2018-08-01 21:34:58 +08:00

675 lines
20 KiB
JavaScript

/**
*
* Earcut https://github.com/mapbox/earcut
*
* Copyright (c) 2015, Mapbox
*
* Permission to use, copy, modify, and/or distribute this software for any purpose
* with or without fee is hereby granted, provided that the above copyright notice
* and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
* THIS SOFTWARE.
*/
'use strict';
//module.exports = earcut;
function earcut(data, holeIndices, dim) {
dim = dim || 2;
var hasHoles = holeIndices && holeIndices.length,
outerLen = hasHoles ? holeIndices[0] * dim : data.length,
outerNode = filterPoints(data, linkedList(data, 0, outerLen, dim, true)),
triangles = [];
if (!outerNode) return triangles;
var minX, minY, maxX, maxY, x, y, size;
if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim);
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
if (data.length > 80 * dim) {
minX = maxX = data[0];
minY = maxY = data[1];
for (var i = dim; i < outerLen; i += dim) {
x = data[i];
y = data[i + 1];
if (x < minX) minX = x;
if (y < minY) minY = y;
if (x > maxX) maxX = x;
if (y > maxY) maxY = y;
}
// minX, minY and size are later used to transform coords into integers for z-order calculation
size = Math.max(maxX - minX, maxY - minY);
}
earcutLinked(data, outerNode, triangles, dim, minX, minY, size);
return triangles;
}
// create a circular doubly linked list from polygon points in the specified winding order
function linkedList(data, start, end, dim, clockwise) {
var sum = 0,
i, j, last;
// calculate original winding order of a polygon ring
for (i = start, j = end - dim; i < end; i += dim) {
sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]);
j = i;
}
// link points into circular doubly-linked list in the specified winding order
if (clockwise === (sum > 0)) {
for (i = start; i < end; i += dim) last = insertNode(i, last);
} else {
for (i = end - dim; i >= start; i -= dim) last = insertNode(i, last);
}
return last;
}
// eliminate colinear or duplicate points
function filterPoints(data, start, end) {
if (!start) return start;
if (!end) end = start;
var node = start,
again;
do {
again = false;
if (!node.steiner && (equals(data, node.i, node.next.i) || orient(data, node.prev.i, node.i, node.next.i) === 0)) {
removeNode(node);
node = end = node.prev;
if (node === node.next) return null;
again = true;
} else {
node = node.next;
}
} while (again || node !== end);
return end;
}
// main ear slicing loop which triangulates a polygon (given as a linked list)
function earcutLinked(data, ear, triangles, dim, minX, minY, size, pass) {
if (!ear) return;
// interlink polygon nodes in z-order
if (!pass && minX !== undefined) indexCurve(data, ear, minX, minY, size);
var stop = ear,
prev, next;
// iterate through ears, slicing them one by one
while (ear.prev !== ear.next) {
prev = ear.prev;
next = ear.next;
if (isEar(data, ear, minX, minY, size)) {
// cut off the triangle
triangles.push(prev.i / dim);
triangles.push(ear.i / dim);
triangles.push(next.i / dim);
removeNode(ear);
// skipping the next vertice leads to less sliver triangles
ear = next.next;
stop = next.next;
continue;
}
ear = next;
// if we looped through the whole remaining polygon and can't find any more ears
if (ear === stop) {
// try filtering points and slicing again
if (!pass) {
earcutLinked(data, filterPoints(data, ear), triangles, dim, minX, minY, size, 1);
// if this didn't work, try curing all small self-intersections locally
} else if (pass === 1) {
ear = cureLocalIntersections(data, ear, triangles, dim);
earcutLinked(data, ear, triangles, dim, minX, minY, size, 2);
// as a last resort, try splitting the remaining polygon into two
} else if (pass === 2) {
splitEarcut(data, ear, triangles, dim, minX, minY, size);
}
break;
}
}
}
// check whether a polygon node forms a valid ear with adjacent nodes
function isEar(data, ear, minX, minY, size) {
var a = ear.prev.i,
b = ear.i,
c = ear.next.i,
ax = data[a], ay = data[a + 1],
bx = data[b], by = data[b + 1],
cx = data[c], cy = data[c + 1],
abd = ax * by - ay * bx,
acd = ax * cy - ay * cx,
cbd = cx * by - cy * bx,
A = abd - acd - cbd;
if (A <= 0) return false; // reflex, can't be an ear
// now make sure we don't have other points inside the potential ear;
// the code below is a bit verbose and repetitive but this is done for performance
var cay = cy - ay,
acx = ax - cx,
aby = ay - by,
bax = bx - ax,
i, px, py, s, t, k, node;
// if we use z-order curve hashing, iterate through the curve
if (minX !== undefined) {
// triangle bbox; min & max are calculated like this for speed
var minTX = ax < bx ? (ax < cx ? ax : cx) : (bx < cx ? bx : cx),
minTY = ay < by ? (ay < cy ? ay : cy) : (by < cy ? by : cy),
maxTX = ax > bx ? (ax > cx ? ax : cx) : (bx > cx ? bx : cx),
maxTY = ay > by ? (ay > cy ? ay : cy) : (by > cy ? by : cy),
// z-order range for the current triangle bbox;
minZ = zOrder(minTX, minTY, minX, minY, size),
maxZ = zOrder(maxTX, maxTY, minX, minY, size);
// first look for points inside the triangle in increasing z-order
node = ear.nextZ;
while (node && node.z <= maxZ) {
i = node.i;
node = node.nextZ;
if (i === a || i === c) continue;
px = data[i];
py = data[i + 1];
s = cay * px + acx * py - acd;
if (s >= 0) {
t = aby * px + bax * py + abd;
if (t >= 0) {
k = A - s - t;
if ((k >= 0) && ((s && t) || (s && k) || (t && k))) return false;
}
}
}
// then look for points in decreasing z-order
node = ear.prevZ;
while (node && node.z >= minZ) {
i = node.i;
node = node.prevZ;
if (i === a || i === c) continue;
px = data[i];
py = data[i + 1];
s = cay * px + acx * py - acd;
if (s >= 0) {
t = aby * px + bax * py + abd;
if (t >= 0) {
k = A - s - t;
if ((k >= 0) && ((s && t) || (s && k) || (t && k))) return false;
}
}
}
// if we don't use z-order curve hash, simply iterate through all other points
} else {
node = ear.next.next;
while (node !== ear.prev) {
i = node.i;
node = node.next;
px = data[i];
py = data[i + 1];
s = cay * px + acx * py - acd;
if (s >= 0) {
t = aby * px + bax * py + abd;
if (t >= 0) {
k = A - s - t;
if ((k >= 0) && ((s && t) || (s && k) || (t && k))) return false;
}
}
}
}
return true;
}
// go through all polygon nodes and cure small local self-intersections
function cureLocalIntersections(data, start, triangles, dim) {
var node = start;
do {
var a = node.prev,
b = node.next.next;
// a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
if (a.i !== b.i && intersects(data, a.i, node.i, node.next.i, b.i) &&
locallyInside(data, a, b) && locallyInside(data, b, a) &&
orient(data, a.i, node.i, b.i) && orient(data, a.i, node.next.i, b.i)) {
triangles.push(a.i / dim);
triangles.push(node.i / dim);
triangles.push(b.i / dim);
// remove two nodes involved
removeNode(node);
removeNode(node.next);
node = start = b;
}
node = node.next;
} while (node !== start);
return node;
}
// try splitting polygon into two and triangulate them independently
function splitEarcut(data, start, triangles, dim, minX, minY, size) {
// look for a valid diagonal that divides the polygon into two
var a = start;
do {
var b = a.next.next;
while (b !== a.prev) {
if (a.i !== b.i && isValidDiagonal(data, a, b)) {
// split the polygon in two by the diagonal
var c = splitPolygon(a, b);
// filter colinear points around the cuts
a = filterPoints(data, a, a.next);
c = filterPoints(data, c, c.next);
// run earcut on each half
earcutLinked(data, a, triangles, dim, minX, minY, size);
earcutLinked(data, c, triangles, dim, minX, minY, size);
return;
}
b = b.next;
}
a = a.next;
} while (a !== start);
}
// link every hole into the outer loop, producing a single-ring polygon without holes
function eliminateHoles(data, holeIndices, outerNode, dim) {
var queue = [],
i, len, start, end, list;
for (i = 0, len = holeIndices.length; i < len; i++) {
start = holeIndices[i] * dim;
end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
list = linkedList(data, start, end, dim, false);
if (list === list.next) list.steiner = true;
list = filterPoints(data, list);
if (list) queue.push(getLeftmost(data, list));
}
queue.sort(function (a, b) {
return data[a.i] - data[b.i];
});
// process holes from left to right
for (i = 0; i < queue.length; i++) {
eliminateHole(data, queue[i], outerNode);
outerNode = filterPoints(data, outerNode, outerNode.next);
}
return outerNode;
}
// find a bridge between vertices that connects hole with an outer ring and and link it
function eliminateHole(data, holeNode, outerNode) {
outerNode = findHoleBridge(data, holeNode, outerNode);
if (outerNode) {
var b = splitPolygon(outerNode, holeNode);
filterPoints(data, b, b.next);
}
}
// David Eberly's algorithm for finding a bridge between hole and outer polygon
function findHoleBridge(data, holeNode, outerNode) {
var node = outerNode,
i = holeNode.i,
px = data[i],
py = data[i + 1],
qMax = -Infinity,
mNode, a, b;
// find a segment intersected by a ray from the hole's leftmost point to the left;
// segment's endpoint with lesser x will be potential connection point
do {
a = node.i;
b = node.next.i;
if (py <= data[a + 1] && py >= data[b + 1]) {
var qx = data[a] + (py - data[a + 1]) * (data[b] - data[a]) / (data[b + 1] - data[a + 1]);
if (qx <= px && qx > qMax) {
qMax = qx;
mNode = data[a] < data[b] ? node : node.next;
}
}
node = node.next;
} while (node !== outerNode);
if (!mNode) return null;
// look for points strictly inside the triangle of hole point, segment intersection and endpoint;
// if there are no points found, we have a valid connection;
// otherwise choose the point of the minimum angle with the ray as connection point
var bx = data[mNode.i],
by = data[mNode.i + 1],
pbd = px * by - py * bx,
pcd = px * py - py * qMax,
cpy = py - py,
pcx = px - qMax,
pby = py - by,
bpx = bx - px,
A = pbd - pcd - (qMax * by - py * bx),
sign = A <= 0 ? -1 : 1,
stop = mNode,
tanMin = Infinity,
mx, my, amx, s, t, tan;
node = mNode.next;
while (node !== stop) {
mx = data[node.i];
my = data[node.i + 1];
amx = px - mx;
if (amx >= 0 && mx >= bx) {
s = (cpy * mx + pcx * my - pcd) * sign;
if (s >= 0) {
t = (pby * mx + bpx * my + pbd) * sign;
if (t >= 0 && A * sign - s - t >= 0) {
tan = Math.abs(py - my) / amx; // tangential
if ((tan < tanMin || (tan === tanMin && mx > bx)) &&
locallyInside(data, node, holeNode)) {
mNode = node;
tanMin = tan;
}
}
}
}
node = node.next;
}
return mNode;
}
// interlink polygon nodes in z-order
function indexCurve(data, start, minX, minY, size) {
var node = start;
do {
if (node.z === null) node.z = zOrder(data[node.i], data[node.i + 1], minX, minY, size);
node.prevZ = node.prev;
node.nextZ = node.next;
node = node.next;
} while (node !== start);
node.prevZ.nextZ = null;
node.prevZ = null;
sortLinked(node);
}
// Simon Tatham's linked list merge sort algorithm
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
function sortLinked(list) {
var i, p, q, e, tail, numMerges, pSize, qSize,
inSize = 1;
do {
p = list;
list = null;
tail = null;
numMerges = 0;
while (p) {
numMerges++;
q = p;
pSize = 0;
for (i = 0; i < inSize; i++) {
pSize++;
q = q.nextZ;
if (!q) break;
}
qSize = inSize;
while (pSize > 0 || (qSize > 0 && q)) {
if (pSize === 0) {
e = q;
q = q.nextZ;
qSize--;
} else if (qSize === 0 || !q) {
e = p;
p = p.nextZ;
pSize--;
} else if (p.z <= q.z) {
e = p;
p = p.nextZ;
pSize--;
} else {
e = q;
q = q.nextZ;
qSize--;
}
if (tail) tail.nextZ = e;
else list = e;
e.prevZ = tail;
tail = e;
}
p = q;
}
tail.nextZ = null;
inSize *= 2;
} while (numMerges > 1);
return list;
}
// z-order of a point given coords and size of the data bounding box
function zOrder(x, y, minX, minY, size) {
// coords are transformed into non-negative 15-bit integer range
x = 32767 * (x - minX) / size;
y = 32767 * (y - minY) / size;
x = (x | (x << 8)) & 0x00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F;
x = (x | (x << 2)) & 0x33333333;
x = (x | (x << 1)) & 0x55555555;
y = (y | (y << 8)) & 0x00FF00FF;
y = (y | (y << 4)) & 0x0F0F0F0F;
y = (y | (y << 2)) & 0x33333333;
y = (y | (y << 1)) & 0x55555555;
return x | (y << 1);
}
// find the leftmost node of a polygon ring
function getLeftmost(data, start) {
var node = start,
leftmost = start;
do {
if (data[node.i] < data[leftmost.i]) leftmost = node;
node = node.next;
} while (node !== start);
return leftmost;
}
// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
function isValidDiagonal(data, a, b) {
return a.next.i !== b.i && a.prev.i !== b.i &&
!intersectsPolygon(data, a, a.i, b.i) &&
locallyInside(data, a, b) && locallyInside(data, b, a) &&
middleInside(data, a, a.i, b.i);
}
// winding order of triangle formed by 3 given points
function orient(data, p, q, r) {
var o = (data[q + 1] - data[p + 1]) * (data[r] - data[q]) - (data[q] - data[p]) * (data[r + 1] - data[q + 1]);
return o > 0 ? 1 :
o < 0 ? -1 : 0;
}
// check if two points are equal
function equals(data, p1, p2) {
return data[p1] === data[p2] && data[p1 + 1] === data[p2 + 1];
}
// check if two segments intersect
function intersects(data, p1, q1, p2, q2) {
return orient(data, p1, q1, p2) !== orient(data, p1, q1, q2) &&
orient(data, p2, q2, p1) !== orient(data, p2, q2, q1);
}
// check if a polygon diagonal intersects any polygon segments
function intersectsPolygon(data, start, a, b) {
var node = start;
do {
var p1 = node.i,
p2 = node.next.i;
if (p1 !== a && p2 !== a && p1 !== b && p2 !== b && intersects(data, p1, p2, a, b)) return true;
node = node.next;
} while (node !== start);
return false;
}
// check if a polygon diagonal is locally inside the polygon
function locallyInside(data, a, b) {
return orient(data, a.prev.i, a.i, a.next.i) === -1 ?
orient(data, a.i, b.i, a.next.i) !== -1 && orient(data, a.i, a.prev.i, b.i) !== -1 :
orient(data, a.i, b.i, a.prev.i) === -1 || orient(data, a.i, a.next.i, b.i) === -1;
}
// check if the middle point of a polygon diagonal is inside the polygon
function middleInside(data, start, a, b) {
var node = start,
inside = false,
px = (data[a] + data[b]) / 2,
py = (data[a + 1] + data[b + 1]) / 2;
do {
var p1 = node.i,
p2 = node.next.i;
if (((data[p1 + 1] > py) !== (data[p2 + 1] > py)) &&
(px < (data[p2] - data[p1]) * (py - data[p1 + 1]) / (data[p2 + 1] - data[p1 + 1]) + data[p1]))
inside = !inside;
node = node.next;
} while (node !== start);
return inside;
}
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
// if one belongs to the outer ring and another to a hole, it merges it into a single ring
function splitPolygon(a, b) {
var a2 = new Node(a.i),
b2 = new Node(b.i),
an = a.next,
bp = b.prev;
a.next = b;
b.prev = a;
a2.next = an;
an.prev = a2;
b2.next = a2;
a2.prev = b2;
bp.next = b2;
b2.prev = bp;
return b2;
}
// create a node and optionally link it with previous one (in a circular doubly linked list)
function insertNode(i, last) {
var node = new Node(i);
if (!last) {
node.prev = node;
node.next = node;
} else {
node.next = last.next;
node.prev = last;
last.next.prev = node;
last.next = node;
}
return node;
}
function removeNode(node) {
node.next.prev = node.prev;
node.prev.next = node.next;
if (node.prevZ) node.prevZ.nextZ = node.nextZ;
if (node.nextZ) node.nextZ.prevZ = node.prevZ;
}
function Node(i) {
// vertex coordinates
this.i = i;
// previous and next vertice nodes in a polygon ring
this.prev = null;
this.next = null;
// z-order curve value
this.z = null;
// previous and next nodes in z-order
this.prevZ = null;
this.nextZ = null;
// indicates whether this is a steiner point
this.steiner = false;
}