2020-06-11 20:59:05 +08:00

411 lines
9.8 KiB
Go

// Copyright 2017-2020 The ShadowEditor Authors. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
//
// For more information, please visit: https://github.com/tengge1/ShadowEditor
// You can also visit: https://gitee.com/tengge1/ShadowEditor
//
// This package is translated from three.js, visit `https://github.com/mrdoob/three.js`
// for more information.
package three
import (
"math"
)
var _points = []Vector3{
Vector3{},
Vector3{},
Vector3{},
Vector3{},
Vector3{},
Vector3{},
Vector3{},
Vector3{},
}
var _vectorB3 = Vector3{}
var _box = Box3{}
// triangle centered vertices
var _v0 = Vector3{}
var _v1 = Vector3{}
var _v2 = Vector3{}
// triangle edge vectors
var _f0 = Vector3{}
var _f1 = Vector3{}
var _f2 = Vector3{}
var _center = Vector3{}
var _extents = Vector3{}
var _triangleNormal = Vector3{}
var _testAxis = Vector3{}
// NewBox3 :
func NewBox3(min, max Vector3) *Box3 {
return &Box3{min, max}
}
// Box3 :
type Box3 struct {
Min Vector3
Max Vector3
}
// Set :
func (b Box3) Set(min, max Vector3) *Box3 {
b.Min.Copy(min)
b.Max.Copy(max)
return &b
}
// SetFromArray :
func (b Box3) SetFromArray(array []float64) *Box3 {
minX := math.Inf(1)
minY := math.Inf(1)
minZ := math.Inf(1)
maxX := math.Inf(-1)
maxY := math.Inf(-1)
maxZ := math.Inf(-1)
for i, l := 0, len(array); i < l; i += 3 {
x := array[i]
y := array[i+1]
z := array[i+2]
if x < minX {
minX = x
}
if y < minY {
minY = y
}
if z < minZ {
minZ = z
}
if x > maxX {
maxX = x
}
if y > maxY {
maxY = y
}
if z > maxZ {
maxZ = z
}
}
b.Min.Set(minX, minY, minZ)
b.Max.Set(maxX, maxY, maxZ)
return &b
}
// SetFromPoints :
func (b Box3) SetFromPoints(points []Vector3) *Box3 {
b.MakeEmpty()
for i, il := 0, len(points); i < il; i++ {
b.ExpandByPoint(points[i])
}
return &b
}
// SetFromCenterAndSize :
func (b Box3) SetFromCenterAndSize(center, size Vector3) *Box3 {
halfSize := _vectorB3.Copy(size).MultiplyScalar(0.5)
b.Min.Copy(center).Sub(*halfSize)
b.Max.Copy(center).Add(*halfSize)
return &b
}
// Clone :
func (b Box3) Clone() *Box3 {
return NewBox3(Vector3{}, Vector3{}).Copy(b)
}
// Copy :
func (b Box3) Copy(box Box3) *Box3 {
b.Min.Copy(box.Min)
b.Max.Copy(box.Max)
return &b
}
// MakeEmpty :
func (b Box3) MakeEmpty() *Box3 {
b.Min.X = math.Inf(1)
b.Min.Y = math.Inf(1)
b.Min.Z = math.Inf(1)
b.Max.X = math.Inf(-1)
b.Max.Y = math.Inf(-1)
b.Max.Z = math.Inf(-1)
return &b
}
// IsEmpty :
func (b Box3) IsEmpty() bool {
// b is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return (b.Max.X < b.Min.X) || (b.Max.Y < b.Min.Y) || (b.Max.Z < b.Min.Z)
}
// GetCenter :
func (b Box3) GetCenter(target Vector3) *Vector3 {
if b.IsEmpty() {
return target.Set(0, 0, 0)
}
return target.AddVectors(b.Min, b.Max).MultiplyScalar(0.5)
}
// GetSize :
func (b Box3) GetSize(target Vector3) *Vector3 {
if b.IsEmpty() {
return target.Set(0, 0, 0)
}
return target.SubVectors(b.Max, b.Min)
}
// ExpandByPoint :
func (b Box3) ExpandByPoint(point Vector3) *Box3 {
b.Min.Min(point)
b.Max.Max(point)
return &b
}
// ExpandByVector :
func (b Box3) ExpandByVector(vector Vector3) *Box3 {
b.Min.Sub(vector)
b.Max.Add(vector)
return &b
}
// ExpandByScalar :
func (b Box3) ExpandByScalar(scalar float64) *Box3 {
b.Min.AddScalar(-scalar)
b.Max.AddScalar(scalar)
return &b
}
// ContainsPoint :
func (b Box3) ContainsPoint(point Vector3) bool {
return !(point.X < b.Min.X || point.X > b.Max.X ||
point.Y < b.Min.Y || point.Y > b.Max.Y ||
point.Z < b.Min.Z || point.Z > b.Max.Z)
}
// ContainsBox :
func (b Box3) ContainsBox(box Box3) bool {
return b.Min.X <= box.Min.X && box.Max.X <= b.Max.X &&
b.Min.Y <= box.Min.Y && box.Max.Y <= b.Max.Y &&
b.Min.Z <= box.Min.Z && box.Max.Z <= b.Max.Z
}
// GetParameter :
func (b Box3) GetParameter(point, target Vector3) *Vector3 {
// b can potentially have a divide by zero if the box
// has a size dimension of 0.
return target.Set(
(point.X-b.Min.X)/(b.Max.X-b.Min.X),
(point.Y-b.Min.Y)/(b.Max.Y-b.Min.Y),
(point.Z-b.Min.Z)/(b.Max.Z-b.Min.Z),
)
}
// IntersectsBox :
func (b Box3) IntersectsBox(box Box3) bool {
// using 6 splitting planes to rule out intersections.
return !(box.Max.X < b.Min.X || box.Min.X > b.Max.X ||
box.Max.Y < b.Min.Y || box.Min.Y > b.Max.Y ||
box.Max.Z < b.Min.Z || box.Min.Z > b.Max.Z)
}
// IntersectsSphere :
func (b Box3) IntersectsSphere(sphere Sphere) bool {
// Find the point on the AABB closest to the sphere center.
b.ClampPoint(sphere.Center, _vectorB3)
// If that point is inside the sphere, the AABB and sphere intersect.
return _vectorB3.DistanceToSquared(sphere.Center) <= sphere.Radius*sphere.Radius
}
// IntersectsPlane :
func (b Box3) IntersectsPlane(plane Plane) bool {
// We compute the minimum and maximum dot product values. If those values
// are on the same side (back or front) of the plane, then there is no intersection.
var min, max float64
if plane.Normal.X > 0 {
min = plane.Normal.X * b.Min.X
max = plane.Normal.X * b.Max.X
} else {
min = plane.Normal.X * b.Max.X
max = plane.Normal.X * b.Min.X
}
if plane.Normal.Y > 0 {
min += plane.Normal.Y * b.Min.Y
max += plane.Normal.Y * b.Max.Y
} else {
min += plane.Normal.Y * b.Max.Y
max += plane.Normal.Y * b.Min.Y
}
if plane.Normal.Z > 0 {
min += plane.Normal.Z * b.Min.Z
max += plane.Normal.Z * b.Max.Z
} else {
min += plane.Normal.Z * b.Max.Z
max += plane.Normal.Z * b.Min.Z
}
return (min <= -plane.Constant && max >= -plane.Constant)
}
// IntersectsTriangle :
func (b Box3) IntersectsTriangle(triangle Triangle) bool {
if b.IsEmpty() {
return false
}
// compute box center and extents
b.GetCenter(_center)
_extents.SubVectors(b.Max, _center)
// translate triangle to aabb origin
_v0.SubVectors(triangle.A, _center)
_v1.SubVectors(triangle.B, _center)
_v2.SubVectors(triangle.C, _center)
// compute edge vectors for triangle
_f0.SubVectors(_v1, _v0)
_f1.SubVectors(_v2, _v1)
_f2.SubVectors(_v0, _v2)
// test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
// make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
// axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
var axes = []float64{
0, -_f0.Z, _f0.Y, 0, -_f1.Z, _f1.Y, 0, -_f2.Z, _f2.Y,
_f0.Z, 0, -_f0.X, _f1.Z, 0, -_f1.X, _f2.Z, 0, -_f2.X,
-_f0.Y, _f0.X, 0, -_f1.Y, _f1.X, 0, -_f2.Y, _f2.X, 0,
}
if !satForAxes(axes, _v0, _v1, _v2, _extents) {
return false
}
// test 3 face normals from the aabb
axes = []float64{1, 0, 0, 0, 1, 0, 0, 0, 1}
if !satForAxes(axes, _v0, _v1, _v2, _extents) {
return false
}
// finally testing the face normal of the triangle
// use already existing triangle edge vectors here
_triangleNormal.CrossVectors(_f0, _f1)
axes = []float64{_triangleNormal.X, _triangleNormal.Y, _triangleNormal.Z}
return satForAxes(axes, _v0, _v1, _v2, _extents)
}
// ClampPoint :
func (b Box3) ClampPoint(point Vector3, target Vector3) *Vector3 {
return target.Copy(point).Clamp(b.Min, b.Max)
}
// DistanceToPoint :
func (b Box3) DistanceToPoint(point Vector3) float64 {
clampedPoint := _vectorB3.Copy(point).Clamp(b.Min, b.Max)
return clampedPoint.Sub(point).Length()
}
// GetBoundingSphere :
func (b Box3) GetBoundingSphere(target Sphere) *Sphere {
b.GetCenter(target.Center)
target.Radius = b.GetSize(_vectorB3).Length() * 0.5
return &target
}
// Intersect :
func (b Box3) Intersect(box Box3) *Box3 {
b.Min.Max(box.Min)
b.Max.Min(box.Max)
// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
if b.IsEmpty() {
b.MakeEmpty()
}
return &b
}
// Union :
func (b Box3) Union(box Box3) *Box3 {
b.Min.Min(box.Min)
b.Max.Max(box.Max)
return &b
}
// ApplyMatrix4 :
func (b Box3) ApplyMatrix4(matrix Matrix4) *Box3 {
// transform of empty box is an empty box.
if b.IsEmpty() {
return &b
}
// NOTE: I am using a binary pattern to specify all 2^3 combinations below
_points[0].Set(b.Min.X, b.Min.Y, b.Min.Z).ApplyMatrix4(matrix) // 000
_points[1].Set(b.Min.X, b.Min.Y, b.Max.Z).ApplyMatrix4(matrix) // 001
_points[2].Set(b.Min.X, b.Max.Y, b.Min.Z).ApplyMatrix4(matrix) // 010
_points[3].Set(b.Min.X, b.Max.Y, b.Max.Z).ApplyMatrix4(matrix) // 011
_points[4].Set(b.Max.X, b.Min.Y, b.Min.Z).ApplyMatrix4(matrix) // 100
_points[5].Set(b.Max.X, b.Min.Y, b.Max.Z).ApplyMatrix4(matrix) // 101
_points[6].Set(b.Max.X, b.Max.Y, b.Min.Z).ApplyMatrix4(matrix) // 110
_points[7].Set(b.Max.X, b.Max.Y, b.Max.Z).ApplyMatrix4(matrix) // 111
b.SetFromPoints(_points)
return &b
}
// Translate :
func (b Box3) Translate(offset Vector3) *Box3 {
b.Min.Add(offset)
b.Max.Add(offset)
return &b
}
// Equals :
func (b Box3) Equals(box Box3) bool {
return box.Min.Equals(b.Min) && box.Max.Equals(b.Max)
}
// satForAxes :
func satForAxes(axes []float64, v0, v1, v2, extents Vector3) bool {
for i, j := 0, len(axes)-3; i <= j; i += 3 {
_testAxis.FromArray(axes, i)
// project the aabb onto the seperating axis
r := extents.X*math.Abs(_testAxis.X) + extents.Y*math.Abs(_testAxis.Y) + extents.Z*math.Abs(_testAxis.Z)
// project all 3 vertices of the triangle onto the seperating axis
p0 := v0.Dot(_testAxis)
p1 := v1.Dot(_testAxis)
p2 := v2.Dot(_testAxis)
// actual test, basically see if either of the most extreme of the triangle points intersects r
if math.Max(-math.Max(p0, math.Max(p1, p2)), math.Min(p0, math.Min(p1, p2))) > r {
// points of the projected triangle are outside the projected half-length of the aabb
// the axis is seperating and we can exit
return false
}
}
return true
}