2019-08-03 16:16:07 +08:00

687 lines
18 KiB
JavaScript

/**
* @author alteredq / http://alteredqualia.com/
*
*/
/* ------------------------------------------------------------------------------------------
// Basic skin shader
// - per-pixel Blinn-Phong diffuse term mixed with half-Lambert wrap-around term (per color component)
// - physically based specular term (Kelemen/Szirmay-Kalos specular reflectance)
//
// - diffuse map
// - bump map
// - specular map
// - point, directional and hemisphere lights (use with "lights: true" material option)
// - fog (use with "fog: true" material option)
//
// ------------------------------------------------------------------------------------------ */
THREE.SkinShaderBasic = {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ "fog" ],
THREE.UniformsLib[ "lights" ],
{
"enableBump": { value: 0 },
"enableSpecular": { value: 0 },
"tDiffuse": { value: null },
"tBeckmann": { value: null },
"diffuse": { value: new THREE.Color( 0xeeeeee ) },
"specular": { value: new THREE.Color( 0x111111 ) },
"opacity": { value: 1 },
"uRoughness": { value: 0.15 },
"uSpecularBrightness": { value: 0.75 },
"bumpMap": { value: null },
"bumpScale": { value: 1 },
"specularMap": { value: null },
"offsetRepeat": { value: new THREE.Vector4( 0, 0, 1, 1 ) },
"uWrapRGB": { value: new THREE.Vector3( 0.75, 0.375, 0.1875 ) }
}
] ),
vertexShader: [
"uniform vec4 offsetRepeat;",
"varying vec3 vNormal;",
"varying vec2 vUv;",
"varying vec3 vViewPosition;",
THREE.ShaderChunk[ "common" ],
THREE.ShaderChunk[ "lights_pars_begin" ],
THREE.ShaderChunk[ "fog_pars_vertex" ],
"void main() {",
" vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );",
" vec4 worldPosition = modelMatrix * vec4( position, 1.0 );",
" vViewPosition = -mvPosition.xyz;",
" vNormal = normalize( normalMatrix * normal );",
" vUv = uv * offsetRepeat.zw + offsetRepeat.xy;",
" gl_Position = projectionMatrix * mvPosition;",
THREE.ShaderChunk[ "fog_vertex" ],
"}"
].join( "\n" ),
fragmentShader: [
"#define USE_BUMPMAP",
"uniform bool enableBump;",
"uniform bool enableSpecular;",
"uniform vec3 diffuse;",
"uniform vec3 specular;",
"uniform float opacity;",
"uniform float uRoughness;",
"uniform float uSpecularBrightness;",
"uniform vec3 uWrapRGB;",
"uniform sampler2D tDiffuse;",
"uniform sampler2D tBeckmann;",
"uniform sampler2D specularMap;",
"varying vec3 vNormal;",
"varying vec2 vUv;",
"varying vec3 vViewPosition;",
THREE.ShaderChunk[ "common" ],
THREE.ShaderChunk[ "bsdfs" ],
THREE.ShaderChunk[ "packing" ],
THREE.ShaderChunk[ "lights_pars_begin" ],
THREE.ShaderChunk[ "fog_pars_fragment" ],
THREE.ShaderChunk[ "bumpmap_pars_fragment" ],
// Fresnel term
"float fresnelReflectance( vec3 H, vec3 V, float F0 ) {",
" float base = 1.0 - dot( V, H );",
" float exponential = pow( base, 5.0 );",
" return exponential + F0 * ( 1.0 - exponential );",
"}",
// Kelemen/Szirmay-Kalos specular BRDF
"float KS_Skin_Specular( vec3 N,", // Bumped surface normal
" vec3 L,", // Points to light
" vec3 V,", // Points to eye
" float m,", // Roughness
" float rho_s", // Specular brightness
" ) {",
" float result = 0.0;",
" float ndotl = dot( N, L );",
" if( ndotl > 0.0 ) {",
" vec3 h = L + V;", // Unnormalized half-way vector
" vec3 H = normalize( h );",
" float ndoth = dot( N, H );",
" float PH = pow( 2.0 * texture2D( tBeckmann, vec2( ndoth, m ) ).x, 10.0 );",
" float F = fresnelReflectance( H, V, 0.028 );",
" float frSpec = max( PH * F / dot( h, h ), 0.0 );",
" result = ndotl * rho_s * frSpec;", // BRDF * dot(N,L) * rho_s
" }",
" return result;",
"}",
"void main() {",
" vec3 outgoingLight = vec3( 0.0 );", // outgoing light does not have an alpha, the surface does
" vec4 diffuseColor = vec4( diffuse, opacity );",
" vec4 colDiffuse = texture2D( tDiffuse, vUv );",
" colDiffuse.rgb *= colDiffuse.rgb;",
" diffuseColor = diffuseColor * colDiffuse;",
" vec3 normal = normalize( vNormal );",
" vec3 viewerDirection = normalize( vViewPosition );",
" float specularStrength;",
" if ( enableSpecular ) {",
" vec4 texelSpecular = texture2D( specularMap, vUv );",
" specularStrength = texelSpecular.r;",
" } else {",
" specularStrength = 1.0;",
" }",
" #ifdef USE_BUMPMAP",
" if ( enableBump ) normal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );",
" #endif",
// point lights
" vec3 totalSpecularLight = vec3( 0.0 );",
" vec3 totalDiffuseLight = vec3( 0.0 );",
" #if NUM_POINT_LIGHTS > 0",
" for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {",
" vec3 lVector = pointLights[ i ].position + vViewPosition.xyz;",
" float attenuation = calcLightAttenuation( length( lVector ), pointLights[ i ].distance, pointLights[ i ].decay );",
" lVector = normalize( lVector );",
" float pointDiffuseWeightFull = max( dot( normal, lVector ), 0.0 );",
" float pointDiffuseWeightHalf = max( 0.5 * dot( normal, lVector ) + 0.5, 0.0 );",
" vec3 pointDiffuseWeight = mix( vec3 ( pointDiffuseWeightFull ), vec3( pointDiffuseWeightHalf ), uWrapRGB );",
" float pointSpecularWeight = KS_Skin_Specular( normal, lVector, viewerDirection, uRoughness, uSpecularBrightness );",
" totalDiffuseLight += pointLight[ i ].color * ( pointDiffuseWeight * attenuation );",
" totalSpecularLight += pointLight[ i ].color * specular * ( pointSpecularWeight * specularStrength * attenuation );",
" }",
" #endif",
// directional lights
" #if NUM_DIR_LIGHTS > 0",
" for( int i = 0; i < NUM_DIR_LIGHTS; i++ ) {",
" vec3 dirVector = directionalLights[ i ].direction;",
" float dirDiffuseWeightFull = max( dot( normal, dirVector ), 0.0 );",
" float dirDiffuseWeightHalf = max( 0.5 * dot( normal, dirVector ) + 0.5, 0.0 );",
" vec3 dirDiffuseWeight = mix( vec3 ( dirDiffuseWeightFull ), vec3( dirDiffuseWeightHalf ), uWrapRGB );",
" float dirSpecularWeight = KS_Skin_Specular( normal, dirVector, viewerDirection, uRoughness, uSpecularBrightness );",
" totalDiffuseLight += directionalLights[ i ].color * dirDiffuseWeight;",
" totalSpecularLight += directionalLights[ i ].color * ( dirSpecularWeight * specularStrength );",
" }",
" #endif",
// hemisphere lights
" #if NUM_HEMI_LIGHTS > 0",
" for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {",
" vec3 lVector = hemisphereLightDirection[ i ];",
" float dotProduct = dot( normal, lVector );",
" float hemiDiffuseWeight = 0.5 * dotProduct + 0.5;",
" totalDiffuseLight += mix( hemisphereLightGroundColor[ i ], hemisphereLightSkyColor[ i ], hemiDiffuseWeight );",
// specular (sky light)
" float hemiSpecularWeight = 0.0;",
" hemiSpecularWeight += KS_Skin_Specular( normal, lVector, viewerDirection, uRoughness, uSpecularBrightness );",
// specular (ground light)
" vec3 lVectorGround = -lVector;",
" hemiSpecularWeight += KS_Skin_Specular( normal, lVectorGround, viewerDirection, uRoughness, uSpecularBrightness );",
" vec3 hemiSpecularColor = mix( hemisphereLightGroundColor[ i ], hemisphereLightSkyColor[ i ], hemiDiffuseWeight );",
" totalSpecularLight += hemiSpecularColor * specular * ( hemiSpecularWeight * specularStrength );",
" }",
" #endif",
" outgoingLight += diffuseColor.xyz * ( totalDiffuseLight + ambientLightColor * diffuse ) + totalSpecularLight;",
" gl_FragColor = linearToOutputTexel( vec4( outgoingLight, diffuseColor.a ) );", // TODO, this should be pre-multiplied to allow for bright highlights on very transparent objects
THREE.ShaderChunk[ "fog_fragment" ],
"}"
].join( "\n" )
};
/* ------------------------------------------------------------------------------------------
// Skin shader
// - Blinn-Phong diffuse term (using normal + diffuse maps)
// - subsurface scattering approximation by four blur layers
// - physically based specular term (Kelemen/Szirmay-Kalos specular reflectance)
//
// - point and directional lights (use with "lights: true" material option)
//
// - based on Nvidia Advanced Skin Rendering GDC 2007 presentation
// and GPU Gems 3 Chapter 14. Advanced Techniques for Realistic Real-Time Skin Rendering
//
// http://developer.download.nvidia.com/presentations/2007/gdc/Advanced_Skin.pdf
// http://http.developer.nvidia.com/GPUGems3/gpugems3_ch14.html
// ------------------------------------------------------------------------------------------ */
THREE.SkinShaderAdvanced = {
uniforms: THREE.UniformsUtils.merge( [
THREE.UniformsLib[ "fog" ],
THREE.UniformsLib[ "lights" ],
{
"passID": { value: 0 },
"tDiffuse": { value: null },
"tNormal": { value: null },
"tBlur1": { value: null },
"tBlur2": { value: null },
"tBlur3": { value: null },
"tBlur4": { value: null },
"tBeckmann": { value: null },
"uNormalScale": { value: 1.0 },
"diffuse": { value: new THREE.Color( 0xeeeeee ) },
"specular": { value: new THREE.Color( 0x111111 ) },
"opacity": { value: 1 },
"uRoughness": { value: 0.15 },
"uSpecularBrightness": { value: 0.75 }
}
] ),
vertexShader: [
"#ifdef VERTEX_TEXTURES",
" uniform sampler2D tDisplacement;",
" uniform float uDisplacementScale;",
" uniform float uDisplacementBias;",
"#endif",
"varying vec3 vNormal;",
"varying vec2 vUv;",
"varying vec3 vViewPosition;",
THREE.ShaderChunk[ "common" ],
THREE.ShaderChunk[ "fog_pars_vertex" ],
"void main() {",
" vec4 worldPosition = modelMatrix * vec4( position, 1.0 );",
" vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );",
" vViewPosition = -mvPosition.xyz;",
" vNormal = normalize( normalMatrix * normal );",
" vUv = uv;",
// displacement mapping
" #ifdef VERTEX_TEXTURES",
" vec3 dv = texture2D( tDisplacement, uv ).xyz;",
" float df = uDisplacementScale * dv.x + uDisplacementBias;",
" vec4 displacedPosition = vec4( vNormal.xyz * df, 0.0 ) + mvPosition;",
" gl_Position = projectionMatrix * displacedPosition;",
" #else",
" gl_Position = projectionMatrix * mvPosition;",
" #endif",
THREE.ShaderChunk[ "fog_vertex" ],
"}",
].join( "\n" ),
vertexShaderUV: [
"varying vec3 vNormal;",
"varying vec2 vUv;",
"varying vec3 vViewPosition;",
THREE.ShaderChunk[ "common" ],
"void main() {",
" vec4 worldPosition = modelMatrix * vec4( position, 1.0 );",
" vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );",
" vViewPosition = -mvPosition.xyz;",
" vNormal = normalize( normalMatrix * normal );",
" vUv = uv;",
" gl_Position = vec4( uv.x * 2.0 - 1.0, uv.y * 2.0 - 1.0, 0.0, 1.0 );",
"}"
].join( "\n" ),
fragmentShader: [
"uniform vec3 diffuse;",
"uniform vec3 specular;",
"uniform float opacity;",
"uniform float uRoughness;",
"uniform float uSpecularBrightness;",
"uniform int passID;",
"uniform sampler2D tDiffuse;",
"uniform sampler2D tNormal;",
"uniform sampler2D tBlur1;",
"uniform sampler2D tBlur2;",
"uniform sampler2D tBlur3;",
"uniform sampler2D tBlur4;",
"uniform sampler2D tBeckmann;",
"uniform float uNormalScale;",
"varying vec3 vNormal;",
"varying vec2 vUv;",
"varying vec3 vViewPosition;",
THREE.ShaderChunk[ "common" ],
THREE.ShaderChunk[ "lights_pars_begin" ],
THREE.ShaderChunk[ "fog_pars_fragment" ],
"float fresnelReflectance( vec3 H, vec3 V, float F0 ) {",
" float base = 1.0 - dot( V, H );",
" float exponential = pow( base, 5.0 );",
" return exponential + F0 * ( 1.0 - exponential );",
"}",
// Kelemen/Szirmay-Kalos specular BRDF
"float KS_Skin_Specular( vec3 N,", // Bumped surface normal
" vec3 L,", // Points to light
" vec3 V,", // Points to eye
" float m,", // Roughness
" float rho_s", // Specular brightness
" ) {",
" float result = 0.0;",
" float ndotl = dot( N, L );",
" if( ndotl > 0.0 ) {",
" vec3 h = L + V;", // Unnormalized half-way vector
" vec3 H = normalize( h );",
" float ndoth = dot( N, H );",
" float PH = pow( 2.0 * texture2D( tBeckmann, vec2( ndoth, m ) ).x, 10.0 );",
" float F = fresnelReflectance( H, V, 0.028 );",
" float frSpec = max( PH * F / dot( h, h ), 0.0 );",
" result = ndotl * rho_s * frSpec;", // BRDF * dot(N,L) * rho_s
" }",
" return result;",
"}",
"void main() {",
" vec3 outgoingLight = vec3( 0.0 );", // outgoing light does not have an alpha, the surface does
" vec4 diffuseColor = vec4( diffuse, opacity );",
" vec4 mSpecular = vec4( specular, opacity );",
" vec4 colDiffuse = texture2D( tDiffuse, vUv );",
" colDiffuse *= colDiffuse;",
" diffuseColor *= colDiffuse;",
// normal mapping
" vec4 posAndU = vec4( -vViewPosition, vUv.x );",
" vec4 posAndU_dx = dFdx( posAndU ), posAndU_dy = dFdy( posAndU );",
" vec3 tangent = posAndU_dx.w * posAndU_dx.xyz + posAndU_dy.w * posAndU_dy.xyz;",
" vec3 normal = normalize( vNormal );",
" vec3 binormal = normalize( cross( tangent, normal ) );",
" tangent = cross( normal, binormal );", // no normalization required
" mat3 tsb = mat3( tangent, binormal, normal );",
" vec3 normalTex = texture2D( tNormal, vUv ).xyz * 2.0 - 1.0;",
" normalTex.xy *= uNormalScale;",
" normalTex = normalize( normalTex );",
" vec3 finalNormal = tsb * normalTex;",
" normal = normalize( finalNormal );",
" vec3 viewerDirection = normalize( vViewPosition );",
// point lights
" vec3 totalDiffuseLight = vec3( 0.0 );",
" vec3 totalSpecularLight = vec3( 0.0 );",
" #if NUM_POINT_LIGHTS > 0",
" for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {",
" vec3 pointVector = normalize( pointLights[ i ].direction );",
" float attenuation = calcLightAttenuation( length( lVector ), pointLights[ i ].distance, pointLights[ i ].decay );",
" float pointDiffuseWeight = max( dot( normal, pointVector ), 0.0 );",
" totalDiffuseLight += pointLightColor[ i ] * ( pointDiffuseWeight * attenuation );",
" if ( passID == 1 ) {",
" float pointSpecularWeight = KS_Skin_Specular( normal, pointVector, viewerDirection, uRoughness, uSpecularBrightness );",
" totalSpecularLight += pointLightColor[ i ] * mSpecular.xyz * ( pointSpecularWeight * attenuation );",
" }",
" }",
" #endif",
// directional lights
" #if NUM_DIR_LIGHTS > 0",
" for( int i = 0; i < NUM_DIR_LIGHTS; i++ ) {",
" vec3 dirVector = directionalLights[ i ].direction;",
" float dirDiffuseWeight = max( dot( normal, dirVector ), 0.0 );",
" totalDiffuseLight += directionalLights[ i ].color * dirDiffuseWeight;",
" if ( passID == 1 ) {",
" float dirSpecularWeight = KS_Skin_Specular( normal, dirVector, viewerDirection, uRoughness, uSpecularBrightness );",
" totalSpecularLight += directionalLights[ i ].color * mSpecular.xyz * dirSpecularWeight;",
" }",
" }",
" #endif",
" outgoingLight += diffuseColor.rgb * ( totalDiffuseLight + totalSpecularLight );",
" if ( passID == 0 ) {",
" outgoingLight = sqrt( outgoingLight );",
" } else if ( passID == 1 ) {",
//"#define VERSION1",
" #ifdef VERSION1",
" vec3 nonblurColor = sqrt(outgoingLight );",
" #else",
" vec3 nonblurColor = outgoingLight;",
" #endif",
" vec3 blur1Color = texture2D( tBlur1, vUv ).xyz;",
" vec3 blur2Color = texture2D( tBlur2, vUv ).xyz;",
" vec3 blur3Color = texture2D( tBlur3, vUv ).xyz;",
" vec3 blur4Color = texture2D( tBlur4, vUv ).xyz;",
//"gl_FragColor = vec4( blur1Color, gl_FragColor.w );",
//"gl_FragColor = vec4( vec3( 0.22, 0.5, 0.7 ) * nonblurColor + vec3( 0.2, 0.5, 0.3 ) * blur1Color + vec3( 0.58, 0.0, 0.0 ) * blur2Color, gl_FragColor.w );",
//"gl_FragColor = vec4( vec3( 0.25, 0.6, 0.8 ) * nonblurColor + vec3( 0.15, 0.25, 0.2 ) * blur1Color + vec3( 0.15, 0.15, 0.0 ) * blur2Color + vec3( 0.45, 0.0, 0.0 ) * blur3Color, gl_FragColor.w );",
" outgoingLight = vec3( vec3( 0.22, 0.437, 0.635 ) * nonblurColor + ",
" vec3( 0.101, 0.355, 0.365 ) * blur1Color + ",
" vec3( 0.119, 0.208, 0.0 ) * blur2Color + ",
" vec3( 0.114, 0.0, 0.0 ) * blur3Color + ",
" vec3( 0.444, 0.0, 0.0 ) * blur4Color );",
" outgoingLight *= sqrt( colDiffuse.xyz );",
" outgoingLight += ambientLightColor * diffuse * colDiffuse.xyz + totalSpecularLight;",
" #ifndef VERSION1",
" outgoingLight = sqrt( outgoingLight );",
" #endif",
" }",
" gl_FragColor = vec4( outgoingLight, diffuseColor.a );", // TODO, this should be pre-multiplied to allow for bright highlights on very transparent objects
THREE.ShaderChunk[ "fog_fragment" ],
"}"
].join( "\n" )
};
/* ------------------------------------------------------------------------------------------
// Beckmann distribution function
// - to be used in specular term of skin shader
// - render a screen-aligned quad to precompute a 512 x 512 texture
//
// - from http://developer.nvidia.com/node/171
------------------------------------------------------------------------------------------ */
THREE.SkinShaderBeckmann = {
uniforms: {},
vertexShader: [
"varying vec2 vUv;",
"void main() {",
" vUv = uv;",
" gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );",
"}"
].join( "\n" ),
fragmentShader: [
"varying vec2 vUv;",
"float PHBeckmann( float ndoth, float m ) {",
" float alpha = acos( ndoth );",
" float ta = tan( alpha );",
" float val = 1.0 / ( m * m * pow( ndoth, 4.0 ) ) * exp( -( ta * ta ) / ( m * m ) );",
" return val;",
"}",
"float KSTextureCompute( vec2 tex ) {",
// Scale the value to fit within [0,1] invert upon lookup.
" return 0.5 * pow( PHBeckmann( tex.x, tex.y ), 0.1 );",
"}",
"void main() {",
" float x = KSTextureCompute( vUv );",
" gl_FragColor = vec4( x, x, x, 1.0 );",
"}"
].join( "\n" )
};