yourmother 3022cf4fa5 OcCryptoLib: Sha2
Use safe macro defines
2019-09-04 19:46:58 +03:00

492 lines
15 KiB
C

/** @file
OcCryptoLib
Copyright (c) 2018, savvas
All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
/**
* Filename: sha256.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the SHA-256 hashing algorithm.
SHA-256 is one of the three algorithms in the SHA2
specification. The others, SHA-384 and SHA-512, are not
offered in this implementation.
Algorithm specification can be found here:
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
This implementation uses little endian byte order.
**/
#ifdef EFIAPI
#include <Library/BaseMemoryLib.h>
#endif
#include <Library/OcCryptoLib.h>
#define UNPACK64(x, str) \
do { \
*((str) + 7) = (UINT8) ((x) ); \
*((str) + 6) = (UINT8) ((x) >> 8); \
*((str) + 5) = (UINT8) ((x) >> 16); \
*((str) + 4) = (UINT8) ((x) >> 24); \
*((str) + 3) = (UINT8) ((x) >> 32); \
*((str) + 2) = (UINT8) ((x) >> 40); \
*((str) + 1) = (UINT8) ((x) >> 48); \
*((str) + 0) = (UINT8) ((x) >> 56); \
} while(0)
#define PACK64(str, x) \
do { \
*(x) = ((UINT64) *((str) + 7) ) \
| ((UINT64) *((str) + 6) << 8) \
| ((UINT64) *((str) + 5) << 16) \
| ((UINT64) *((str) + 4) << 24) \
| ((UINT64) *((str) + 3) << 32) \
| ((UINT64) *((str) + 2) << 40) \
| ((UINT64) *((str) + 1) << 48) \
| ((UINT64) *((str) + 0) << 56); \
} while (0)
#define PACK32(str, x) \
do { \
*(x) = ((UINT32) *((str) + 3) ) \
| ((UINT32) *((str) + 2) << 8) \
| ((UINT32) *((str) + 1) << 16) \
| ((UINT32) *((str) + 0) << 24); \
} while(0)
#define UNPACK64(x, str) \
do { \
*((str) + 7) = (UINT8) ((x) ); \
*((str) + 6) = (UINT8) ((x) >> 8); \
*((str) + 5) = (UINT8) ((x) >> 16); \
*((str) + 4) = (UINT8) ((x) >> 24); \
*((str) + 3) = (UINT8) ((x) >> 32); \
*((str) + 2) = (UINT8) ((x) >> 40); \
*((str) + 1) = (UINT8) ((x) >> 48); \
*((str) + 0) = (UINT8) ((x) >> 56); \
} while(0)
#define SHFR(x, n) (x >> n)
#define ROTLEFT(a, b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a, b) (((a) >> (b)) | ((a) << (32-(b))))
#define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
//
// Sha 256
//
#define SHA256_EP0(x) (ROTRIGHT(x, 2) ^ ROTRIGHT(x, 13) ^ ROTRIGHT(x, 22))
#define SHA256_EP1(x) (ROTRIGHT(x, 6) ^ ROTRIGHT(x, 11) ^ ROTRIGHT(x, 25))
#define SHA256_SIG0(x) (ROTRIGHT(x, 7) ^ ROTRIGHT(x, 18) ^ ((x) >> 3))
#define SHA256_SIG1(x) (ROTRIGHT(x, 17) ^ ROTRIGHT(x, 19) ^ ((x) >> 10))
//
// Sha 512
//
#define SHA512_EP0(x) (ROTRIGHT(x, 28) ^ ROTRIGHT(x, 34) ^ ROTRIGHT(x, 39))
#define SHA512_EP1(x) (ROTRIGHT(x, 14) ^ ROTRIGHT(x, 18) ^ ROTRIGHT(x, 41))
#define SHA512_SIG0(x) (ROTRIGHT(x, 1) ^ ROTRIGHT(x, 8) ^ SHFR(x, 7))
#define SHA512_SIG1(x) (ROTRIGHT(x, 19) ^ ROTRIGHT(x, 61) ^ SHFR(x, 6))
#define SHA512_SCR(Index) \
do { \
W[Index] = SHA512_SIG1(W[Index - 2]) + W[Index - 7] \
+ SHA512_SIG0(W[Index - 15]) + W[Index - 16]; \
} while(0)
#define SHA512_EXP(a, b, c, d, e, f, g ,h, j) \
do { \
T1 = Wv[h] + SHA512_EP1(Wv[e]) + CH(Wv[e], Wv[f], Wv[g])\
+ SHA512_K[j] + W[j]; \
T2 = SHA512_EP0(Wv[a]) + MAJ(Wv[a], Wv[b], Wv[c]); \
Wv[d] += T1; \
Wv[h] = T1 + T2; \
} while(0)
STATIC CONST UINT32 SHA256_K[64] = {
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2
};
STATIC UINT64 SHA512_K[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL,
0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL,
0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL,
0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL,
0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL,
0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL,
0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL,
0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL,
0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL,
0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL,
0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL,
0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL,
0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL,
0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};
//
// Sha 384 State
//
STATIC CONST UINT64 SHA384_H0[8] = {
0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL,
0x9159015a3070dd17ULL, 0x152fecd8f70e5939ULL,
0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL,
0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL
};
//
// Sha 512 State
//
STATIC CONST UINT64 SHA512_H0[8] = {
0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
};
//
// Sha 256 functions
//
VOID
Sha256Transform (
SHA256_CONTEXT *Context,
CONST UINT8 *Data
)
{
UINT32 A, B, C, D, E, F, G, H, Index1, Index2, T1, T2;
UINT32 M[64];
for (Index1 = 0, Index2 = 0; Index1 < 16; Index1++, Index2 += 4) {
M[Index1] = ((UINT32)Data[Index2] << 24)
| ((UINT32)Data[Index2 + 1] << 16)
| ((UINT32)Data[Index2 + 2] << 8)
| ((UINT32)Data[Index2 + 3]);
}
for ( ; Index1 < 64; Index1++) {
M[Index1] = SHA256_SIG1 (M[Index1 - 2]) + M[Index1 - 7] + SHA256_SIG0 (M[Index1 - 15]) + M[Index1 - 16];
}
A = Context->State[0];
B = Context->State[1];
C = Context->State[2];
D = Context->State[3];
E = Context->State[4];
F = Context->State[5];
G = Context->State[6];
H = Context->State[7];
for (Index1 = 0; Index1 < 64; Index1++) {
T1 = H + SHA256_EP1 (E) + CH (E, F, G) + SHA256_K[Index1] + M[Index1];
T2 = SHA256_EP0 (A) + MAJ (A, B, C);
H = G;
G = F;
F = E;
E = D + T1;
D = C;
C = B;
B = A;
A = T1 + T2;
}
Context->State[0] += A;
Context->State[1] += B;
Context->State[2] += C;
Context->State[3] += D;
Context->State[4] += E;
Context->State[5] += F;
Context->State[6] += G;
Context->State[7] += H;
}
VOID
Sha256Init (
SHA256_CONTEXT *Context
)
{
Context->DataLen = 0;
Context->BitLen = 0;
Context->State[0] = 0x6A09E667;
Context->State[1] = 0xBB67AE85;
Context->State[2] = 0x3C6EF372;
Context->State[3] = 0xA54FF53A;
Context->State[4] = 0x510E527F;
Context->State[5] = 0x9B05688C;
Context->State[6] = 0x1F83D9AB;
Context->State[7] = 0X5BE0CD19;
}
VOID
Sha256Update (
SHA256_CONTEXT *Context,
CONST UINT8 *Data,
UINTN Len
)
{
UINT32 Index;
for (Index = 0; Index < Len; Index++) {
Context->Data[Context->DataLen] = Data[Index];
Context->DataLen++;
if (Context->DataLen == 64) {
Sha256Transform (Context, Context->Data);
Context->BitLen += 512;
Context->DataLen = 0;
}
}
}
VOID
Sha256Final (
SHA256_CONTEXT *Context,
UINT8 *HashDigest
)
{
UINT32 Index = 0;
Index = Context->DataLen;
//
// Pad whatever data is left in the buffer.
//
if (Context->DataLen < 56) {
Context->Data[Index++] = 0x80;
ZeroMem (Context->Data + Index, 56-Index);
} else {
Context->Data[Index++] = 0x80;
ZeroMem (Context->Data + Index, 64-Index);
Sha256Transform (Context, Context->Data);
ZeroMem (Context->Data, 56);
}
//
// Append to the padding the total Message's length in bits and transform.
//
Context->BitLen += Context->DataLen * 8;
Context->Data[63] = (UINT8) Context->BitLen;
Context->Data[62] = (UINT8) (Context->BitLen >> 8);
Context->Data[61] = (UINT8) (Context->BitLen >> 16);
Context->Data[60] = (UINT8) (Context->BitLen >> 24);
Context->Data[59] = (UINT8) (Context->BitLen >> 32);
Context->Data[58] = (UINT8) (Context->BitLen >> 40);
Context->Data[57] = (UINT8) (Context->BitLen >> 48);
Context->Data[56] = (UINT8) (Context->BitLen >> 56);
Sha256Transform (Context, Context->Data);
//
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final State to the output hash.
//
for (Index = 0; Index < 4; Index++) {
HashDigest[Index] = (UINT8) ((Context->State[0] >> (24 - Index * 8)) & 0x000000FF);
HashDigest[Index + 4] = (UINT8) ((Context->State[1] >> (24 - Index * 8)) & 0x000000FF);
HashDigest[Index + 8] = (UINT8) ((Context->State[2] >> (24 - Index * 8)) & 0x000000FF);
HashDigest[Index + 12] = (UINT8) ((Context->State[3] >> (24 - Index * 8)) & 0x000000FF);
HashDigest[Index + 16] = (UINT8) ((Context->State[4] >> (24 - Index * 8)) & 0x000000FF);
HashDigest[Index + 20] = (UINT8) ((Context->State[5] >> (24 - Index * 8)) & 0x000000FF);
HashDigest[Index + 24] = (UINT8) ((Context->State[6] >> (24 - Index * 8)) & 0x000000FF);
HashDigest[Index + 28] = (UINT8) ((Context->State[7] >> (24 - Index * 8)) & 0x000000FF);
}
}
VOID
Sha256 (
UINT8 *Hash,
UINT8 *Data,
UINTN Len
)
{
SHA256_CONTEXT Ctx;
Sha256Init (&Ctx);
Sha256Update (&Ctx, Data, Len);
Sha256Final (&Ctx, Hash);
}
//
// Sha 512 functions
//
VOID
Sha512Transform (
SHA512_CONTEXT *Context,
CONST UINT8 *Data,
UINT32 BlockNb
)
{
UINT64 W[80];
UINT64 Wv[8];
UINT64 T1;
UINT64 T2;
CONST UINT8 *SubBlock = NULL;
INTN Index1, Index2;
for (Index1 = 0; Index1 < (int) BlockNb; Index1++) {
SubBlock = Data + (Index1 << 7);
for (Index2 = 0; Index2 < 16; Index2++) {
PACK64 (&SubBlock[Index2 << 3], &W[Index2]);
}
for (Index2 = 16; Index2 < 80; Index2++) {
SHA512_SCR (Index2);
}
for (Index2 = 0; Index2 < 8; Index2++) {
Wv[Index2] = Context->State[Index2];
}
for (Index2 = 0; Index2 < 80; Index2++) {
T1 = Wv[7] + SHA512_EP1 (Wv[4])
+ CH (Wv[4], Wv[5], Wv[6]) + SHA512_K[Index2]
+ W[Index2];
T2 = SHA512_EP0(Wv[0]) + MAJ(Wv[0], Wv[1], Wv[2]);
Wv[7] = Wv[6];
Wv[6] = Wv[5];
Wv[5] = Wv[4];
Wv[4] = Wv[3] + T1;
Wv[3] = Wv[2];
Wv[2] = Wv[1];
Wv[1] = Wv[0];
Wv[0] = T1 + T2;
}
for (Index2 = 0; Index2 < 8; Index2++) {
Context->State[Index2] += Wv[Index2];
}
}
}
VOID
Sha512Init (
SHA512_CONTEXT *Context
)
{
INTN Index;
for (Index = 0; Index < 8; Index++) {
Context->State[Index] = SHA512_H0[Index];
}
Context->Length = 0;
Context->TotalLength = 0;
}
VOID
Sha512Update (
SHA512_CONTEXT *Context,
CONST UINT8 *Data,
UINT32 Len
)
{
UINT32 BlockNb;
UINT32 NewLen, RemLen, TmpLen;
CONST UINT8 *ShiftedMsg;
TmpLen = SHA512_BLOCK_SIZE - Context->Len;
RemLen = Len < TmpLen ? Len : TmpLen;
CopyMem (&Context->Block[Context->Len], Data, RemLen);
if (Context->Len + Len < SHA512_BLOCK_SIZE) {
Context->Len += Len;
return;
}
NewLen = Len - RemLen;
BlockNb = NewLen / SHA512_BLOCK_SIZE;
ShiftedMsg = Data + RemLen;
Sha512Transform (Context, Context->Block, 1);
Sha512Transform (Context, ShiftedMsg, BlockNb);
RemLen = NewLen % SHA512_BLOCK_SIZE;
CopyMem (Context->Block, &ShiftedMsg[BlockNb << 7], RemLen);
Context->Len = RemLen;
Context->TotalLength += (BlockNb + 1) << 7;
}
VOID
Sha512Final (
SHA512_CONTEXT *Context,
UINT8 *HashDigest
)
{
UINT32 BlockNb;
UINT32 PmLen;
UINT32 LenB;
INTN Index;
BlockNb = ((SHA512_BLOCK_SIZE - 17) < (Context->Length % SHA512_BLOCK_SIZE)) + 1;
LenB = (Context->TotalLength + Context->Length) << 3;
PmLen = BlockNb << 7;
ZeroMem (Context->Block + Context->Length, PmLen - Context->Length);
Context->Block[Context->Length] = 0x80;
UNPACK32 (LenB, Context->Block + PmLen - 4);
Sha512Transform (Context, Context->Block, BlockNb);
for (Index = 0 ; Index < 8; Index++) {
UNPACK64(Context->State[Index], &HashDigest[Index << 3]);
}
}
VOID
Sha512 (
UINT8 *Hash,
CONST UINT8 *Data,
UINT32 Len
)
{
SHA512_CONTEXT Context;
Sha512Init (&Context);
Sha512Update (&Context, Data, Len);
Sha512Final (&Context, Digest);
}