ShadowEditor/THREE/Math/Vector4.cs
2018-12-08 07:44:06 +08:00

698 lines
14 KiB
C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace THREE
{
public class Vector4
{
function Vector4(x, y, z, w )
{
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
this.w = (w !== undefined) ? w : 1;
}
isVector4: true,
set: function(x, y, z, w )
{
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
},
setScalar: function(scalar )
{
this.x = scalar;
this.y = scalar;
this.z = scalar;
this.w = scalar;
return this;
},
setX: function(x )
{
this.x = x;
return this;
},
setY: function(y )
{
this.y = y;
return this;
},
setZ: function(z )
{
this.z = z;
return this;
},
setW: function(w )
{
this.w = w;
return this;
},
setComponent: function(index, value )
{
switch (index)
{
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
case 3: this.w = value; break;
default: throw new Error('index is out of range: ' + index);
}
return this;
},
getComponent: function(index )
{
switch (index)
{
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
case 3: return this.w;
default: throw new Error('index is out of range: ' + index);
}
},
clone: function()
{
return new this.constructor(this.x, this.y, this.z, this.w);
},
copy: function(v )
{
this.x = v.x;
this.y = v.y;
this.z = v.z;
this.w = (v.w !== undefined) ? v.w : 1;
return this;
},
add: function(v, w )
{
if (w !== undefined)
{
console.warn('THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
return this.addVectors(v, w);
}
this.x += v.x;
this.y += v.y;
this.z += v.z;
this.w += v.w;
return this;
},
addScalar: function(s )
{
this.x += s;
this.y += s;
this.z += s;
this.w += s;
return this;
},
addVectors: function(a, b )
{
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
this.w = a.w + b.w;
return this;
},
addScaledVector: function(v, s )
{
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
this.w += v.w * s;
return this;
},
sub: function(v, w )
{
if (w !== undefined)
{
console.warn('THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
return this.subVectors(v, w);
}
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
this.w -= v.w;
return this;
},
subScalar: function(s )
{
this.x -= s;
this.y -= s;
this.z -= s;
this.w -= s;
return this;
},
subVectors: function(a, b )
{
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
this.w = a.w - b.w;
return this;
},
multiplyScalar: function(scalar )
{
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
this.w *= scalar;
return this;
},
applyMatrix4: function(m )
{
var x = this.x, y = this.y, z = this.z, w = this.w;
var e = m.elements;
this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w;
this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w;
this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w;
this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w;
return this;
},
divideScalar: function(scalar )
{
return this.multiplyScalar(1 / scalar);
},
setAxisAngleFromQuaternion: function(q )
{
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
// q is assumed to be normalized
this.w = 2 * Math.acos(q.w);
var s = Math.sqrt(1 - q.w * q.w);
if (s < 0.0001)
{
this.x = 1;
this.y = 0;
this.z = 0;
}
else
{
this.x = q.x / s;
this.y = q.y / s;
this.z = q.z / s;
}
return this;
},
setAxisAngleFromRotationMatrix: function(m )
{
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
var angle, x, y, z, // variables for result
epsilon = 0.01, // margin to allow for rounding errors
epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees
te = m.elements,
m11 = te[0], m12 = te[4], m13 = te[8],
m21 = te[1], m22 = te[5], m23 = te[9],
m31 = te[2], m32 = te[6], m33 = te[10];
if ((Math.abs(m12 - m21) < epsilon) &&
(Math.abs(m13 - m31) < epsilon) &&
(Math.abs(m23 - m32) < epsilon))
{
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonal and zero in other terms
if ((Math.abs(m12 + m21) < epsilon2) &&
(Math.abs(m13 + m31) < epsilon2) &&
(Math.abs(m23 + m32) < epsilon2) &&
(Math.abs(m11 + m22 + m33 - 3) < epsilon2))
{
// this singularity is identity matrix so angle = 0
this.set(1, 0, 0, 0);
return this; // zero angle, arbitrary axis
}
// otherwise this singularity is angle = 180
angle = Math.PI;
var xx = (m11 + 1) / 2;
var yy = (m22 + 1) / 2;
var zz = (m33 + 1) / 2;
var xy = (m12 + m21) / 4;
var xz = (m13 + m31) / 4;
var yz = (m23 + m32) / 4;
if ((xx > yy) && (xx > zz))
{
// m11 is the largest diagonal term
if (xx < epsilon)
{
x = 0;
y = 0.707106781;
z = 0.707106781;
}
else
{
x = Math.sqrt(xx);
y = xy / x;
z = xz / x;
}
}
else if (yy > zz)
{
// m22 is the largest diagonal term
if (yy < epsilon)
{
x = 0.707106781;
y = 0;
z = 0.707106781;
}
else
{
y = Math.sqrt(yy);
x = xy / y;
z = yz / y;
}
}
else
{
// m33 is the largest diagonal term so base result on this
if (zz < epsilon)
{
x = 0.707106781;
y = 0.707106781;
z = 0;
}
else
{
z = Math.sqrt(zz);
x = xz / z;
y = yz / z;
}
}
this.set(x, y, z, angle);
return this; // return 180 deg rotation
}
// as we have reached here there are no singularities so we can handle normally
var s = Math.sqrt((m32 - m23) * (m32 - m23) +
(m13 - m31) * (m13 - m31) +
(m21 - m12) * (m21 - m12)); // used to normalize
if (Math.abs(s) < 0.001) s = 1;
// prevent divide by zero, should not happen if matrix is orthogonal and should be
// caught by singularity test above, but I've left it in just in case
this.x = (m32 - m23) / s;
this.y = (m13 - m31) / s;
this.z = (m21 - m12) / s;
this.w = Math.acos((m11 + m22 + m33 - 1) / 2);
return this;
},
min: function(v )
{
this.x = Math.min(this.x, v.x);
this.y = Math.min(this.y, v.y);
this.z = Math.min(this.z, v.z);
this.w = Math.min(this.w, v.w);
return this;
},
max: function(v )
{
this.x = Math.max(this.x, v.x);
this.y = Math.max(this.y, v.y);
this.z = Math.max(this.z, v.z);
this.w = Math.max(this.w, v.w);
return this;
},
clamp: function(min, max )
{
// assumes min < max, componentwise
this.x = Math.max(min.x, Math.min(max.x, this.x));
this.y = Math.max(min.y, Math.min(max.y, this.y));
this.z = Math.max(min.z, Math.min(max.z, this.z));
this.w = Math.max(min.w, Math.min(max.w, this.w));
return this;
},
clampScalar: function()
{
var min, max;
return function clampScalar(minVal, maxVal) {
if (min === undefined)
{
min = new Vector4();
max = new Vector4();
}
min.set(minVal, minVal, minVal, minVal);
max.set(maxVal, maxVal, maxVal, maxVal);
return this.clamp(min, max);
};
}
(),
clampLength: function(min, max )
{
var length = this.length();
return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
},
floor: function()
{
this.x = Math.floor(this.x);
this.y = Math.floor(this.y);
this.z = Math.floor(this.z);
this.w = Math.floor(this.w);
return this;
},
ceil: function()
{
this.x = Math.ceil(this.x);
this.y = Math.ceil(this.y);
this.z = Math.ceil(this.z);
this.w = Math.ceil(this.w);
return this;
},
round: function()
{
this.x = Math.round(this.x);
this.y = Math.round(this.y);
this.z = Math.round(this.z);
this.w = Math.round(this.w);
return this;
},
roundToZero: function()
{
this.x = (this.x < 0) ? Math.ceil(this.x) : Math.floor(this.x);
this.y = (this.y < 0) ? Math.ceil(this.y) : Math.floor(this.y);
this.z = (this.z < 0) ? Math.ceil(this.z) : Math.floor(this.z);
this.w = (this.w < 0) ? Math.ceil(this.w) : Math.floor(this.w);
return this;
},
negate: function()
{
this.x = -this.x;
this.y = -this.y;
this.z = -this.z;
this.w = -this.w;
return this;
},
dot: function(v )
{
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
},
lengthSq: function()
{
return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
},
length: function()
{
return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w);
},
manhattanLength: function()
{
return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w);
},
normalize: function()
{
return this.divideScalar(this.length() || 1);
},
setLength: function(length )
{
return this.normalize().multiplyScalar(length);
},
lerp: function(v, alpha )
{
this.x += (v.x - this.x) * alpha;
this.y += (v.y - this.y) * alpha;
this.z += (v.z - this.z) * alpha;
this.w += (v.w - this.w) * alpha;
return this;
},
lerpVectors: function(v1, v2, alpha )
{
return this.subVectors(v2, v1).multiplyScalar(alpha).add(v1);
},
equals: function(v )
{
return ((v.x === this.x) && (v.y === this.y) && (v.z === this.z) && (v.w === this.w));
},
fromArray: function(array, offset )
{
if (offset === undefined) offset = 0;
this.x = array[offset];
this.y = array[offset + 1];
this.z = array[offset + 2];
this.w = array[offset + 3];
return this;
},
toArray: function(array, offset )
{
if (array === undefined) array = [];
if (offset === undefined) offset = 0;
array[offset] = this.x;
array[offset + 1] = this.y;
array[offset + 2] = this.z;
array[offset + 3] = this.w;
return array;
},
fromBufferAttribute: function(attribute, index, offset )
{
if (offset !== undefined)
{
console.warn('THREE.Vector4: offset has been removed from .fromBufferAttribute().');
}
this.x = attribute.getX(index);
this.y = attribute.getY(index);
this.z = attribute.getZ(index);
this.w = attribute.getW(index);
return this;
}
}
}