mirror of
https://github.com/tengge1/ShadowEditor.git
synced 2026-01-25 15:08:11 +00:00
94 lines
2.6 KiB
Python
94 lines
2.6 KiB
Python
# https://tensorflow.google.cn/beta/tutorials/quickstart/advanced
|
||
from __future__ import absolute_import, division, print_function, unicode_literals
|
||
|
||
import tensorflow as tf
|
||
|
||
from tensorflow.keras.layers import Dense, Flatten, Conv2D
|
||
from tensorflow.keras import Model
|
||
|
||
# 允许显卡动态分配内存,否则windows上报错
|
||
gpu = tf.config.experimental.list_physical_devices('GPU')[0]
|
||
tf.config.experimental.set_memory_growth(gpu, True)
|
||
|
||
tf.keras.backend.set_floatx('float64')
|
||
|
||
mnist = tf.keras.datasets.mnist
|
||
|
||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||
x_train, x_test = x_train / 255.0, x_test / 255.0
|
||
|
||
x_train = x_train[..., tf.newaxis]
|
||
x_test = x_test[..., tf.newaxis]
|
||
|
||
train_ds = tf.data.Dataset.from_tensor_slices(
|
||
(x_train, y_train)).shuffle(10000).batch(32)
|
||
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
|
||
|
||
|
||
class MyModel(Model):
|
||
def __init__(self):
|
||
super(MyModel, self).__init__()
|
||
self.conv1 = Conv2D(32, 3, activation='relu', input_shape=(128, 128, 3))
|
||
self.flatten = Flatten()
|
||
self.d1 = Dense(128, activation='relu')
|
||
self.d2 = Dense(10, activation='softmax')
|
||
|
||
def call(self, x):
|
||
x = self.conv1(x)
|
||
x = self.flatten(x)
|
||
x = self.d1(x)
|
||
return self.d2(x)
|
||
|
||
|
||
model = MyModel()
|
||
|
||
loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
|
||
|
||
optimizer = tf.keras.optimizers.Adam()
|
||
|
||
train_loss = tf.keras.metrics.Mean(name='train_loss')
|
||
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
|
||
name='train_accuracy')
|
||
|
||
test_loss = tf.keras.metrics.Mean(name='test_loss')
|
||
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
|
||
name='test_accuracy')
|
||
|
||
|
||
@tf.function
|
||
def train_step(images, labels):
|
||
with tf.GradientTape() as tape:
|
||
predictions = model(images)
|
||
loss = loss_object(labels, predictions)
|
||
gradients = tape.gradient(loss, model.trainable_variables)
|
||
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
|
||
|
||
train_loss(loss)
|
||
train_accuracy(labels, predictions)
|
||
|
||
|
||
@tf.function
|
||
def test_step(images, labels):
|
||
predictions = model(images)
|
||
t_loss = loss_object(labels, predictions)
|
||
|
||
test_loss(t_loss)
|
||
test_accuracy(labels, predictions)
|
||
|
||
|
||
EPOCHS = 5
|
||
|
||
for epoch in range(EPOCHS):
|
||
for images, labels in train_ds:
|
||
train_step(images, labels)
|
||
|
||
for test_images, test_labels in test_ds:
|
||
test_step(test_images, test_labels)
|
||
|
||
template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
|
||
print(template.format(epoch+1,
|
||
train_loss.result(),
|
||
train_accuracy.result()*100,
|
||
test_loss.result(),
|
||
test_accuracy.result()*100))
|