ShadowEditor/test/keras/01_MLP_For_Multi_Class.py
2019-11-15 21:52:22 +08:00

50 lines
1.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# https://keras.io/getting-started/sequential-model-guide/
# Multilayer Perceptron (MLP) for multi-class softmax classification
# 用于多层softmax分类的多层感知器MLP
import numpy as np
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation
from tensorflow.keras.optimizers import SGD
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(
np.random.randint(10, size=(1000, 1)),
num_classes=10
)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(
np.random.randint(10, size=(100, 1)),
num_classes=10
)
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(
lr=0.01,
decay=1e-6,
momentum=0.9,
nesterov=True
)
model.compile(
loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy']
)
model.fit(
x_train,
y_train,
epochs=20,
batch_size=128
)
score = model.evaluate(x_test, y_test, batch_size=128)