ShadowEditor/test/tensorflow/basic/hub_with_keras.py
2019-09-01 18:43:38 +08:00

155 lines
4.5 KiB
Python

from __future__ import absolute_import, division, print_function, unicode_literals
import time
import PIL.Image as Image
import numpy as np
import PIL.Image as Image
import numpy as np
import matplotlib.pylab as plt
import tensorflow as tf
import tensorflow_hub as hub
from tensorflow.keras import layers
# @param {type:"string"}
classifier_url = "https://hub.tensorflow.google.cn/google/tf2-preview/mobilenet_v2/classification/2"
IMAGE_SHAPE = (224, 224)
classifier = tf.keras.Sequential([
hub.KerasLayer(classifier_url, input_shape=IMAGE_SHAPE+(3,))
])
grace_hopper = tf.keras.utils.get_file(
'image.jpg', 'https://storage.googleapis.com/download.tensorflow.org/example_images/grace_hopper.jpg')
grace_hopper = Image.open(grace_hopper).resize(IMAGE_SHAPE)
grace_hopper = np.array(grace_hopper)/255.0
result = classifier.predict(grace_hopper[np.newaxis, ...])
predicted_class = np.argmax(result[0], axis=-1)
labels_path = tf.keras.utils.get_file(
'ImageNetLabels.txt', 'https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt')
imagenet_labels = np.array(open(labels_path).read().splitlines())
plt.imshow(grace_hopper)
plt.axis('off')
predicted_class_name = imagenet_labels[predicted_class]
_ = plt.title("Prediction: " + predicted_class_name.title())
data_root = tf.keras.utils.get_file(
'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz',
untar=True)
image_generator = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1/255)
image_data = image_generator.flow_from_directory(
str(data_root), target_size=IMAGE_SHAPE)
for image_batch, label_batch in image_data:
print("Image batch shape: ", image_batch.shape)
print("Label batch shape: ", label_batch.shape)
break
result_batch = classifier.predict(image_batch)
predicted_class_names = imagenet_labels[np.argmax(result_batch, axis=-1)]
plt.figure(figsize=(10, 9))
plt.subplots_adjust(hspace=0.5)
for n in range(30):
plt.subplot(6, 5, n+1)
plt.imshow(image_batch[n])
plt.title(predicted_class_names[n])
plt.axis('off')
_ = plt.suptitle("ImageNet predictions")
# @param {type:"string"}
feature_extractor_url = "https://hub.tensorflow.google.cn/google/tf2-preview/mobilenet_v2/feature_vector/2"
feature_extractor_layer = hub.KerasLayer(feature_extractor_url,
input_shape=(224, 224, 3))
feature_batch = feature_extractor_layer(image_batch)
print(feature_batch.shape)
feature_extractor_layer.trainable = False
model = tf.keras.Sequential([
feature_extractor_layer,
layers.Dense(image_data.num_classes, activation='softmax')
])
model.summary()
predictions = model(image_batch)
model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss='categorical_crossentropy',
metrics=['acc'])
class CollectBatchStats(tf.keras.callbacks.Callback):
def __init__(self):
self.batch_losses = []
self.batch_acc = []
def on_train_batch_end(self, batch, logs=None):
self.batch_losses.append(logs['loss'])
self.batch_acc.append(logs['acc'])
self.model.reset_metrics()
steps_per_epoch = np.ceil(image_data.samples/image_data.batch_size)
batch_stats_callback = CollectBatchStats()
history = model.fit(image_data, epochs=2,
steps_per_epoch=steps_per_epoch,
callbacks=[batch_stats_callback])
plt.figure()
plt.ylabel("Loss")
plt.xlabel("Training Steps")
plt.ylim([0, 2])
plt.plot(batch_stats_callback.batch_losses)
class_names = sorted(image_data.class_indices.items(),
key=lambda pair: pair[1])
class_names = np.array([key.title() for key, value in class_names])
predicted_batch = model.predict(image_batch)
predicted_id = np.argmax(predicted_batch, axis=-1)
predicted_label_batch = class_names[predicted_id]
label_id = np.argmax(label_batch, axis=-1)
plt.figure(figsize=(10, 9))
plt.subplots_adjust(hspace=0.5)
for n in range(30):
plt.subplot(6, 5, n+1)
plt.imshow(image_batch[n])
color = "green" if predicted_id[n] == label_id[n] else "red"
plt.title(predicted_label_batch[n].title(), color=color)
plt.axis('off')
_ = plt.suptitle("Model predictions (green: correct, red: incorrect)")
t = time.time()
export_path = "/tmp/saved_models/{}".format(int(t))
tf.keras.experimental.export_saved_model(model, export_path)
reloaded = tf.keras.experimental.load_from_saved_model(
export_path, custom_objects={'KerasLayer': hub.KerasLayer})
result_batch = model.predict(image_batch)
reloaded_result_batch = reloaded.predict(image_batch)
abs(reloaded_result_batch - result_batch).max()