big.js/docs/index.html
Michael Mclaughlin e19cc83cb9 v7.0.1
2025-04-21 21:12:55 +01:00

1355 lines
49 KiB
HTML

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8">
<meta name="Author" content="M Mclaughlin">
<title>big.js API</title>
<style>
html{font-family:sans-serif;font-size:100%}
body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:13px;
line-height:1.65em;background:#fff;min-height:100%;margin:0}
body,i{color:#000}
.nav{background:#fff;position:fixed;top:0;bottom:0;left:0;width:130px;
overflow-y:auto;padding:15px 0 30px 20px; border-right: 1px solid #69d2e7}
div.container{width:700px;margin:30px 0 50px 190px}
p{margin:0 0 1em;width:700px}
pre,ul{margin:1em 0}
h1,h2,h3,h4,h5{margin:0;padding:1.5em 0 0}
h1,h2{padding:.75em 0 1em}
h1{font:400 3em Consolas, monaco, monospace;color:#000;margin-bottom:1em}
h2{font-size:2.25em;color:#f00}
h3{font-size:1.75em;color:#69d2e7}
h4{font-size:1.75em;color:#f00;padding-bottom:.75em}
h5{font-size:1.2em;padding-bottom:.3em}
h6{font-size:1.1em;margin:0;padding:0.5em 0}
b{font-weight:700}
a,a:visited{color:#f00;text-decoration:none}
a:active,a:hover{outline:0;text-decoration:underline}
a:hover{text-decoration:underline}
.nav a,.nav b,.nav a:visited{display:block;color:#f00;font-weight:700;
margin-top:15px}
.nav b{color:#69d2e7;margin-top:20px;cursor:default;width:auto}
ul{list-style-type:none;padding:0 0 0 20px}
.nav ul{line-height:14px;padding-left:0;margin:5px 0 0}
.nav ul a,.nav ul a:visited{display:inline;color:#000;font-family:Verdana,
Geneva,sans-serif;font-size:11px;font-weight:400;margin:0}
.inset,ul.inset{margin-left:20px}
code.inset{font-size:.9em}
.nav li{cursor:pointer;width:auto;margin:0 0 3px}
span.alias{font-style:italic;margin-left:20px}
table{border-collapse:collapse;border-spacing:0;border:2px solid #a7dbd8;
margin:1.75em 0;padding:0}
td,th{text-align:left;margin:0;padding:2px 10px;border:1px dotted #a7dbd8}
th{border-top:2px solid #a7dbd8;border-bottom:2px solid #a7dbd8;color:#f00}
pre{background:#f5f5f5;white-space:pre-wrap;word-wrap:break-word;
border-left:5px solid #a7dbd8;padding:1px 0 1px 15px;margin:1.2em 0}
code,pre{font-family:Monaco,Consolas,"Lucida Console",monospace;
font-weight:400}
.end{margin-bottom:25px}
code, .nav-title, .error{color:#f00}
.centre{text-align:center}
</style>
</head>
<body>
<div class="nav">
<a class='nav-title' href="#">API</a>
<span>v7.0.x</span>
<b> CONSTRUCTOR </b>
<ul>
<li><a href="#big">Big</a></li>
</ul>
<a href="#constructor-properties">Properties</a>
<ul>
<li><a href="#dp" >DP</a></li>
<li><a href="#rm" >RM</a></li>
<li><a href="#eneg" >NE</a></li>
<li><a href="#epos" >PE</a></li>
<li><a href="#strict">strict</a></li>
<li><a href="#rm" >roundDown</a></li>
<li><a href="#rm" >roundHalfUp</a></li>
<li><a href="#rm" >roundHalfEven</a></li>
<li><a href="#rm" >roundUp</a></li>
</ul>
<b> INSTANCE </b>
<a href="#prototype-methods">Methods</a>
<ul>
<li><a href="#abs" >abs</a></li>
<li><a href="#cmp" >cmp</a></li>
<li><a href="#div" >div</a></li>
<li><a href="#eq" >eq</a></li>
<li><a href="#gt" >gt</a></li>
<li><a href="#gte" >gte</a></li>
<li><a href="#lt" >lt</a></li>
<li><a href="#lte" >lte</a></li>
<li><a href="#minus" >minus</a></li>
<li><a href="#mod" >mod</a></li>
<li><a href="#neg" >neg</a></li>
<li><a href="#plus" >plus</a></li>
<li><a href="#pow" >pow</a></li>
<li><a href="#prec" >prec</a></li>
<li><a href="#round" >round</a></li>
<li><a href="#sqrt" >sqrt</a></li>
<li><a href="#times" >times</a></li>
<li><a href="#toE" >toExponential</a></li>
<li><a href="#toF" >toFixed</a></li>
<li><a href="#toJSON" >toJSON</a></li>
<li><a href="#toN" >toNumber</a></li>
<li><a href="#toP" >toPrecision</a></li>
<li><a href="#toS" >toString</a></li>
<li><a href="#valueOf">valueOf</a></li>
</ul>
<a href="#instance-properties">Properties</a>
<ul>
<li><a href="#coefficient">c : coefficient</a></li>
<li><a href="#exponent" >e : exponent</a></li>
<li><a href="#sign" >s : sign</a></li>
</ul>
<a href="#Errors">Errors</a>
<a class='end' href="#faq">FAQ</a>
</div>
<div class="container">
<h1>big.js</h1>
<p>
A small, fast, easy-to-use library for arbitrary-precision decimal
arithmetic.
</p>
<p><a href="https://github.com/MikeMcl/big.js/">Hosted on GitHub</a>.</p>
<p>
<i>
The library is incorporated into this page, so it should be available in
the console now.
</i>
</p>
<h2>API</h2>
<p>
For brevity, <code>var</code>, semicolons and <code>toString</code> calls
have been omitted in the examples below.
</p>
<h3>CONSTRUCTOR</h3>
<h5 id="big">
Big<code class='inset'>Big(n) <i>&rArr; Big</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i> : a decimal value</p>
<p>
By default, the argument <code>n</code> can be a number, string or Big number,
but if <a href='#strict'><code>Big.strict</code></a> is set to <code>true</code>
an error will be thrown if <code>n</code> is not a string or Big number.
</p>
<p>
Note that primitive numbers are accepted purely as a convenience so that quotes
don't need to be typed for numeric literals of up to 15 significant digits, and
that a Big number is created from a number's <code>toString</code> value rather
than from its underlying binary floating point value.
</p>
<p>
<code>Infinity</code>, <code>NaN</code> and hexadecimal literal
strings, e.g. '0xff', are <u>not</u> valid.
</p>
<p>
String values in octal literal form will be interpreted as decimals,
e.g. '011' is 11, not 9.
</p>
<p>
String values may be in exponential, as well as normal notation.
</p>
<p>
There is no limit to the number of digits of a <em>string</em> value
(other than that of JavaScript's maximum array size), but the largest
recommended exponent magnitude is 1000000.
</p>
<p>Returns a new Big number with value <code>n</code>.</p>
<p>Throws if <code>n</code> is invalid.</p>
<p>
Using <code>new</code> with Big is optional, but note that if no argument
is passed when doing so, a new Big constructor will be returned rather
than a new Big number. See <a href='#multiple'>creating additional Big
number constructors</a> below.
</p>
<pre>
x = new Big(9) // '9'
y = new Big(x) // '9'
new Big('5032485723458348569331745.33434346346912144534543')
new Big('4.321e+4') // '43210'
new Big('-735.0918e-430') // '-7.350918e-428'
Big(435.345) // '435.345'
new Big() // 'Error: [big.js] Invalid value'
Big2 = Big() // No error, and a new Big constructor is returned
</pre>
<h4 id="constructor-properties">Properties</h4>
<h5 id="dp">DP</h5>
<p>
<i>number</i> : integer, 0 to 1e+6 inclusive<br />
Default value: <code>20</code>
</p>
<p>
The <u>maximum</u> number of decimal places of the results of operations
involving division.<br />
It is relevant only to the <code>div</code> and <code>sqrt</code> methods,
and the <code>pow</code> method when the exponent is negative.
</p>
<p>
The value will be checked for validity when one of the above methods is
called.<br /> An error will be thrown if the value is found to be invalid.
</p>
<pre>Big.DP = 40</pre>
<h5 id="rm">RM</h5>
<p>
<i>number</i> : 0, 1, 2 or 3<br />
Default value: <code>1</code>
</p>
<p>
The rounding mode used in operations involving division and by
<a href='#round'><code>round</code></a>,
<a href='#toE'><code>toExponential</code></a>,
<a href='#toF'><code>toFixed</code></a> and
<a href='#toP'><code>toPrecision</code></a>.
</p>
<table>
<tr>
<th>Property</th>
<th>Value</th>
<th>Description</th>
<th>BigDecimal equivalent</th>
</tr>
<tr>
<td>Big.roundDown</td>
<td class='centre'>0</td>
<td>
Rounds towards zero.<br />
I.e. truncate, no rounding.
</td>
<td id="round-down">ROUND_DOWN</td>
</tr>
<tr>
<td>Big.roundHalfUp</td>
<td class='centre'>1</td>
<td>
Rounds towards nearest neighbour.<br />
If equidistant, rounds away from zero.
</td>
<td id="round-half-up">ROUND_HALF_UP</td>
</tr>
<tr>
<td>Big.roundHalfEven</td>
<td class='centre'>2</td>
<td>
Rounds towards nearest neighbour.<br />
If equidistant, rounds towards even neighbour.
</td>
<td id="round-half-even">ROUND_HALF_EVEN</td>
</tr>
<tr>
<td>Big.roundUp</td>
<td class='centre'>3</td>
<td>Rounds away from zero.</td>
<td id="round-up">ROUND_UP</td>
</tr>
</table>
<p>
The value will be checked for validity when one of the above methods is
called.<br /> An error will be thrown if the value is found to be invalid.
</p>
<pre>
Big.RM = 0
Big.RM = Big.roundUp</pre>
<h5 id="eneg">NE</h5>
<p>
<i>number</i> : integer, -1e+6 to 0 inclusive<br />
Default value: <code>-7</code>
</p>
<p>
The negative exponent value at and below which
<a href='#toS'><code>toString</code></a> returns exponential notation.
</p>
<pre>
Big.NE = -7
x = new Big(0.00000123) // '0.00000123' e is -6
x = new Big(0.000000123) // '1.23e-7'</pre>
<p>
JavaScript numbers use exponential notation for negative exponents of
<code>-7</code> and below.
</p>
<p>
Regardless of the value of <code>Big.NE</code>, the
<a href='#toF'><code>toFixed</code></a> method will always return a value
in normal notation and the <a href='#toE'><code>toExponential</code></a>
method will always return a value in exponential form.
</p>
<h5 id="epos">PE</h5>
<p>
<i>number</i> : integer, 0 to 1e+6 inclusive<br />
Default value: <code>21</code>
</p>
<p>
The positive exponent value at and above which
<a href='#toS'><code>toString</code></a> returns exponential notation.
</p>
<pre>
Big.PE = 2
x = new Big(12.3) // '12.3' e is 1
x = new Big(123) // '1.23e+2'</pre>
<p>
JavaScript numbers use exponential notation for positive exponents of
<code>21</code> and above.
</p>
<p>
Regardless of the value of <code>Big.PE</code>, the
<a href='#toF'><code>toFixed</code></a> method will always return a value
in normal notation and the <a href='#toE'><code>toExponential</code></a>
method will always return a value in exponential form.
</p>
<h5 id="strict">strict</h5>
<p>
<i>true|false</i><br />
Default value: <code>false</code>
</p>
<p>
When set to <code>true</code>, an error will be thrown if a primitive number
is passed to the Big constructor, or if <a href='#valueOf'><code>valueOf</code></a>
is called, or if <a href='#toN'><code>toNumber</code></a> is called on a Big
which cannot be converted to a primitive number without a loss of precision.
</p>
<pre>
Big.strict = true
x = new Big(1) // 'TypeError: [big.js] String expected'
y = new Big('1.000000000000000000001')
2 + y // 'Error: [big.js] valueOf disallowed'
y.toNumber() // 'Error: [big.js] Imprecise conversion'
Big.strict = false
x = new Big(0.1)
y = new Big('1.000000000000000000001')
2 + y // '21.000000000000000000001'
y.toNumber() // 1</pre>
<h3>INSTANCE</h3>
<h4 id="prototype-methods">Methods</h4>
<p>
The methods inherited by a Big number instance from its constructor's
prototype object.
</p>
<p>
A Big number is immutable in the sense that it is not changed by its
methods.
</p>
<h5 id="abs">abs<code class='inset'>.abs() <i>&rArr; Big</i></code></h5>
<p>
Returns a Big number whose value is the absolute value, i.e. the
magnitude, of this Big number.
</p>
<pre>
x = new Big(-0.8)
x.abs() // '0.8'</pre>
<h5 id="cmp">
cmp<code class='inset'>.cmp(n) <i>&rArr; number</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i><br /></p>
<table>
<tr>
<th>Returns</th>
<th colspan=2>&nbsp;</th>
</tr>
<tr>
<td class='centre'>1</td>
<td>
If the value of this Big number is greater than the value of
<code>n</code>
</td>
</tr>
<tr>
<td class='centre'>-1</td>
<td>
If the value of this Big number is less than the value of
<code>n</code>
</td>
</tr>
<tr>
<td class='centre'>0</td>
<td>If this Big number and <code>n</code> have the same value</td>
</tr>
</table>
<p>Throws if <code>n</code> is invalid.</p>
<pre>
x = new Big(6)
y = new Big(5)
x.cmp(y) // 1
y.cmp(x.minus(1)) // 0</pre>
<h5 id="div">div<code class='inset'>.div(n) <i>&rArr; Big</i></code></h5>
<p><code>n</code> : <i>number|string|Big</i><br /></p>
<p>
Returns a Big number whose value is the value of this Big number divided
by <code>n</code>.
</p>
<p>
If the result has more fraction digits than is specified by
<a href='#dp'><code>Big.DP</code></a>, it will be rounded to
<a href='#dp'><code>Big.DP</code></a> decimal places using rounding mode
<a href='#rm'><code>Big.RM</code></a>.
</p>
<p>Throws if <code>n</code> is zero or otherwise invalid.</p>
<pre>
x = new Big(355)
y = new Big(113)
x.div(y) // '3.14159292035398230088'
Big.DP = 2
x.div(y) // '3.14'
x.div(5) // '71'</pre>
<h5 id="eq">eq<code class='inset'>.eq(n) <i>&rArr; boolean</i></code></h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns <code>true</code> if the value of this Big number equals the value
of <code>n</code>, otherwise returns <code>false</code>.
</p>
<p>Throws if <code>n</code> is invalid.</p>
<pre>
0 === 1e-324 // true
x = new Big(0)
x.eq('1e-324') // false
Big(-0).eq(x) // true ( -0 === 0 )</pre>
<h5 id="gt">
gt<code class='inset'>.gt(n) <i>&rArr; boolean</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns <code>true</code> if the value of this Big number is greater than
the value of <code>n</code>, otherwise returns <code>false</code>.
</p>
<p>Throws if <code>n</code> is invalid.</p>
<pre>
0.1 &gt; 0.3 - 0.2 // true
x = new Big(0.1)
x.gt(Big(0.3).minus(0.2)) // false
Big(0).gt(x) // false</pre>
<h5 id="gte">
gte<code class='inset'>.gte(n) <i>&rArr; boolean</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns <code>true</code> if the value of this Big number is greater than
or equal to the value of <code>n</code>, otherwise returns
<code>false</code>.
</p>
<p>Throws if <code>n</code> is invalid.</p>
<pre>
0.3 - 0.2 &gt;= 0.1 // false
x = new Big(0.3).minus(0.2)
x.gte(0.1) // true
Big(1).gte(x) // true</pre>
<h5 id="lt">
lt<code class='inset'>.lt(n) <i>&rArr; boolean</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns <code>true</code> if the value of this Big number is less than the
value of <code>n</code>, otherwise returns <code>false</code>.
</p>
<p>Throws if <code>n</code> is invalid.</p>
<pre>
0.3 - 0.2 &lt; 0.1 // true
x = new Big(0.3).minus(0.2)
x.lt(0.1) // false
Big(0).lt(x) // true</pre>
<h5 id="lte">
lte<code class='inset'>.lte(n) <i>&rArr; boolean</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns <code>true</code> if the value of this Big number is less than or
equal to the value of <code>n</code>, otherwise returns
<code>false</code>.
</p>
<p>Throws if <code>n</code> is invalid.</p>
<pre>
0.1 &lt;= 0.3 - 0.2 // false
x = new Big(0.1)
x.lte(Big(0.3).minus(0.2)) // true
Big(-1).lte(x) // true</pre>
<h5 id="minus">
minus<code class='inset'>.minus(n) <i>&rArr; Big</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns a Big number whose value is the value of this Big number minus
<code>n</code>.
</p>
<p>Throws if <code>n</code> is invalid.</p>
<pre>
0.3 - 0.1 // 0.19999999999999998
x = new Big(0.3)
x.minus(0.1) // '0.2'</pre>
<h5 id="mod">mod<code class='inset'>.mod(n) <i>&rArr; Big</i></code></h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns a Big number whose value is the value of this Big number modulo
<code>n</code>, i.e. the integer remainder of dividing this Big number by
<code>n</code>.
</p>
<p>
The result will have the same sign as this Big number, and it will match
that of JavaScript's % operator (within the limits of its precision) and
BigDecimal's remainder method.
</p>
<p>Throws if <code>n</code> is zero or otherwise invalid.</p>
<pre>
1 % 0.9 // 0.09999999999999998
x = new Big(1)
x.mod(0.9) // '0.1'</pre>
<h5 id="neg">neg<code class='inset'>.neg() <i>&rArr; Big</i></code></h5>
<p>
Returns a Big number whose value is the value of this Big number negated.
</p>
<pre>
x = new Big(0.3)
x.neg() // '-0.3'
x.neg().neg() // '0.3'</pre>
<h5 id="plus">
plus<code class='inset'>.plus(n) <i>&rArr; Big</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i></p>
<p>
Returns a Big number whose value is the value of this Big number plus
<code>n</code>.
</p>
<p>Throws if <code>n</code> is invalid.</p>
<pre>
0.1 + 0.2 // 0.30000000000000004
x = new Big(0.1)
y = x.plus(0.2) // '0.3'
Big(0.7).plus(x).plus(y) // '1.1'</pre>
<h5 id="pow">pow<code class='inset'>.pow(n) <i>&rArr; Big</i></code>
</h5>
<p>
<code>n</code> : <i>number</i> : integer, -1e+6 to 1e+6 inclusive
</p>
<p>
Returns a Big number whose value is the value of this Big number raised to
the power <code>n</code>.
</p>
<p>
Here, <code>n</code> must be a JavaScript number, not a Big number,
because only small integers are allowed.
</p>
<p>
If <code>n</code> is negative and the result has more fraction digits
than is specified by <a href='#dp'><code>Big.DP</code></a>, it will be
rounded to <a href='#dp'><code>Big.DP</code></a> decimal places using
rounding mode <a href='#rm'><code>Big.RM</code></a>.
</p>
<p>
Throws if <code>n</code> is invalid.
</p>
<p>
Note: High value exponents may cause this method to be slow to return.
</p>
<pre>
Math.pow(0.7, 2) // 0.48999999999999994
x = new Big(0.7)
x.pow(2) // '0.49'
Big.DP = 20
Big(3).pow(-2) // '0.11111111111111111111'
new Big(123.456).pow(1000).toString().length // 5099
new Big(2).pow(1e+6) // Time taken (Node.js): 9 minutes 34 secs.</pre>
<h5 id="prec">prec<code class='inset'>.prec(sd, rm)<i>&rArr; Big</i></code></h5>
<p>
<code>sd</code>? : <i>number</i> : integer, 1 to 1e+6 inclusive
<br />
<code>rm</code>? : <i>number</i> : 0, 1, 2 or 3
</p>
<p>
Returns a Big number whose value is the value of this Big number rounded
to a maximum precision of <code>sd</code> significant digits using rounding mode
<code>rm</code>, or <a href='#rm'><code>Big.RM</code></a> if <code>rm</code> is
omitted or undefined.
</p>
<p>
Throws if <code>sd</code> or <code>rm</code> is invalid.
</p>
<pre>
down = 0
half_up = 1
x = new Big('9876.54321')
x.prec(2) // '9900'
x.prec(7) // '9876.543'
x.prec(20) // '9876.54321'
x.prec(1, down) // '9000'
x.prec(1, half_up) // '10000'
x // '9876.54321'</pre>
<h5 id="round">
round<code class='inset'>.round(dp, rm)
<i>&rArr; Big</i></code>
</h5>
<p>
<code>dp</code>? : <i>number</i> : integer, -1e+6 to 1e+6 inclusive
<br />
<code>rm</code>? : <i>number</i> : 0, 1, 2 or 3
</p>
<p>
Returns a Big number whose value is the value of this Big number rounded
using rounding mode <code>rm</code> to a maximum of <code>dp</code>
decimal places, or, if <code>dp</code> is negative, to an integer which
is a multiple of <code>10**-dp</code>.
</p>
<p>
if <code>dp</code> is omitted or is undefined, the return value is the value of this Big
number rounded to a whole number.<br />
if <code>rm</code> is omitted or is undefined, the current
<a href='#rm'><code>Big.RM</code></a> setting is used.
</p>
<p>
Throws if <code>dp</code> or <code>rm</code> is invalid.
</p>
<pre>
x = 123.45
Math.round(x) // 123
y = new Big(x)
y.round() // '123'
y.round(2) // '123.45'
y.round(10) // '123.45'
y.round(1, Big.roundDown) // '123.4'
y.round(1, Big.roundHalfUp) // '123.5'
y.round(1, Big.roundHalfEven) // '123.4'
y.round(1, Big.roundUp) // '123.5'
y.round(-1, Big.roundDown) // '120'
y.round(-2, Big.roundUp) // '200'
y // '123.45'</pre>
<h5 id="sqrt">sqrt<code class='inset'>.sqrt() <i>&rArr; Big</i></code></h5>
<p>
Returns a Big number whose value is the square root of this Big number.
</p>
<p>
If the result has more fraction digits than is specified by
<a href='#dp'><code>Big.DP</code></a>, it will be rounded to
<a href='#dp'><code>Big.DP</code></a> decimal places using rounding mode
<a href='#rm'><code>Big.RM</code></a>.
</p>
<p>Throws if this Big number is negative.</p>
<pre>
x = new Big(16)
x.sqrt() // '4'
y = new Big(3)
y.sqrt() // '1.73205080756887729353'</pre>
<h5 id="times">
times<code class='inset'>.times(n) <i>&rArr; Big</i></code>
</h5>
<p><code>n</code> : <i>number|string|Big</i><br /></p>
<p>
Returns a Big number whose value is the value of this Big number times
<code>n</code>.
</p>
<p>Throws if <code>n</code> is invalid.</p>
<pre>
0.6 * 3 // 1.7999999999999998
x = new Big(0.6)
y = x.times(3) // '1.8'
Big('7e+500').times(y) // '1.26e+501'</pre>
<h5 id="toE">
toExponential<code class='inset'>.toExponential(dp, rm) &rArr;
<i>string</i></code>
</h5>
<p>
<code>dp</code>? : <i>number</i> : integer, 0 to 1e+6 inclusive
<br />
<code>rm</code>? : <i>number</i> : 0, 1, 2 or 3
</p>
<p>
Returns a string representing the value of this Big number in exponential
notation to a fixed number of <code>dp</code> decimal places.
</p>
<p>
If the value of this Big number in exponential notation has more digits to
the right of the decimal point than is specified by <code>dp</code>, the
return value will be rounded to <code>dp</code> decimal places using
rounding mode <a href='#rm'><code>rm</code></a>.
</p>
<p>
If the value of this Big number in exponential notation has fewer digits
to the right of the decimal point than is specified by <code>dp</code>,
the return value will be appended with zeros accordingly.
</p>
<p>
If <code>dp</code> is omitted or is undefined, the number of digits
after the decimal point defaults to the minimum number of digits
necessary to represent the value exactly.
</p>
<p>
if <code>rm</code> is omitted or is undefined, the current
<a href='#rm'><code>Big.RM</code></a> setting is used.
</p>
<p>
Throws if <code>dp</code> or <code>rm</code> is invalid.
</p>
<pre>
x = 45.6
y = new Big(x)
x.toExponential() // '4.56e+1'
y.toExponential() // '4.56e+1'
x.toExponential(0) // '5e+1'
y.toExponential(0) // '5e+1'
x.toExponential(1) // '4.6e+1'
y.toExponential(1) // '4.6e+1'
y.toExponential(1, Big.roundDown) // '4.5e+1'
x.toExponential(3) // '4.560e+1'
y.toExponential(3) // '4.560e+1'</pre>
<h5 id="toF">
toFixed<code class='inset'>.toFixed(dp, rm) &rArr;
<i>string</i></code>
</h5>
<p>
<code>dp</code>? : <i>number</i> : integer, 0 to 1e+6 inclusive
<br />
<code>rm</code>? : <i>number</i> : 0, 1, 2 or 3
</p>
<p>
Returns a string representing the value of this Big number in normal
notation to a fixed number of <code>dp</code> decimal places.
</p>
<p>
If the value of this Big number in normal notation has more digits to the
right of the decimal point than is specified by <code>dp</code>, the
return value will be rounded to <code>dp</code> decimal places using
rounding mode <a href='#rm'><code>rm</code></a>.
</p>
<p>
If the value of this Big number in normal notation has fewer fraction
digits then is specified by <code>dp</code>, the return value will be
appended with zeros accordingly.
</p>
<p>
Unlike <code>Number.prototype.toFixed</code>, which returns
exponential notation if a number is greater or equal to 10<sup>21</sup>,
this method will always return normal notation.
</p>
<p>
If <code>dp</code> is omitted or is undefined, the return value is
simply the value in normal notation. This is also unlike
<code>Number.prototype.toFixed</code>, which returns the value to zero
decimal places.
</p>
<p>
if <code>rm</code> is omitted or is undefined, the current
<a href='#rm'><code>Big.RM</code></a> setting is used.
</p>
<p>
Throws if <code>dp</code> or <code>rm</code> is invalid.
</p>
<pre>
x = 45.6
y = new Big(x)
x.toFixed() // '46'
y.toFixed() // '45.6'
y.toFixed(0) // '46'
x.toFixed(3) // '45.600'
y.toFixed(3) // '45.600'</pre>
<h5 id="toJSON">
toJSON<code class='inset'>.toJSON() <i>&rArr; string</i></code>
</h5>
<p>As <a href='#toS'><code>toString</code></a>.</p>
<pre>
x = new Big('177.7e+457')
y = new Big(235.4325)
z = new Big('0.0098074')
str = JSON.stringify( [x, y, z] )
JSON.parse(str, function (k, v) { return k === '' ? v : new Big(v) })
// Returns an array of three Big numbers.</pre>
<h5 id="toP">
toPrecision<code class='inset'>.toPrecision(sd, rm) &rArr;
<i>string</i></code>
</h5>
<p>
<code>sd</code>? : <i>number</i> : integer, 1 to 1e+6 inclusive
<br />
<code>rm</code>? : <i>number</i> : 0, 1, 2 or 3
</p>
<p>
Returns a string representing the value of this Big number to the
specified number of <code>sd</code> significant digits.
</p>
<p>
If the value of this Big number has more digits than is specified by
<code>sd</code>, the return value will be rounded to <code>sd</code>
significant digits using rounding mode
<a href='#rm'><code>rm</code></a>.
</p>
<p>
If the value of this Big number has fewer digits than is specified by
<code>sd</code>, the return value will be appended with zeros accordingly.
</p>
<p>
If <code>sd</code> is less than the number of digits necessary to
represent the integer part of the value in normal notation,
exponential notation is used.
</p>
<p>
If <code>sd</code> is omitted or is undefined, the return value is
the same as <code>.toString()</code>.
</p>
<p>
if <code>rm</code> is omitted or is undefined, the current
<a href='#rm'><code>Big.RM</code></a> setting is used.
</p>
<p>
Throws if <code>sd</code> or <code>rm</code> is invalid.
</p>
<pre>
x = 45.6
y = new Big(x)
x.toPrecision() // '45.6'
y.toPrecision() // '45.6'
x.toPrecision(1) // '5e+1'
y.toPrecision(1) // '5e+1'
x.toPrecision(5) // '45.600'
y.toPrecision(5) // '45.600'</pre>
<h5 id="toN">
toNumber<code class='inset'>.toNumber() <i>&rArr; number</i></code>
</h5>
<p>
Returns a primitive number representing the value of this Big number.
</p>
<pre>
x = new Big('123.45')
x.toNumber() // 123.45
y = new Big('1.0000000000000000001')
y.toNumber() // 1
</pre>
<p>
If <a href='#strict'><code>Big.strict</code></a> is <code>true</code> an
error will be thrown if <code>toNumber</code> is called on a Big number
which cannot be converted to a primitive number without a loss of precision.
</p>
<h5 id="toS">
toString<code class='inset'>.toString() <i>&rArr; string</i></code>
</h5>
<p>
Returns a string representing the value of this Big number.
</p>
<p>
If this Big number has a positive exponent that is equal to or greater
than 21, or a negative exponent equal to or less than -7, exponential
notation is returned.
</p>
<p>
The point at which <code>toString</code> returns exponential rather than
normal notation can be adjusted by changing the value of
<a href='#epos'><code>Big.PE</code></a> and
<a href='#eneg'><code>Big.NE</code></a>. By default, Big numbers
correspond to JavaScript's number type in this regard.
</p>
<pre>
x = new Big('9.99e+20')
x.toString() // '999000000000000000000'
y = new Big('1E21')
y.toString() // '1e+21'
</pre>
<h5 id="valueOf">
valueOf<code class='inset'>.valueOf() <i>&rArr; string</i></code>
</h5>
<p>
As <a href='#toS'><code>toString</code></a> except the minus sign is
included for negative zero.
</p>
<pre>
x = new Big(-0)
x.valueOf() // '-0'
x.toString() // '0'</pre>
<p>
To prevent accidental usage of Big numbers with arithmetic operators,
if <a href='#strict'><code>Big.strict</code></a> is <code>true</code> any
explicit or implicit calls to <code>valueOf</code> will result in an error.
</p>
<h4 id="instance-properties">Properties</h4>
<p>
A Big number is an object with three properties:
</p>
<table>
<tr>
<th>Property</th>
<th>Description</th>
<th>Type</th>
<th>Value</th>
</tr>
<tr>
<td class='centre' id='coefficient'><b>c</b></td>
<td>coefficient<sup>*</sup></td>
<td><i>number</i><code>[]</code></td>
<td> Array of single digits</td>
</tr>
<tr>
<td class='centre' id='exponent'><b>e</b></td>
<td>exponent</td>
<td><i>number</i></td>
<td>Integer, -1e+6 to 1e+6 inclusive</td>
</tr>
<tr>
<td class='centre' id='sign'><b>s</b></td>
<td>sign</td>
<td><i>number</i></td>
<td>-1 or 1</td>
</tr>
</table>
<p><sup>*</sup>significand</p>
<p>
The value of a Big number is stored in a normalised decimal floating point
format which corresponds to the value's <code>toExponential</code> form,
with the decimal point to be positioned after the most significant
(left-most) digit of the coefficient.
</p>
<p>
Note that, as with JavaScript numbers, the original exponent and
fractional trailing zeros are not preserved.
</p>
<pre>x = new Big(0.123) // '0.123'
x.toExponential() // '1.23e-1'
x.c // '1,2,3'
x.e // -1
x.s // 1
y = new Number(-123.4567000e+2) // '-12345.67'
y.toExponential() // '-1.234567e+4'
z = new Big('-123.4567000e+2') // '-12345.67'
z.toExponential() // '-1.234567e+4'
z.c // '1,2,3,4,5,6,7'
z.e // 4
z.s // -1</pre>
<p>
A Big number is mutable in the sense that the value of its properties can
be changed.<br />
For example, to rapidly shift a value by a power of 10:
</p>
<pre>
x = new Big('1234.000') // '1234'
x.toExponential() // '1.234e+3'
x.c // '1,2,3,4'
x.e // 3
x.e = -5
x // '0.00001234'</pre>
<p>
If changing the coefficient array directly, which is not recommended, be
careful to avoid leading or trailing zeros (unless zero itself is being
represented).
</p>
<p>
Minus zero is a valid Big number value, but like JavaScript numbers the
minus sign is not shown by <code>toString</code>.
</p>
<pre>
x = new Number(-0) // 0
1 / x == -Infinity // true
y = new Big(-0) // '0'
y.c // '0' [0].toString()
y.e // 0
y.s // -1</pre>
<h4 id='Errors'>Errors</h4>
<p>
The errors that are thrown are instances of <code>Error</code>.<br />
The <code>message</code> of the errors always begins with
<code class='error'>[big.js]</code>, for example:
</p>
<pre>Error: [big.js] Invalid value</pre>
<table>
<tr>
<th>Method(s)</th>
<th>Error message</th>
<th>Thrown on/when</th>
</tr>
<tr>
<td rowspan=2>
<code>
Big<br />cmp<br />div<br />eq gt gte lt lte<br />minus<br />mod
<br />plus<br />times
</code>
</td>
<td>Invalid value</td>
<td>Invalid value</td>
</tr>
<tr>
<td>String expected</td>
<td><code>Big.strict</code> is <code>true</code></td>
</tr>
<tr>
<td rowspan=3><code>div</code></td>
<td>Division by zero</td>
<td>Division by zero</td>
</tr>
<tr>
<td>Invalid decimal places</td>
<td>Invalid <code>Big.DP</code></td>
</tr>
<tr>
<td>Invalid rounding mode</td>
<td>Invalid <code>Big.RM</code></td>
</tr>
<tr>
<td><code>mod</code></td>
<td>Division by zero</td>
<td>Modulo zero</td>
</tr>
<tr>
<td rowspan=3><code>pow</code></td>
<td>Invalid exponent</td>
<td>Invalid exponent</td>
</tr>
<tr>
<td>Invalid decimal places</td>
<td>Invalid <code>Big.DP</code></td>
</tr>
<tr>
<td>Invalid rounding mode</td>
<td>Invalid <code>Big.RM</code></td>
</tr>
<tr>
<td rowspan=2><code>prec</code></td>
<td>Invalid precision</td>
<td>Invalid <code>sd</code></td>
</tr>
<tr>
<td>Invalid rounding mode</i></td>
<td>Invalid <code>rm</code>/<code>Big.RM</code></td>
</tr>
<tr>
<td rowspan=2><code>round</code></td>
<td>Invalid decimal places</td>
<td>Invalid <code>dp</code></td>
</tr>
<tr>
<td>Invalid rounding mode</i></td>
<td>Invalid <code>rm</code>/<code>Big.RM</code></td>
</tr>
<tr>
<td rowspan=3><code>sqrt</code></td>
<td>No square root</td>
<td>Negative number</td>
</tr>
<tr>
<td>Invalid decimal places</td>
<td>Invalid <code>Big.DP</code></td>
</tr>
<tr>
<td>Invalid rounding mode</td>
<td>Invalid <code>Big.RM</code></td>
</tr>
<tr>
<td rowspan=2><code>toExponential</code></td>
<td>Invalid decimal places</td>
<td>Invalid <code>dp</code></td>
</tr>
<tr>
<td>Invalid rounding mode</td>
<td>Invalid <code>Big.RM</code></td>
</tr>
<tr>
<td rowspan=2><code>toFixed</code></td>
<td>Invalid decimal places</td>
<td>Invalid <code>dp</code></td>
</tr>
<tr>
<td>Invalid rounding mode</td>
<td>Invalid <code>Big.RM</code></td>
</tr>
<tr>
<td><code>toNumber</code></td>
<td>Imprecise conversion</td>
<td><code>Big.strict</code> is <code>true</code></td>
</tr>
<tr>
<td rowspan=2><code>toPrecision</code></td>
<td>Invalid precision</td>
<td>Invalid <code>sd</code></td>
</tr>
<tr>
<td>Invalid rounding mode</td>
<td>Invalid <code>Big.RM</code></td>
</tr>
<tr>
<td><code>valueOf</code></td>
<td>valueOf disallowed</td>
<td><code>Big.strict</code> is <code>true</code></td>
</tr>
</table>
<h4 id='faq'>FAQ</h4>
<h6>How can I convert a Big number to a primitive JavaScript number?</h6>
<p>See <a href='#toN'><code>toNumber</code></a>.</p>
<h6>
How can I round a Big number to a specified number of significant digits?
</h6>
<p>See <a href='#prec'><code>prec</code></a>.</p>
<h6>
How can I set the decimal places and/or rounding mode for just one
operation?
</h6>
<p>
This library uses a global configuration for the decimal places and
rounding mode used by division operations, so it is just a matter of
altering this as required.
</p>
<pre>
Big.DP = 10
y = x.sqrt()
Big.DP = 0
Big.RM = 1
z = x.div(3)
</pre>
<p>
There is also the ability to create separate Big number constructors each
with their own particular <code>DP</code> and <code>RM</code> settings.
See below.
</p>
<p>
Finally, there is the option of safely redefining the relevant prototype
method as required. For example, the following would enable a decimal
places and rounding mode to be passed to the <code>div</code> method.
</p>
<pre>
Big.prototype.div = (function () {
const div = Big.prototype.div;
return function (n, dp, rm) {
const Big = this.constructor;
const DP = Big.DP;
const RM = Big.RM;
if (dp != undefined) Big.DP = dp;
if (rm != undefined) Big.RM = rm;
let result = div.call(this, n);
Big.DP = DP;
Big.RM = RM;
return result;
}
})();
var dp = 10;
var round_up = 2;
x = x.div(y, dp, round_up);
</pre>
<h6 id="multiple">
How can I simultaneously use different decimal places and/or rounding mode
settings for different Big numbers?
</h6>
<p>
Multiple Big number constructors can be created each with their own particular
<code>DP</code> and <code>RM</code> settings which apply to all Big numbers
created from it.
</p>
<p>
As shown below, an additional Big number constructor is created by calling
an existing Big number constructor without using <code>new</code> and
without any argument.
</p>
<pre>
Big10 = Big();
Big.DP = 3;
Big10.DP = 10;
x = Big(5);
y = Big10(5);
x.div(3) // 1.667
y.div(3) // 1.6666666667
</pre>
<p>
Big numbers created by different constructors can be used together in
operations, and it is the <code>DP</code> and <code>RM</code> setting of
the Big number that an operation is called upon that will apply.
</p>
<p>
In the interest of memory efficiency, all Big number constructors share
the same <code>prototype</code> object, so while the <code>DP</code> and
<code>RM</code> (and any other <i>own</i> properties) of a constructor are
isolated and untouchable by another, its prototype methods are not.
</p>
<h6>Why are trailing fractional zeros removed from Big numbers?</h6>
<p>
Many arbitrary-precision libraries retain trailing fractional zeros as
they can indicate the precision of a value. This can be useful but the
results of arithmetic operations can be misleading.
</p>
<pre>
// Java's BigDecimal
x = new BigDecimal("1.0")
y = new BigDecimal("1.1000")
z = x.add(y) // 2.1000
x = new BigDecimal("1.20")
y = new BigDecimal("3.45000")
z = x.multiply(y) // 4.1400000
</pre>
<p>
To specify the precision of a value is to imply that the value lies
within a certain range.
</p>
<p>
In the first example, <code>x</code> has a value of 1.0. The trailing zero
shows the precision of the value, implying that the value is in the range
0.95 to 1.05. Similarly, the precision indicated by the trailing zeros of
<code>y</code> indicates that the value is in the range 1.09995 to
1.10005. If we add the two lowest values in the ranges we get 0.95 +
1.09995 = 2.04995 and if we add the two highest values we get 1.05 +
1.10005 = 2.15005, so the range of the result of the addition implied by
the precision of its operands is 2.04995 to 2.15005. The result given by
BigDecimal of 2.1000 however, indicates that the value is in the range
2.09995 to 2.10005 and therefore the precision implied by its trailing
zeros is misleading.
</p>
<p>
In the second example, the true range is 4.122744 to 4.157256 yet the
BigDecimal answer of 4.1400000 indicates a range of 4.13999995 to
4.14000005. Again, the precision implied by the trailing zeros is
misleading.
</p>
<p>
This library, like binary floating-point and most calculators, does not
retain trailing fractional zeros.<br />
Instead, the <code>toExponential</code>, <code>toFixed</code> and
<code>toPrecision</code> methods enable trailing zeros to be added if and
when required.
</p>
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
</div>
<script>
/* big.js v7.0.0 https://github.com/MikeMcl/big.js/LICENCE.md */
/* terser big.js -c -m -o big.min.js */
!function(r){"use strict";var e,t=1e6,n=1e6,i="[big.js] ",o=i+"Invalid ",s=o+"decimal places",c=o+"rounding mode",f=i+"Division by zero",u={},h=void 0,l=/^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i;function a(r,e,t,n){var i=r.c;if(t===h&&(t=r.constructor.RM),0!==t&&1!==t&&2!==t&&3!==t)throw Error(c);if(e<1)n=3===t&&(n||!!i[0])||0===e&&(1===t&&i[0]>=5||2===t&&(i[0]>5||5===i[0]&&(n||i[1]!==h))),i.length=1,n?(r.e=r.e-e+1,i[0]=1):i[0]=r.e=0;else if(e<i.length){if(n=1===t&&i[e]>=5||2===t&&(i[e]>5||5===i[e]&&(n||i[e+1]!==h||1&i[e-1]))||3===t&&(n||!!i[0]),i.length=e,n)for(;++i[--e]>9;)if(i[e]=0,0===e){++r.e,i.unshift(1);break}for(e=i.length;!i[--e];)i.pop()}return r}function p(r,e,t){var n=r.e,i=r.c.join(""),o=i.length;if(e)i=i.charAt(0)+(o>1?"."+i.slice(1):"")+(n<0?"e":"e+")+n;else if(n<0){for(;++n;)i="0"+i;i="0."+i}else if(n>0)if(++n>o)for(n-=o;n--;)i+="0";else n<o&&(i=i.slice(0,n)+"."+i.slice(n));else o>1&&(i=i.charAt(0)+"."+i.slice(1));return r.s<0&&t?"-"+i:i}u.abs=function(){var r=new this.constructor(this);return r.s=1,r},u.cmp=function(r){var e,t=this,n=t.c,i=(r=new t.constructor(r)).c,o=t.s,s=r.s,c=t.e,f=r.e;if(!n[0]||!i[0])return n[0]?o:i[0]?-s:0;if(o!=s)return o;if(e=o<0,c!=f)return c>f^e?1:-1;for(s=(c=n.length)<(f=i.length)?c:f,o=-1;++o<s;)if(n[o]!=i[o])return n[o]>i[o]^e?1:-1;return c==f?0:c>f^e?1:-1},u.div=function(r){var e=this,n=e.constructor,i=e.c,o=(r=new n(r)).c,c=e.s==r.s?1:-1,u=n.DP;if(u!==~~u||u<0||u>t)throw Error(s);if(!o[0])throw Error(f);if(!i[0])return r.s=c,r.c=[r.e=0],r;var l,p,g,w,v,d=o.slice(),m=l=o.length,E=i.length,b=i.slice(0,l),P=b.length,D=r,M=D.c=[],x=0,y=u+(D.e=e.e-r.e)+1;for(D.s=c,c=y<0?0:y,d.unshift(0);P++<l;)b.push(0);do{for(g=0;g<10;g++){if(l!=(P=b.length))w=l>P?1:-1;else for(v=-1,w=0;++v<l;)if(o[v]!=b[v]){w=o[v]>b[v]?1:-1;break}if(!(w<0))break;for(p=P==l?o:d;P;){if(b[--P]<p[P]){for(v=P;v&&!b[--v];)b[v]=9;--b[v],b[P]+=10}b[P]-=p[P]}for(;!b[0];)b.shift()}M[x++]=w?g:++g,b[0]&&w?b[P]=i[m]||0:b=[i[m]]}while((m++<E||b[0]!==h)&&c--);return M[0]||1==x||(M.shift(),D.e--,y--),x>y&&a(D,y,n.RM,b[0]!==h),D},u.eq=function(r){return 0===this.cmp(r)},u.gt=function(r){return this.cmp(r)>0},u.gte=function(r){return this.cmp(r)>-1},u.lt=function(r){return this.cmp(r)<0},u.lte=function(r){return this.cmp(r)<1},u.minus=u.sub=function(r){var e,t,n,i,o=this,s=o.constructor,c=o.s,f=(r=new s(r)).s;if(c!=f)return r.s=-f,o.plus(r);var u=o.c.slice(),h=o.e,l=r.c,a=r.e;if(!u[0]||!l[0])return l[0]?r.s=-f:u[0]?r=new s(o):r.s=1,r;if(c=h-a){for((i=c<0)?(c=-c,n=u):(a=h,n=l),n.reverse(),f=c;f--;)n.push(0);n.reverse()}else for(t=((i=u.length<l.length)?u:l).length,c=f=0;f<t;f++)if(u[f]!=l[f]){i=u[f]<l[f];break}if(i&&(n=u,u=l,l=n,r.s=-r.s),(f=(t=l.length)-(e=u.length))>0)for(;f--;)u[e++]=0;for(f=e;t>c;){if(u[--t]<l[t]){for(e=t;e&&!u[--e];)u[e]=9;--u[e],u[t]+=10}u[t]-=l[t]}for(;0===u[--f];)u.pop();for(;0===u[0];)u.shift(),--a;return u[0]||(r.s=1,u=[a=0]),r.c=u,r.e=a,r},u.mod=function(r){var e,t=this,n=t.constructor,i=t.s,o=(r=new n(r)).s;if(!r.c[0])throw Error(f);return t.s=r.s=1,e=1==r.cmp(t),t.s=i,r.s=o,e?new n(t):(i=n.DP,o=n.RM,n.DP=n.RM=0,t=t.div(r),n.DP=i,n.RM=o,this.minus(t.times(r)))},u.neg=function(){var r=new this.constructor(this);return r.s=-r.s,r},u.plus=u.add=function(r){var e,t,n,i=this,o=i.constructor;if(r=new o(r),i.s!=r.s)return r.s=-r.s,i.minus(r);var s=i.e,c=i.c,f=r.e,u=r.c;if(!c[0]||!u[0])return u[0]||(c[0]?r=new o(i):r.s=i.s),r;if(c=c.slice(),e=s-f){for(e>0?(f=s,n=u):(e=-e,n=c),n.reverse();e--;)n.push(0);n.reverse()}for(c.length-u.length<0&&(n=u,u=c,c=n),e=u.length,t=0;e;c[e]%=10)t=(c[--e]=c[e]+u[e]+t)/10|0;for(t&&(c.unshift(t),++f),e=c.length;0===c[--e];)c.pop();return r.c=c,r.e=f,r},u.pow=function(r){var e=this,t=new e.constructor("1"),i=t,s=r<0;if(r!==~~r||r<-1e6||r>n)throw Error(o+"exponent");for(s&&(r=-r);1&r&&(i=i.times(e)),r>>=1;)e=e.times(e);return s?t.div(i):i},u.prec=function(r,e){if(r!==~~r||r<1||r>t)throw Error(o+"precision");return a(new this.constructor(this),r,e)},u.round=function(r,e){if(r===h)r=0;else if(r!==~~r||r<-t||r>t)throw Error(s);return a(new this.constructor(this),r+this.e+1,e)},u.sqrt=function(){var r,e,t,n=this,o=n.constructor,s=n.s,c=n.e,f=new o("0.5");if(!n.c[0])return new o(n);if(s<0)throw Error(i+"No square root");0===(s=Math.sqrt(+p(n,!0,!0)))||s===1/0?((e=n.c.join("")).length+c&1||(e+="0"),c=((c+1)/2|0)-(c<0||1&c),r=new o(((s=Math.sqrt(e))==1/0?"5e":(s=s.toExponential()).slice(0,s.indexOf("e")+1))+c)):r=new o(s+""),c=r.e+(o.DP+=4);do{t=r,r=f.times(t.plus(n.div(t)))}while(t.c.slice(0,c).join("")!==r.c.slice(0,c).join(""));return a(r,(o.DP-=4)+r.e+1,o.RM)},u.times=u.mul=function(r){var e,t=this,n=t.constructor,i=t.c,o=(r=new n(r)).c,s=i.length,c=o.length,f=t.e,u=r.e;if(r.s=t.s==r.s?1:-1,!i[0]||!o[0])return r.c=[r.e=0],r;for(r.e=f+u,s<c&&(e=i,i=o,o=e,u=s,s=c,c=u),e=new Array(u=s+c);u--;)e[u]=0;for(f=c;f--;){for(c=0,u=s+f;u>f;)c=e[u]+o[f]*i[u-f-1]+c,e[u--]=c%10,c=c/10|0;e[u]=c}for(c?++r.e:e.shift(),f=e.length;!e[--f];)e.pop();return r.c=e,r},u.toExponential=function(r,e){var n=this,i=n.c[0];if(r!==h){if(r!==~~r||r<0||r>t)throw Error(s);for(n=a(new n.constructor(n),++r,e);n.c.length<r;)n.c.push(0)}return p(n,!0,!!i)},u.toFixed=function(r,e){var n=this,i=n.c[0];if(r!==h){if(r!==~~r||r<0||r>t)throw Error(s);for(r=r+(n=a(new n.constructor(n),r+n.e+1,e)).e+1;n.c.length<r;)n.c.push(0)}return p(n,!1,!!i)},u.toJSON=u.toString=function(){var r=this,e=r.constructor;return p(r,r.e<=e.NE||r.e>=e.PE,!!r.c[0])},u.toNumber=function(){var r=+p(this,!0,!0);if(!0===this.constructor.strict&&!this.eq(r.toString()))throw Error(i+"Imprecise conversion");return r},u.toPrecision=function(r,e){var n=this,i=n.constructor,s=n.c[0];if(r!==h){if(r!==~~r||r<1||r>t)throw Error(o+"precision");for(n=a(new i(n),r,e);n.c.length<r;)n.c.push(0)}return p(n,r<=n.e||n.e<=i.NE||n.e>=i.PE,!!s)},u.valueOf=function(){var r=this,e=r.constructor;if(!0===e.strict)throw Error(i+"valueOf disallowed");return p(r,r.e<=e.NE||r.e>=e.PE,!0)},e=function r(){function e(t){var n=this;if(!(n instanceof e))return t===h&&0===arguments.length?r():new e(t);if(t instanceof e)n.s=t.s,n.e=t.e,n.c=t.c.slice();else{if("string"!=typeof t){if(!0===e.strict&&"bigint"!=typeof t)throw TypeError(o+"value");t=0===t&&1/t<0?"-0":String(t)}!function(r,e){var t,n,i;if(!l.test(e))throw Error(o+"number");r.s="-"==e.charAt(0)?(e=e.slice(1),-1):1,(t=e.indexOf("."))>-1&&(e=e.replace(".",""));(n=e.search(/e/i))>0?(t<0&&(t=n),t+=+e.slice(n+1),e=e.substring(0,n)):t<0&&(t=e.length);for(i=e.length,n=0;n<i&&"0"==e.charAt(n);)++n;if(n==i)r.c=[r.e=0];else{for(;i>0&&"0"==e.charAt(--i););for(r.e=t-n-1,r.c=[],t=0;n<=i;)r.c[t++]=+e.charAt(n++)}}(n,t)}n.constructor=e}return e.prototype=u,e.DP=20,e.RM=1,e.NE=-7,e.PE=21,e.strict=false,e.roundDown=0,e.roundHalfUp=1,e.roundHalfEven=2,e.roundUp=3,e}(),e.default=e.Big=e,"function"==typeof define&&define.amd?define((function(){return e})):"undefined"!=typeof module&&module.exports?module.exports=e:r.Big=e}(this);
</script>
</body>
</html>