using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using _Math = System.Math; namespace THREE { /// /// @author supereggbert / http://www.paulbrunt.co.uk/ /// @author philogb / http://blog.thejit.org/ /// @author mikael emtinger / http://gomo.se/ /// @author egraether / http://egraether.com/ /// @author WestLangley / http://github.com/WestLangley /// @author tengge / https://github.com/tengge1 /// public class Vector4 { public double x; public double y; public double z; public double w; public Vector4(double x = 0.0, double y = 0.0, double z = 0.0, double w = 1.0) { this.x = x; this.y = y; this.z = z; this.w = w; } public const bool isVector4 = true; public Vector4 Set(double x, double y, double z, double w) { this.x = x; this.y = y; this.z = z; this.w = w; return this; } public Vector4 SetScalar(double scalar) { this.x = scalar; this.y = scalar; this.z = scalar; this.w = scalar; return this; } public Vector4 SetX(double x) { this.x = x; return this; } public Vector4 SetY(double y) { this.y = y; return this; } public Vector4 SetZ(double z) { this.z = z; return this; } public Vector4 SetW(double w) { this.w = w; return this; } public Vector4 SetComponent(int index, double value) { switch (index) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Exception("index is out of range: " + index); } return this; } public double GetComponent(int index) { switch (index) { case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Exception("index is out of range: " + index); } } public Vector4 Clone() { return new Vector4(this.x, this.y, this.z, this.w); } public Vector4 Copy(Vector4 v) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = v.w; return this; } public Vector4 Add(Vector4 v, Vector4 w = null) { if (w != null) { Console.WriteLine("THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead."); return this.AddVectors(v, w); } this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; } public Vector4 AddScalar(double s) { this.x += s; this.y += s; this.z += s; this.w += s; return this; } public Vector4 AddVectors(Vector4 a, Vector4 b) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; } public Vector4 AddScaledVector(Vector4 v, double s) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; this.w += v.w * s; return this; } public Vector4 Sub(Vector4 v, Vector4 w = null) { if (w != null) { Console.WriteLine("THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead."); return this.SubVectors(v, w); } this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; } public Vector4 SubScalar(double s) { this.x -= s; this.y -= s; this.z -= s; this.w -= s; return this; } public Vector4 SubVectors(Vector4 a, Vector4 b) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; } public Vector4 MultiplyScalar(double scalar) { this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar; return this; } public Vector4 ApplyMatrix4(Matrix4 m) { double x = this.x, y = this.y, z = this.z, w = this.w; double[] e = m.elements; this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w; this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w; this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w; this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w; return this; } public Vector4 DivideScalar(double scalar) { return this.MultiplyScalar(1 / scalar); } public Vector4 SetAxisAngleFromQuaternion(Quaternion q) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * _Math.Acos(q._w); var s = _Math.Sqrt(1 - q._w * q._w); if (s < 0.0001) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q._x / s; this.y = q._y / s; this.z = q._z / s; } return this; } public Vector4 SetAxisAngleFromRotationMatrix(Matrix4 m) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) double angle, x, y, z, // variables for result epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees double[] te = m.elements; double m11 = te[0], m12 = te[4], m13 = te[8], m21 = te[1], m22 = te[5], m23 = te[9], m31 = te[2], m32 = te[6], m33 = te[10]; if ((_Math.Abs(m12 - m21) < epsilon) && (_Math.Abs(m13 - m31) < epsilon) && (_Math.Abs(m23 - m32) < epsilon)) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if ((_Math.Abs(m12 + m21) < epsilon2) && (_Math.Abs(m13 + m31) < epsilon2) && (_Math.Abs(m23 + m32) < epsilon2) && (_Math.Abs(m11 + m22 + m33 - 3) < epsilon2)) { // this singularity is identity matrix so angle = 0 this.Set(1, 0, 0, 0); return this; // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = _Math.PI; var xx = (m11 + 1) / 2; var yy = (m22 + 1) / 2; var zz = (m33 + 1) / 2; var xy = (m12 + m21) / 4; var xz = (m13 + m31) / 4; var yz = (m23 + m32) / 4; if ((xx > yy) && (xx > zz)) { // m11 is the largest diagonal term if (xx < epsilon) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = _Math.Sqrt(xx); y = xy / x; z = xz / x; } } else if (yy > zz) { // m22 is the largest diagonal term if (yy < epsilon) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = _Math.Sqrt(yy); x = xy / y; z = yz / y; } } else { // m33 is the largest diagonal term so base result on this if (zz < epsilon) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = _Math.Sqrt(zz); x = xz / z; y = yz / z; } } this.Set(x, y, z, angle); return this; // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally var s = _Math.Sqrt((m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12)); // used to normalize if (_Math.Abs(s) < 0.001) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = (m32 - m23) / s; this.y = (m13 - m31) / s; this.z = (m21 - m12) / s; this.w = _Math.Acos((m11 + m22 + m33 - 1) / 2); return this; } public Vector4 Min(Vector4 v) { this.x = _Math.Min(this.x, v.x); this.y = _Math.Min(this.y, v.y); this.z = _Math.Min(this.z, v.z); this.w = _Math.Min(this.w, v.w); return this; } public Vector4 Max(Vector4 v) { this.x = _Math.Max(this.x, v.x); this.y = _Math.Max(this.y, v.y); this.z = _Math.Max(this.z, v.z); this.w = _Math.Max(this.w, v.w); return this; } public Vector4 Clamp(Vector4 min, Vector4 max) { // assumes min < max, componentwise this.x = _Math.Max(min.x, _Math.Min(max.x, this.x)); this.y = _Math.Max(min.y, _Math.Min(max.y, this.y)); this.z = _Math.Max(min.z, _Math.Min(max.z, this.z)); this.w = _Math.Max(min.w, _Math.Min(max.w, this.w)); return this; } public Vector4 ClampScalar(double minVal, double maxVal) { Vector4 min = new Vector4(), max = new Vector4(); min.Set(minVal, minVal, minVal, minVal); max.Set(maxVal, maxVal, maxVal, maxVal); return this.Clamp(min, max); } public Vector4 ClampLength(double min, double max) { var length = this.Length(); return this.DivideScalar(length == 0 ? 1 : 0).MultiplyScalar(_Math.Max(min, _Math.Min(max, length))); } public Vector4 Floor() { this.x = _Math.Floor(this.x); this.y = _Math.Floor(this.y); this.z = _Math.Floor(this.z); this.w = _Math.Floor(this.w); return this; } public Vector4 Ceil() { this.x = _Math.Ceiling(this.x); this.y = _Math.Ceiling(this.y); this.z = _Math.Ceiling(this.z); this.w = _Math.Ceiling(this.w); return this; } public Vector4 Round() { this.x = _Math.Round(this.x); this.y = _Math.Round(this.y); this.z = _Math.Round(this.z); this.w = _Math.Round(this.w); return this; } public Vector4 RoundToZero() { this.x = (this.x < 0) ? _Math.Ceiling(this.x) : _Math.Floor(this.x); this.y = (this.y < 0) ? _Math.Ceiling(this.y) : _Math.Floor(this.y); this.z = (this.z < 0) ? _Math.Ceiling(this.z) : _Math.Floor(this.z); this.w = (this.w < 0) ? _Math.Ceiling(this.w) : _Math.Floor(this.w); return this; } public Vector4 Negate() { this.x = -this.x; this.y = -this.y; this.z = -this.z; this.w = -this.w; return this; } public double Dot(Vector4 v) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; } public double LengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; } public double Length() { return _Math.Sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w); } public double ManhattanLength() { return _Math.Abs(this.x) + _Math.Abs(this.y) + _Math.Abs(this.z) + _Math.Abs(this.w); } public Vector4 Normalize() { var len = this.Length(); return this.DivideScalar(len == 0 ? 1 : len); } public Vector4 SetLength(double length) { return this.Normalize().MultiplyScalar(length); } public Vector4 Lerp(Vector4 v, double alpha) { this.x += (v.x - this.x) * alpha; this.y += (v.y - this.y) * alpha; this.z += (v.z - this.z) * alpha; this.w += (v.w - this.w) * alpha; return this; } public Vector4 LerpVectors(Vector4 v1, Vector4 v2, double alpha) { return this.SubVectors(v2, v1).MultiplyScalar(alpha).Add(v1); } public bool Equals(Vector4 v) { return v.x == this.x && v.y == this.y && v.z == this.z && v.w == this.w; } public Vector4 FromArray(double[] array, int offset = 0) { this.x = array[offset]; this.y = array[offset + 1]; this.z = array[offset + 2]; this.w = array[offset + 3]; return this; } double[] ToArray(double[] array = null, int offset = 0) { if (array == null) array = new double[4]; array[offset] = this.x; array[offset + 1] = this.y; array[offset + 2] = this.z; array[offset + 3] = this.w; return array; } } }