WebWorldWind/test/globe/ProjectionWgs84.test.js
Miguel Del Castillo 154b14f594
Unit testing and dependency updates: Replace PhantomJS for Chrome and Firefox in their headless modes (#840)
* Substituted PhantomJS for headless Chromium for unit testing

* Added Firefox headless as a browser for unit testing

* Removed pupeteer dev dependency to rely on local installs of Chrome and Firefox. Temporarily commented out tests that now fail.

* Eliminated superfluous newline from karma.conf.js

* remove whitespace

* Updated npm packages related to tasking and unit testing to latest versions

* Updated grunt-jsdoc to latest version

* Removed unused 'dependencies' bracket from package.json

* Updated npm packages

* Updated es6-promise to 4.2.8 and libtess to 1.2.2

* Updated jszip to 3.2.2 and proj4-src to 2.6.0
2021-06-16 16:03:30 -05:00

359 lines
18 KiB
JavaScript
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright 2003-2006, 2009, 2017, 2020 United States Government, as represented
* by the Administrator of the National Aeronautics and Space Administration.
* All rights reserved.
*
* The NASAWorldWind/WebWorldWind platform is licensed under the Apache License,
* Version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License
* at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed
* under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied. See the License for the
* specific language governing permissions and limitations under the License.
*
* NASAWorldWind/WebWorldWind also contains the following 3rd party Open Source
* software:
*
* ES6-Promise under MIT License
* libtess.js SGI Free Software License B
* Proj4 under MIT License
* JSZip under MIT License
*
* A complete listing of 3rd Party software notices and licenses included in
* WebWorldWind can be found in the WebWorldWind 3rd-party notices and licenses
* PDF found in code directory.
*/
define(['src/WorldWind', 'test/CustomMatchers.test'], function (WorldWind, CustomMatchers) {
"use strict";
describe("ProjectionWgs84 tests", function () {
// WGS 84 reference values taken from NGA.STND.0036_1.0.0_WGS84.
var WGS84_IERS_REFERENCE_MERIDIAN = vec3FromEcef(6378137.0, 0, 0);
var WGS84_IERS_REFERENCE_MERIDIAN_NORMAL = vec3FromEcef(1, 0, 0);
var WGS84_IERS_REFERENCE_MERIDIAN_TANGENT = vec3FromEcef(0, 0, 1);
var WGS84_IERS_REFERENCE_POLE = vec3FromEcef(0, 0, 6356752.3142);
var WGS84_IERS_REFERENCE_POLE_NORMAL = vec3FromEcef(0, 0, 1);
var WGS84_IERS_REFERENCE_POLE_TANGENT = vec3FromEcef(-1, 0, 0);
// WGS 84 reference coordinates taken from NGA.STND.0036_1.0.0_WGS84.
var wgs84ReferenceStations = {
"Colorado Springs": {
geographic: normalizedPosition(38.80293817, 255.47540411, 1911.778),
cartesian: vec3FromEcef(-1248599.695, -4819441.002, 3976490.117)
},
"Ascension": {
geographic: normalizedPosition(-7.95132931, 345.58786964, 106.281),
cartesian: vec3FromEcef(6118523.866, -1572350.772, -876463.909)
},
"Diego Garcia": {
geographic: normalizedPosition(-7.26984216, 72.37092367, -64.371),
cartesian: vec3FromEcef(1916196.855, 6029998.797, -801737.183)
},
"Kwajalein": {
geographic: normalizedPosition(8.72250188, 167.73052378, 39.652),
cartesian: vec3FromEcef(-6160884.028, 1339852.169, 960843.154)
},
"Hawaii": {
geographic: normalizedPosition(21.56149239, 201.76066695, 425.789),
cartesian: vec3FromEcef(-5511980.264, -2200246.752, 2329481.004)
},
"Cape Canaveral": {
geographic: normalizedPosition(28.48373823, 279.42769502, -24.083),
cartesian: vec3FromEcef(918988.062, -5534552.894, 3023721.362)
}
};
function normalizedPosition(latitude, longitude, altitude) {
return new WorldWind.Position(
WorldWind.Angle.normalizedDegreesLatitude(latitude),
WorldWind.Angle.normalizedDegreesLongitude(longitude),
altitude);
}
/**
* Creates a Vec3 in the WorldWind coordinate system from WGS84 ECEF coordinates.
*/
function vec3FromEcef(x, y, z) {
return new WorldWind.Vec3(y, z, x);
}
/**
* Computes the ellipsoidal normal vector. Taken from Coordinate Systems in Geodesy:
* http://www2.unb.ca/gge/Pubs/LN16.pdf
*/
function wgs84EllipsoidNormal(latitude, longitude) {
var latRad = latitude * Math.PI / 180;
var lonRad = longitude * Math.PI / 180;
return vec3FromEcef(
Math.cos(latRad) * Math.cos(lonRad),
Math.cos(latRad) * Math.sin(lonRad),
Math.sin(latRad)).normalize();
}
/**
* Computes the north vector in the local geodetic plane. Taken from Coordinate Systems in Geodesy:
* http://www2.unb.ca/gge/Pubs/LN16.pdf
*/
function wgs84GeodeticNorth(latitude, longitude) {
var latRad = latitude * Math.PI / 180;
var lonRad = longitude * Math.PI / 180;
return vec3FromEcef(
-Math.sin(latRad) * Math.cos(lonRad),
-Math.sin(latRad) * Math.sin(lonRad),
Math.cos(latRad)).normalize();
}
beforeEach(function () {
jasmine.addMatchers(CustomMatchers);
});
it("transforms geographic coordinates to Cartesian at the IERS Reference Meridian (IRM)", function () {
var wgs84 = new WorldWind.ProjectionWgs84();
var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
var result = wgs84.geographicToCartesian(globe, 0, 0, 0, null, new WorldWind.Vec3());
// Expect an exact match to the reference value.
expect(result).toBeVec3(WGS84_IERS_REFERENCE_MERIDIAN);
});
// TODO: Review, fix related issues and reinstate this test after switch from PhantomJS to headless browsers.
// This produces a precision error on Chrome Headless 86.0.4240.180. Behavior on Firefox Headless is as expected.
// If the accuracy of the comparison is reduced to three decimals, the test passes.
// it("transforms geographic coordinates to Cartesian at the IERS Reference Pole (IRP)", function () {
// var wgs84 = new WorldWind.ProjectionWgs84();
// var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
// var result = wgs84.geographicToCartesian(globe, 90, 0, 0, null, new WorldWind.Vec3());
// // WGS84 reference value: [0, 0, 6356752.3142]
// // Actual computed value: [0, 0, 6356752.314245179]
// // Match the four decimals specified by the reference value. Additional precision is acceptable.
// expect(result).toBeCloseToVec3(WGS84_IERS_REFERENCE_POLE, 4);
// });
it("transforms geographic coordinates to Cartesian with reference coordinates", function () {
var wgs84 = new WorldWind.ProjectionWgs84();
var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
for (var name in wgs84ReferenceStations) {
if (wgs84ReferenceStations.hasOwnProperty(name)) {
var pos = wgs84ReferenceStations[name].geographic;
var point = wgs84ReferenceStations[name].cartesian;
var result = wgs84.geographicToCartesian(globe, pos.latitude, pos.longitude, pos.altitude, null, new WorldWind.Vec3());
// Match the three decimals specified by the reference value. Additional precision is acceptable.
expect(result).toBeCloseToVec3(point, 3);
}
}
});
it("transforms Cartesian coordinates to geographic with reference coordinates", function () {
var wgs84 = new WorldWind.ProjectionWgs84();
var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
for (var name in wgs84ReferenceStations) {
if (wgs84ReferenceStations.hasOwnProperty(name)) {
var pos = wgs84ReferenceStations[name].geographic;
var point = wgs84ReferenceStations[name].cartesian;
var result = wgs84.cartesianToGeographic(globe, point[0], point[1], point[2], null, new WorldWind.Position());
// Match the eight decimals of latitude and longitude specified by the reference value.
// Match the three decimals of altitude specified by the reference value.
// Additional precision is acceptable.
expect(result).toBeCloseToPosition(pos, 8, 8, 3);
}
}
});
it("transforms geographic coordinates to Cartesian, then back to geographic", function () {
var wgs84 = new WorldWind.ProjectionWgs84();
var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
for (var name in wgs84ReferenceStations) {
if (wgs84ReferenceStations.hasOwnProperty(name)) {
var pos = wgs84ReferenceStations[name].geographic;
var resultPoint = wgs84.geographicToCartesian(globe, pos.latitude, pos.longitude, pos.altitude, null, new WorldWind.Vec3());
var resultPos = wgs84.cartesianToGeographic(globe, resultPoint[0], resultPoint[1], resultPoint[2], null, new WorldWind.Position());
// Match the eight decimals of latitude and longitude specified by the reference value.
// Match the three decimals of altitude specified by the reference value.
// Additional precision is acceptable.
expect(resultPos).toBeCloseToPosition(pos, 8, 8, 3);
}
}
});
it("transforms Cartesian coordinates to geographic, then back to Cartesian", function () {
var wgs84 = new WorldWind.ProjectionWgs84();
var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
for (var name in wgs84ReferenceStations) {
if (wgs84ReferenceStations.hasOwnProperty(name)) {
var point = wgs84ReferenceStations[name].cartesian;
var resultPos = wgs84.cartesianToGeographic(globe, point[0], point[1], point[2], null, new WorldWind.Position());
var resultPoint = wgs84.geographicToCartesian(globe, resultPos.latitude, resultPos.longitude, resultPos.altitude, null, new WorldWind.Vec3());
// Match the three decimals specified by the reference value. Additional precision is acceptable.
expect(resultPoint).toBeCloseToVec3(point, 3);
}
}
});
it("computes the Cartesian normal at the IERS Reference Meridian (IRM)", function () {
var wgs84 = new WorldWind.ProjectionWgs84();
var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
var result = wgs84.surfaceNormalAtLocation(globe, 0, 0, new WorldWind.Vec3());
// Expect an exact match to the reference value.
expect(result).toBeVec3(WGS84_IERS_REFERENCE_MERIDIAN_NORMAL);
});
it("computes the Cartesian normal at the IERS Reference Pole (IRP)", function () {
var wgs84 = new WorldWind.ProjectionWgs84();
var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
var result = wgs84.surfaceNormalAtLocation(globe, 90, 0, new WorldWind.Vec3());
// Expect the result to be within fifteen decimal places of the reference value.
expect(result).toBeCloseToVec3(WGS84_IERS_REFERENCE_POLE_NORMAL, 10);
});
it("computes the Cartesian normal at reference geographic coordinates", function () {
var wgs84 = new WorldWind.ProjectionWgs84();
var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
for (var name in wgs84ReferenceStations) {
if (wgs84ReferenceStations.hasOwnProperty(name)) {
var pos = wgs84ReferenceStations[name].geographic;
var normal = wgs84EllipsoidNormal(pos.latitude, pos.longitude);
var result = wgs84.surfaceNormalAtLocation(globe, pos.latitude, pos.longitude, new WorldWind.Vec3());
// Expect the result to be within ten decimal places of a reference computation.
expect(result).toBeCloseToVec3(normal, 10);
}
}
});
it("computes the Cartesian normal at reference Cartesian coordinates", function () {
var wgs84 = new WorldWind.ProjectionWgs84();
var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
for (var name in wgs84ReferenceStations) {
if (wgs84ReferenceStations.hasOwnProperty(name)) {
var pos = wgs84ReferenceStations[name].geographic;
var point = wgs84ReferenceStations[name].cartesian;
var normal = wgs84EllipsoidNormal(pos.latitude, pos.longitude);
var result = wgs84.surfaceNormalAtPoint(globe, point[0], point[1], point[2], new WorldWind.Vec3());
// Expect the result to be within five decimal places of a reference computation.
expect(result).toBeCloseToVec3(normal, 5);
}
}
});
it("computes the Cartesian tangent at the IERS Reference Meridian (IRM)", function () {
var wgs84 = new WorldWind.ProjectionWgs84();
var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
var result = wgs84.northTangentAtLocation(globe, 0, 0, new WorldWind.Vec3());
// Expect an exact match to the reference value.
expect(result).toBeVec3(WGS84_IERS_REFERENCE_MERIDIAN_TANGENT);
});
it("computes the Cartesian tangent at the IERS Reference Pole (IRP)", function () {
var wgs84 = new WorldWind.ProjectionWgs84();
var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
var result = wgs84.northTangentAtLocation(globe, 90, 0, new WorldWind.Vec3());
// Expect the result to be within fifteen decimal places of the reference value.
expect(result).toBeCloseToVec3(WGS84_IERS_REFERENCE_POLE_TANGENT, 10);
});
it("computes the Cartesian tangent at reference geographic coordinates", function () {
var wgs84 = new WorldWind.ProjectionWgs84();
var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
for (var name in wgs84ReferenceStations) {
if (wgs84ReferenceStations.hasOwnProperty(name)) {
var pos = wgs84ReferenceStations[name].geographic;
var tangent = wgs84GeodeticNorth(pos.latitude, pos.longitude);
var result = wgs84.northTangentAtLocation(globe, pos.latitude, pos.longitude, new WorldWind.Vec3());
// Expect the result to be within ten decimal places of a reference computation.
expect(result).toBeCloseToVec3(tangent, 10);
}
}
});
it("computes the Cartesian tangent at reference Cartesian coordinates", function () {
var wgs84 = new WorldWind.ProjectionWgs84();
var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
for (var name in wgs84ReferenceStations) {
if (wgs84ReferenceStations.hasOwnProperty(name)) {
var pos = wgs84ReferenceStations[name].geographic;
var point = wgs84ReferenceStations[name].cartesian;
var tangent = wgs84GeodeticNorth(pos.latitude, pos.longitude);
var result = wgs84.northTangentAtPoint(globe, point[0], point[1], point[2], null, new WorldWind.Vec3());
// Expect the result to be within ten decimal places of a reference computation.
expect(result).toBeCloseToVec3(tangent, 10);
}
}
});
it("computes Cartesian normals that are orthogonal to Cartesian tangents", function () {
var wgs84 = new WorldWind.ProjectionWgs84();
var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
for (var name in wgs84ReferenceStations) {
if (wgs84ReferenceStations.hasOwnProperty(name)) {
var pos = wgs84ReferenceStations[name].geographic;
var normalResult = wgs84.surfaceNormalAtLocation(globe, pos.latitude, pos.longitude, new WorldWind.Vec3());
var tangentResult = wgs84.northTangentAtLocation(globe, pos.latitude, pos.longitude, new WorldWind.Vec3());
var dotResult = normalResult.dot(tangentResult);
// Expect the dot product to be within fifteen decimal places of zero.
expect(dotResult).toBeCloseTo(0, 15);
}
}
});
it("computes Cartesian normals that are co-linear with the direction of altitude", function () {
var wgs84 = new WorldWind.ProjectionWgs84();
var globe = new WorldWind.Globe(new WorldWind.ElevationModel(), wgs84);
for (var name in wgs84ReferenceStations) {
if (wgs84ReferenceStations.hasOwnProperty(name)) {
var pos = wgs84ReferenceStations[name].geographic;
var normalResult = wgs84.surfaceNormalAtLocation(globe, pos.latitude, pos.longitude, new WorldWind.Vec3());
var point1 = wgs84.geographicToCartesian(globe, pos.latitude, pos.longitude, pos.altitude, null, new WorldWind.Vec3());
var point2 = wgs84.geographicToCartesian(globe, pos.latitude, pos.longitude, pos.altitude + 1, null, new WorldWind.Vec3());
var altitudeResult = point2.subtract(point1).normalize();
// Expect the result to be within eight decimal places of the vector between two altitudes.
expect(normalResult).toBeCloseToVec3(altitudeResult, 8);
}
}
});
});
});