<sup>*</sup></td>
<td><i>number</i><code>[]</code></td>
<td> Array of single digits</td>
</tr>
<tr>
<td class='centre' id='exponent'><b>e</b></td>
<td>exponent</td>
<td><i>number</i></td>
<td>Integer, -1e+6 to 1e+6 inclusive</td>
</tr>
<tr>
<td class='centre' id='sign'><b>s</b></td>
<td>sign</td>
<td><i>number</i></td>
<td>-1 or 1</td>
</tr>
</table>
<p><sup>*</sup>significand</p>
<p>
The value of a Big number is stored in a normalised decimal floating point
format which corresponds to the value's <code>toExponential</code> form,
with the decimal point to be positioned after the most significant
(left-most) digit of the coefficient.
</p>
<p>
Note that, as with Javascript numbers, the original exponent and
fractional trailing zeros are not preserved.
</p>
<pre>x = new Big(0.123) // '0.123'
x.toExponential() // '1.23e-1'
x.c // '1,2,3'
x.e // -1
x.s // 1
y = new Number(-123.4567000e+2) // '-12345.67'
y.toExponential() // '-1.234567e+4'
z = new Big('-123.4567000e+2') // '-12345.67'
z.toExponential() // '-1.234567e+4'
z.c // '1,2,3,4,5,6,7'
z.e // 4
z.s // -1</pre>
<p>
A Big number is mutable in the sense that the value of its properties can
be changed.<br />
For example, to rapidly shift a value by a power of 10:
</p>
<pre>
x = new Big('1234.000') // '1234'
x.toExponential() // '1.234e+3'
x.c // '1,2,3,4'
x.e // 3
x.e = -5
x // '0.00001234'</pre>
<p>
If changing the coefficient array directly, which is not recommended, be
careful to avoid leading or trailing zeros (unless zero itself is being
represented).
</p>
<p>
Minus zero is a valid Big number value, but like Javascript numbers the
minus sign is not shown.
</p>
<pre>
x = new Number(-0) // 0
1 / x == -Infinity // true
y = new Big(-0) // '0'
y.c // '0' [0].toString()
y.e // 0
y.s // -1</pre>
<h4 id='Errors'>Errors</h4>
<p>
The errors that are thrown are instances of <code>Error</code>.<br />
The <code>message</code> of the errors always begins with
<code class='error'>[BigError]</code>.
</p>
<table>
<tr>
<th>Method(s)</th>
<th>Error message</th>
<th>Thrown on</th>
</tr>
<tr>
<td>
<code>
Big<br />cmp<br />div<br />eq gt gte lt lte<br />minus<br />mod
<br />plus<br />times
</code>
</td>
<td><code>NaN</code></td>
<td>Invalid number</td>
</tr>
<tr>
<td rowspan=4><code>div</code></td>
<td><code>&plusmn;Infinity</code></td>
<td>Division by zero</td>
</tr>
<tr>
<td><code>NaN</code></td>
<td>Division of zero by zero</td>
</tr>
<tr>
<td>DP: <i>invalidValue</i></td>
<td>Invalid Big.DP</td>
</tr>
<tr>
<td>RM: <i>invalidValue</i></td>
<td>Invalid Big.RM</td>
</tr>
<tr>
<td><code>mod</code></td>
<td><code>NaN</code></td>
<td>Modulo zero</td>
</tr>
<tr>
<td rowspan=3><code>pow</code></td>
<td><i>invalidValue</i></td>
<td>Invalid exponent</td>
</tr>
<tr>
<td>DP: <i>invalidValue</i></td>
<td>Invalid Big.DP</td>
</tr>
<tr>
<td>RM: <i>invalidValue</i></td>
<td>Invalid Big.RM</td>
</tr>
<tr>
<td rowspan=2><code>round</code></td>
<td><i>invalidValue</i></td>
<td>Invalid dp</td>
</tr>
<tr>
<td>RM: <i>invalidValue</i></td>
<td>Invalid rm/Big.RM</td>
</tr>
<tr>
<td rowspan=3><code>sqrt</code></td>
<td><code>NaN</code></td>
<td>Negative number</td>
</tr>
<tr>
<td>DP: <i>invalidValue</i></td>
<td>Invalid Big.DP</td>
</tr>
<tr>
<td>RM: <i>invalidValue</i></td>
<td>Invalid Big.RM</td>
</tr>
<tr>
<td rowspan=2><code>toExponential</code></td>
<td><i>invalidValue</i></td>
<td>Invalid dp</td>
</tr>
<tr>
<td>RM: <i>invalidValue</i></td>
<td>Invalid Big.RM</td>
</tr>
<tr>
<td rowspan=2><code>toFixed</code></td>
<td><i>invalidValue</i></td>
<td>Invalid dp</td>
</tr>
<tr>
<td>RM: <i>invalidValue</i></td>
<td>Invalid Big.RM</td>
</tr>
<tr>
<td rowspan=2><code>toPrecision</code></td>
<td><i>invalidValue</i></td>
<td>Invalid sd</td>
</tr>
<tr>
<td>RM: <i>invalidValue</i></td>
<td>Invalid Big.RM</td>
</tr>
</table>
<h4 id='faq'>FAQ</h4>
<h6>How can I convert a Big number to a primitive JavaScript number?</h6>
<p>
To convert a Big number to a primitive number, <code>parseFloat</code> or
any of the other methods for converting a string to a number can be used.
</p>
<pre>
x = new Big('12345.6789')
parseFloat(x) // 12345.6789
Number(x) // 12345.6789
+x // 12345.6789
x * 1 // 12345.6789
x / 1 // 12345.6789
x - 0 // 12345.6789
x + 0 // '12345.67890' (string concatenation, do not use!)
</pre>
<p>
If converting to an integer be aware that <code>parseInt</code> doees not
handle exponential notation.
<p>
<pre>
x = new Big('9.87654e+32')
parseInt(x) // 9
parseInt(+x) // 9
parseInt(x.toFixed()) // 9.87654e+32
parseInt(x.round()) // 9.87654e+32
</pre>
<p>
The <code>Math</code> methods can also be used.
<p>
<pre>
x = new Big('1234.56')
Math.floor(x) // 1234
Math.round(x) // 1235
</pre>
<br />
<h6>
How can I round a Big number to a specified number of significant digits?
</h6>
<p>
<a href='#toP'><code>toPrecision</code></a> returns a string representing
the value of a Big number rounded to a specified number of significant
digits. Or, the number of significant digits of a Big number can be set by
truncating the array that stores its coefficient. For example, using the
array's length property:
</p>
<pre>
x = new Big('987.654321')
len = x.c.length // 9
if (len > 6) x.c.length = 6
x // 987.654
</pre>
<br />
<h6>
How can I set the decimal places and/or rounding mode for just one
operation?
</h6>
<p>
This library uses a global configuration for the decimal places and
rounding mode used by division operations, so it is just a matter of
altering this as required.
</p>
<pre>
Big.DP = 10
y = x.sqrt()
Big.DP = 0
Big.RM = 1
z = x.div(3)
</pre>
<p>
There is also the ability to create separate Big number constructors each
with their own particular <code>DP</code> and <code>RM</code> settings.
See below.
</p>
<p>
Finally, there is the option of redefining the relevant prototype method
as required. For example, the following would enable a decimal
places and rounding mode to be passed to the <code>div</code> method.
</p>
<pre>
Big.prototype.div = (function () {
var div = Big.prototype.div;
return function (n, dp, rm) {
var result,
Big = this.constructor,
_dp = Big.DP,
_rm = Big.RM;
if (dp != undefined) Big.DP = dp;
if (rm != undefined) Big.RM = rm;
result = div.call(this, n);
Big.DP = _dp;
Big.RM = _rm;
return result;
}
})();
var dp = 10;
var round_up = 2;
x = x.div(y, dp, round_up);
</pre>
<br />
<h6>
How can I simultaneously use different decimal places and/or rounding mode
settings for different Big numbers?
</h6>
<p>
From <i>v3.0.0</i>, it is possible to have multiple Big number
constructors each with their own particular <code>DP</code> and
<code>RM</code> settings which apply to all Big numbers created from it.
</p>
<pre>
/*
Create an additional Big number constructor by calling the original Big
number constructor without using new and without any argument.
*/
Big10 = Big();
// Set the decimal places of division operations for each constructor.
Big.DP = 3;
Big10.DP = 10;
x = Big(5);
y = Big10(5);
x.div(3) // 1.667
y.div(3) // 1.6666666667
</pre>
<p>
Big numbers created by different constructors can be used together in
operations, and it is the <code>DP</code> and <code>RM</code> setting of
the Big number that an operation is called upon that will apply.
</p>
<p>
In the interest of memory efficiency, all Big number constructors share
the same <code>prototype</code> object, so while the <code>DP</code> and
<code>RM</code> (and any other <i>own</i> properties) of a constructor are
isolated and untouchable by another, its prototype methods are not.
</p>
<br />
<h6>Why are trailing fractional zeros removed from Big numbers?</h6>
<p>
Many arbitrary-precision libraries retain trailing fractional zeros as
they can indicate the precision of a value. This can be useful but the
results of arithmetic operations can be misleading.
</p>
<pre>
x = new BigDecimal("1.0")
y = new BigDecimal("1.1000")
z = x.add(y) // 2.1000
x = new BigDecimal("1.20")
y = new BigDecimal("3.45000")
z = x.multiply(y) // 4.1400000
</pre>
<p>
To specify the precision of a value is to imply that the value lies
within a certain range.
</p>
<p>
In the first example, <code>x</code> has a value of 1.0. The trailing zero
shows the precision of the value, implying that the value is in the range
0.95 to 1.05. Similarly, the precision indicated by the trailing zeros of
<code>y</code> indicates that the value is in the range 1.09995 to
1.10005. If we add the two lowest values in the ranges we get 0.95 +
1.09995 = 2.04995 and if we add the two highest values we get 1.05 +
1.10005 = 2.15005, so the range of the result of the addition implied by
the precision of its operands is 2.04995 to 2.15005. The result given by
BigDecimal of 2.1000 however, indicates that the value is in the range
2.09995 to 2.10005 and therefore the precision implied by its trailing
zeros is misleading.
</p>
<p>
In the second example, the true range is 4.122744 to 4.157256 yet the
BigDecimal answer of 4.1400000 indicates a range of 4.13999995 to
4.14000005. Again, the precision implied by the trailing zeros is
misleading.
</p>
<p>
This library, like binary floating-point and most calculators, does not
retain trailing fractional zeros.<br />
Instead, the <code>toExponential</code>, <code>toFixed</code> and
<code>toPrecision</code> methods enable trailing zeros to be added if and
when required.
</p>
<br />
</div>
</body>
</html>