OpenCore

Reference Manual (0.5.0.1)
[2019.10.07]

Copyright ©2018-2019 vit9696

4.4

Block Properties

. A1l

Type: plist boolean

Failsafe: false

Description: If set to true, all ACPI tables matching the condition will be dropped. Otherwise only first
matched table.

. Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Enabled

Type: plist boolean

Failsafe: false

Description: This ACPI table will not be removed unless set to true.

. OemTableld

Type: plist data, 8 bytes
Failsafe: All zero
Description: Match table OEM ID to be equal to this value unless all zero.

TableLength

Type: plist integer

Failsafe: 0

Description: Match table size to be equal to this value unless 0.

TableSignature

Type: plist data, 4 bytes

Failsafe: All zero

Description: Match table signature to be equal to this value unless all zero.

Note: Make sure not to specify table signature when the sequence needs to be replaced in multiple places.
Especially when performing different kinds of renames.

Patch Properties

. Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Count

Type: plist integer

Failsafe: 0

Description: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

Enabled

Type: plist boolean

Failsafe: false

Description: This ACPI patch will not be used unless set to true.

. Find

Type: plist data

Failsafe: Empty data

Description: Data to find. Must equal to Replace in size.
Limit

Type: plist integer

Failsafe: 0
Description: Maximum number of bytes to search for. Can be set to 0 to look through the whole ACPI table.

6. Mask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

7. OemTableld
Type: plist data, 8 bytes
Failsafe: All zero
Description: Match table OEM ID to be equal to this value unless all zero.

8. Replace
Type: plist data
Failsafe: Empty data
Description: Replacement data of one or more bytes.

9. ReplaceMask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set
to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

10. Skip
Type: plist integer
Failsafe: 0
Description: Number of found occurrences to be skipped before replacement is done.

11. TableLength
Type: plist integer
Failsafe: 0
Description: Match table size to be equal to this value unless 0.

12. TableSignature

Type: textttplist-dataplist data, 4 bytes
Failsafe: All zero
Description: Match table signature to be equal to this value unless all zero.

In the majority of the cases ACPI patches are not useful and harmful:

¢ Avoid renaming devices with ACPI patches. This may fail or perform improper renaming of unrelated devices
(e.g. EC and ECO0), be unnecessary, or even fail to rename devices in select tables. For ACPI consistency it is much
safer to rename devices at I/O Registry level, as done by WhateverGreen.

e Avoid patching _0SI to support a higher level of feature sets unless absolutely required. Commonly this enables a
number of hacks on APTIO firmwares, which result in the need to add more patches. Modern firmwares generally
do not need it at all, and those that do are fine with much smaller patches.

e Try to avoid hacky changes like renaming _PRW or _DSM whenever possible.
Several cases, where patching actually does make sense, include:

o Refreshing HPET (or another device) method header to avoid compatibility checks by _0SI on legacy hardware.
_STA method with if ((0SFL () == Zero)) { If (HPTE) ... Return (Zero) content may be forced to
always return OxF by replacing A0 10 93 4F 53 46 4C 00 with A4 OA OF A3 A3 A3 A3 A3.

e To provide custom method implementation with in an SSDT, for instance, to report functional key presses on a
laptop, the original method can be replaced with a dummy name by patching _Q11 with XQ11.

Tianocore AcpiAml.h source file may help understanding ACPI opcodes.

10

https://github.com/acidanthera/WhateverGreen
https://github.com/tianocore/edk2/blob/UDK2018/MdePkg/Include/IndustryStandard/AcpiAml.h

5 Booter

5.1 Introduction

This section allows to apply different kinds of UEFI modifications on Apple bootloader (boot.efi). The modifications
currently provide various patches and environment alterations for different firmwares. Some of these features were
originally implemented as a part of AptioMemoryFix.efi, which is no longer maintained. See [Iips and Tricks| section
for migration steps.

If you are using this for the first time on a customised firmware, there is a list of checks to do first. Prior to starting
please ensure that you have:

o Most up-to-date UEFI firmware (check your motherboard vendor website).

e Fast Boot and Hardware Fast Boot disabled in firmware settings if present.

e Above 4G Decoding or similar enabled in firmware settings if present. Note, that on some motherboards (notably
ASUS WS-X299-PRO) this option causes adverse effects, and must be disabled. While no other motherboards
with the same issue are known, consider this option to be first to check if you have erratic boot failures.

e DisableIoMapper quirk enabled, or VT-d disabled in firmware settings if present, or ACPI DMAR table dropped.

e No ‘slide* boot argument present in NVRAM or anywhere else. It is not necessary unless you cannot boot at all
or see No slide values are usable! Use custom slide! message in the log.

o CFG Lock (MSR 0xE2 write protection) disabled in firmware settings if present. Cconsider patching it|if you have
enough skills and no option is available. See VerifyMsrE2| nots for more details.

e CSM (Compatibility Support Module) disabled in firmware settings if present. You may need to flash GOP ROM
on NVIDIA 6xx/AMD 2xx or older. Use GopUpdate|or AMD UEFI GOP MAKER]/in case you are not sure how.

e EHCI/XHCI Hand-off enabled in firmware settings only if boot stalls unless USB devices are disconnected.

e VT-x, Hyper Threading, Execute Disable Bit enabled in firmware settings if present.

o While it may not be required, sometimes you have to disable Thunderbolt support, Intel SGX, and Intel
Platform Trust in firmware settings present.

When debugging sleep issues you may want to (temporarily) disable Power Nap and automatic power off, which appear
to sometimes cause wake to black screen or boot loop issues on older platforms. The particular issues may vary, but in
general you should check ACPI tables first. Here is an example of a bug found in some Z68 motherboards. To turn
Power Nap and the others off run the following commands in Terminal:

sudo pmset autopoweroff O
sudo pmset powernap O
sudo pmset standby O

Note: these-These settings may reset at hardware change and in certain other circumstances. To view their current
state use pmset -g command in Terminal.

5.2 Properties

1. Quirks
Type: plist dict
Description: Apply individual booter quirks described in |Quirks Properties| section below.

5.3 Quirks Properties

1. AvoidRuntimeDefrag
Type: plist boolean
Failsafe: false
Description: Protect from boot.efi runtime memory defragmentation.

This option fixes UEFI runtime services (date, time, NVRAM, power control, etc.) support on many firmwares
using SMM backing for select services like variable storage. SMM may try to access physical addresses, but they
get moved by boot.efi.

Note: Most but Apple and VMware firmwares need this quirk.

12

https://github.com/acidanthera/AptioFixPkg
https://github.com/LongSoft/UEFITool/blob/master/UEFIPatch/patches.txt
https://github.com/acidanthera/AppleSupportPkg#verifymsre2
https://www.win-raid.com/t892f16-AMD-and-Nvidia-GOP-update-No-requests-DIY.html#msg15730
http://www.insanelymac.com/forum/topic/299614-asus-eah6450-video-bios-uefi-gop-upgrade-and-gop-uefi-binary-in-efi-for-many-ati-cards/page-1#entry2042163
http://www.insanelymac.com/forum/topic/329624-need-cmos-reset-after-sleep-only-after-login/#entry2534645

Failsafe: Empty string
Description: Kext executable path relative to bundle (e.g. Contents/Mac0S/Lilu).

5. MatchKernelMaxKernel
Type: plist string
Failsafe: Empty string
Description: Adds kernel driver on >
with-specified macOS version or older.
Kernel version can be obtained with uname -r command, and should look like 3 numbers separated by dots, for
example 18.7.0 is the kernel version —+—e—for 10.14.6. Kernel version interpretation is implemented as follows:
ParseDarwinVersion(k, A, i) :(Lli()J 10+ Kk — L%J -10) - 10000 Where x € (0,99) is kernel version major
A A
+(L1—OJ 104+ A — LEJ -10) - 100 Where A € (0,99) is kernel version minor
+(L1£OJ 10+ p — L%j -10) Where u € (0,99) is kernel version patch
Kernel version comparison is implemented as follows:
ParseDarwinVersion(MinKernel), If MinKernel is valid
o=
- 0 Otherwise
. ParseDarwinVersion(MaxKernel), If MaxKernel is valid
S Otherwise
) ParseDarwinVersion(FindDarwinV ersion()), If valid "Darwin Kernel Version" is found
X 00 Otherwise
fla,fy) =a<y<p
Here ParseDarwinV ersion argument is assumed to be 3 integers obtained by splitting Darwin kernel version
string from left to right by the . symbol. FindDarwinVersion function looks up Darwin kernel version b
locating +6-7-0"Darwin Kernel Version x.\.u" willmateh-macOS1012-6-and-16+ willmatech-any-macOS
6. MinKernel
Failsafe: Empty strin
Description: Adds kernel driver on specified macOS version or newer.
Note: Refer to[Add MaxKernel description| for matching logic.
7. PlistPath
Type: plist string
Failsafe: Empty string
Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).
7.4 Block Properties
1. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.
2. Enabled

Type: plist boolean

17

Failsafe: false
Description: This kernel driver will not be blocked unless set to true.

Identifier

Type: plist string

Failsafe: Empty string

Description: Kext bundle identifier (e.g. com.apple.driver.AppleTyMCEDriver).

MatehKernelMaxKernel

Type: plist string

Failsafe: Empty string

Description: Blocks kernel driver on seleeted—+ -StOF 3
i : ston—e—specified macOS version or older.

Note: Refer to[Add MaxKernel description| for matching logic.

16-7-0MinKernelwill-mateh-macO51012:6-and-16+

Failsafe: Empty strin
Description: Blocks kernel driver on specified macOS version or newer.

Note: Refer to[Add MaxKernel description| for matching logic.

Emulate Properties

. CpuidiData

Type: plist data, 16 bytes

Failsafe: All zero

Description: Sequence of EAX, EBX, ECX, EDX values in Little Endian order to replace CPUID (1) call in XNU
kernel. Normally it is only the value of EAX that needs to be taken care of, which represents the exact CPUID.
And the remainders are to be left as zeroes. For instance, A9 06 03 00 stands for CPUID 0x0306A9 (Ivy Bridge).
A good example can be found at acidanthera/bugtracker#365. (See Special NOTES for Haswell+ low-end)

CpuidiMask

Type: plist data, 16 bytes

Failsafe: All zero

Description: Bit mask of active bits in CpuidiData. When each CpuidiMask bit is set to 0, the original CPU
bit is used, otherwise set bits take the value of CpuidiData.

Patch Properties

. Base

Type: plist string

Failsafe: Empty string

Description: Selects symbol-matched base for patch lookup (or immediate replacement) by obtaining the address
of provided symbol name. Can be set to empty string to be ignored.

Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Count

Type: plist integer

Failsafe: 0

Description: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

Enabled

Type: plist boolean

Failsafe: false

Description: This kernel patch will not be used unless set to true.

18

https://github.com/acidanthera/bugtracker/issues/365

10.

11.

12.

13.

Find

Type: plist data

Failsafe: Empty data

Description: Data to find. Can be set to empty for immediate replacement at Base. Must equal to Replace in
size otherwise.

Identifier

Type: plist string

Failsafe: Empty string

Description: Kext bundle identifier (e.g. com.apple.driver.AppleHDA) or kernel for kernel patch.

Limit

Type: plist integer

Failsafe: 0

Description: Maximum number of bytes to search for. Can be set to 0 to look through the whole kext or kernel.

Mask

Type: plist data

Failsafe: Empty data

Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

MatchKernelMaxKernel
Type: plist string
Failsafe: Empty strmg
Description: i se > :
wmmwmwwmwsmwm

Note: Refer to[Add MaxKernel description| for matching logic.

16-7-0MinKernelwill-mateh-macO51012-6-and-16+

Failsafe: Empty strin
Description: Patches data on specified macOS version or newer.

Note: Refer to[Add MaxKernel description| for matching logic.

Replace

Type: plist data

Failsafe: Empty data

Description: Replacement data of one or more bytes.

ReplaceMask

Type: plist data

Failsafe: Empty data

Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set
to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

Skip
Type: plist integer

Failsafe: 0

Description: Number of found occurrences to be skipped before replacement is done.

Quirks Properties

1. AppleCpuPmCfgLock

Type: plist boolean

Failsafe: false

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in AppleIntelCPUPowerManage-
ment.kext, commonly causing early kernel panic, when it is locked from writing.

Note: This option should avoided whenever possible. Modern firmwares provide CFG Lock setting, disabling
which is much cleaner. More details about the issue can be found in [VerifyMsrE2| notes.

19

https://github.com/acidanthera/AppleSupportPkg#verifymsre2

8

8.1

Misc

Introduction

This section contains miscellaneous configuration entries for OpenCore behaviour that does not go to any other sections

8.2

1.

8.3

Properties

Boot
Type: plist dict
Description: Apply boot configuration described in section below.

BlessOverride
Type: plist array
Description: Add custom scanning paths through bless model.

Designed to be filled with plist string entries containing absolute UEFI paths to customised bootloaders,
for example, \EFI\Microsoft\bootmgfw.efi for Microsoft bootloader. This allows unusual boot paths to be
automaticlly discovered by the boot picker. Designwise they are equivalent to predefined blessed path, such as
\System\Library\CoreServices\boot.efi, but unlike predefined bless paths they have highest priority.

Debug

Type: plist dict

Description: Apply debug configuration described in Debug Properties section below.
Entries

Type: plist array
Description: Add boot entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See [Entry Properties| section below.

Security

Type: plist dict

Description: Apply security configuration described in Security Properties section below.
Tools

Type: plist array
Description: Add tool entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See [Entry Properties| section below.

Note: Select tools, for example, UEFI Shell er-are very dangerous and MUST NOT appear in production
configurations, especially in vaulted ones and protected with secure boot, as they may be used to easily bypass
secure boot chain.

Boot Properties

. ConsoleMode

Type: plist string

Failsafe: Empty string

Description: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string. Set to empty
string not to change console mode. Set to Max to try to use largest available console mode.

Note: This field is best to be left empty on most firmwares.

ConsoleBehaviourOs

Type: plist string

Failsafe: Empty string

Description: Set console control behaviour upon operating system load.

Console control is a legacy protocol used for switching between text and graphics screen output. Some firmwares
do not provide it, yet select operating systems require its presence, which is what ConsoleControl UEFI protocol
is for.

22

https://github.com/acidanthera/OpenCoreShell

7.

10.

e CMD+S — single user mode.

e CMD+S+MINUS — disable KASLR slide, requires disabled SIP.
e CMD+V — verbose mode.

e Shift — safe mode.

Resolution

Type: plist string

Failsafe: Empty string

Description: Sets console output screen resolution.

o Set to WxH@Bpp (e.g. 1920x1080@32) or WxH (e.g. 1920x1080) formatted string to request custom resolution
from GOP if available.

e Set to empty string not to change screen resolution.

e Set to Max to try to use largest available screen resolution.

On HiDPI screens APPLE_VENDOR_VARIABLE_GUID UIScale NVRAM variable may need to be set to 02 to enable
HiDPI scaling in FileVault 2 UEFI password interface and boot screen logo. Refer to Recommended Variables
section for more details.

Note: This will fail when console handle has no GOP protocol. When the firmware does not provide it, it can be
added with ProvideConsoleGop UEFI quirk set to true.

ShowPicker

Type: plist boolean

Failsafe: false

Description: Show simple boot picker to allow boot entry selection.

Timeout

Type: plist integer, 32 bit

Failsafe: 0

Description: Timeout in seconds in boot picker before automatic booting of the default boot entry.

UsePicker

Type: plist boolean

Failsafe: false

Description: Use OpenCore built-in boot picker for boot management.

UsePicker set to false entirely disables all boot management in OpenCore except policy enforcement. In this
case a custom user interface may utilise OcSupportPkg OcBootManagementLib to implement a user friendly boot
picker oneself. Reference example of external graphics interface is provided in ExternalUi test driver.

OpenCore built-in boot picker contains a set of actions chosen during the boot process. The list of supported
actions is similar to Apple BDS and currently consists of the following options:

e Default — this is the default option, and it lets OpenCore built-in boot picker to loads the default boot
option as specified in [Startup Disk| preference pane.

e ShowPicker — this option forces picker to show. Normally it can be achieved by holding OPT key during
boot. Setting ShowPicker to true will make ShowPicker the default option.

e ResetNvram — this option performs select UEFI variable erase and is normally achieved by holding
CMD+0PT+P+R key combination during boot. Another way to erase UEFI variables is to choose Reset NVRAM
in the picker. This option requires AllowNvramReset to be set to true.

e BootApple — this options performs booting to the first found Apple operating system unless the default
chosen operating system is already made by Apple. Hold X key to choose this option.

e BootAppleRecovery — this option performs booting to Apple operating system recovery. Either the one
related to the default chosen operating system, or first found in case default chosen operating system is not
made by Apple or has no recovery. Hold CMD+R key combination to choose this option.

Note: activated AppleGenericInputKeySupport, UsbKbDxe, or similar driver is required for key handling to work.
On many firmwares it is not possible to get all the keys function.

In addition to OPT OpenCore supports Escape key ShowPicker. This key exists for firmwares with PS/2 keyboards
that fail to report held OPT key and require continual presses of Escape key to enter the boot menu.

24

https://github.com/acidanthera/OcSupportPkg
https://github.com/acidanthera/OcSupportPkg/tree/master/Tests/ExternalUi
https://support.apple.com/HT202796

8.6

1.

. OXOOO4OOOO(bﬁ318)47OC_SCAN_ALLDW_DEVICE_SCSI,aHow&%annhu;SCSIdevme&

e 0x00080000 (bit 19) — 0C_SCAN_ALLOW_DEVICE_NVME, allow scanning NVMe devices.

e 0x00100000 (bit 20) — OC_SCAN_ALLOW_DEVICE_ATAPI, allow scanning CD/DVD devices

e 0x00200000 (bit 21) — 0C_SCAN_ALLOW_DEVICE_USB, allow scanning USB devices.

e 0x00400000 (bit 22) — 0C_SCAN_ALLOW_DEVICE_FIREWIRE, allow scanning FireWire devices.
¢ 0x00800000 (bit 23) — 0C_SCAN_ALLOW_DEVICE_SDCARD, allow scanning card reader devices.

Note: Given the above description, 0xF0103 value is expected to allow scanning of SATA, SAS, SCSI, and NVMe
devices with APF'S file system, and prevent scanning of any devices with HF'S or FAT32 file systems in addition
to not scanning APFS file systems on USB, CD, BSB;-and FireWire drives. The combination reads as:

o OC_SCAN_FILE_SYSTEM_LOCK
« 0C_SCAN_DEVICE_LOCK

o OC_SCAN_ALLOW_FS_APFS

o OC_SCAN_ALLOW_DEVICE_SATA
o OC_SCAN_ALLOW_DEVICE_SASEX
« 0OC_SCAN_ALLOW_DEVICE_SCSI
e OC_SCAN_ALLOW_DEVICE_NVME

Entry Properties

Arguments
Type: plist strin

Failsafe: Empty strin

Description: Arbitrary ASCII string used as boot arguments (load options) of the specified entry.

Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Enabled

Type: plist boolean

Failsafe: false

Description: This entry will not be listed unless set to true.

. Name

Type: plist string
Failsafe: Empty string
Description: Human readable entry name displayed in boot picker.

Path

Type: plist string

Failsafe: Empty string

Description: Entry location depending on entry type.

e Entries specify external boot options, and therefore take device paths in Path key. These values are not
checked, thus be extremely careful. Example: PciRoot (0x0) /Pci(0x1,0x1)/.../\EFI\COOL.EFI

e Tools specify internal boot options, which are part of bootloader vault, and therefore take file paths relative
to 0C/Tools directory. Example: €teanNvramShell.efi.

28

11 UEFI

11.1 Introduction

UEFT (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load additional UEFI modules and/or apply tweaks for the onboard
firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITooll and supplementary
utilities can be used.

11.2 Properties

1. ConnectDrivers
Type: plist boolean
Failsafe: false
Description: Perform UEFT controller connection after driver loading. This option is useful for loading filesystem
drivers, which usually follow UEFT driver model, and may not start by themselves. While effective, this option is
not necessary with e.g. APFS loader driver, and may slightly slowdown the boot.

2. Drivers
Type: plist array
Failsafe: None
Description: Load selected drivers from 0C/Drivers directory.

Designed to be filled with string filenames meant to be loaded as UEFI drivers. Depending on the firmware a
different set of drivers may be required. Loading an incompatible driver may lead your system to unbootable
state or even cause permanent firmware damage. Some of the known drivers include:

e |ApfsDriverLoader|— APFS file system bootstrap driver adding the support of embedded APFS drivers in
bootable APFS containers in UEFI firmwares.

e FwRuntimeServices|— OC_FIRMWARE_RUNTIME protocol implementation that increases the security of Open-
Core and Lilu by supporting read-only and write-only NVRAM variables. Some quirks, like RequestBootVarRouting,
require this driver for proper function. Due to the nature of being a runtime driver, i.e. functioning in
parallel with the target operating system, it cannot be implemented within OpenCore itself.

o [EnhancedFatDxe| — FAT filesystem driver from FatPkg. This driver is embedded in all UEFI firmwares,
and cannot be used from OpenCore. It is known that multiple firmwares have a bug in their FAT support
implementation, which leads to corrupted filesystems on write attempt. Embedding this driver within the
firmware may be required in case writing to EFI partition is needed during the boot process.

e NvmExpressDxe — NVMe support driver from MdeModulePkg. This driver is included in most firmwares
starting with Broadwell generation. For Haswell and earlier embedding it within the firmware may be more
favourable in case a NVMe SSD drive is installed.

¢ [UsbKbDxe— USB keyboard driver adding the support of AppleKeyMapAggregator protocols on top of a cus-
tom USB keyboard driver implementation. This is an alternative to builtin AppleGenericInputKeySypport,
which may work better or worse depending on the firmware.

e VirtualSmc/— UEFI SMC driver, required for proper FileVault 2 functionality and potentially other macOS
specifics. An alternative, named SMCHelper, is not compatible with VirtualSmc and OpenCore, which
is unaware of its specific interfaces. In case FakeSMC kernel extension is used, manual NVRAM variable
addition may be needed and VirtualSmc driver should still be used.

e VBoxHfs| — HFS file system driver with bless support. This driver is an alternative to a closed source
HFSPlus driver commonly found in Apple firmwares. While it is feature complete, it is approximately 3 times
slower and is yet to undergo a security audit.

e XhciDxe| — XHCI USB controller support driver from MdeModulePkg. This driver is included in most

firmwares starting with Sandy Bridge generation. For earlier firmwares or legacy systems it may be used to

support external USB 3.0 PCI cards.

To compile the drivers from UDK (EDK II) use the same command you do normally use for OpenCore compilation,
but choose a corresponding package:

40

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/VirtualSMC
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/audk

3.

11.3
1.

2.

3.

git clone https://github.com/acidanthera/audk UDK

cd UDK

source edksetup.sh

make -C BaseTools

build -a X64 -b RELEASE -t XCODE5 -p FatPkg/FatPkg.dsc

build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc

Input
Type: plist dict

Failsafe: None

Description; Apply individual settings designed for input (keyboard and mouse) in Input Properties| section

below.

Protocols

Type: plist dict

Failsafe: None

Description: Force builtin versions of select protocols described in [Protocols Properties| section below.

Note: all protocol instances are installed prior to driver loading.

Quirks

Type: plist dict

Failsafe: None

Description: Apply individual firmware quirks described in Quirks Properties section below.

Input Properties

KeyForgetThreshold

Description: Remove key unless it was submitted during this timeout in milliseconds.

AppleKeyMapAggregator protocol is supposed to contain a fixed length buffer of currently pressed keys. However,
the majority of the drivers only report key presses as interrupts and pressing and holding the key on the keyboard
results in subsequent submissions of this key with some defined time interval. As a result we use a timeout to.
remove once pressed keys from the buffer once the timeout expires and no new submission of this key happened.

This option allows to set this timeout based on your platform. The recommended value that works on the
majority of the platforms is & milliseconds. For reference, holding one key on VMware will repeat it roughly
every 2 milliseconds and the same value for APTIO V is 3-4 milliseconds. Thus it is possible to set a slightly
lower value on faster platforms and slightly higher value on slower platforms for more respousive input..

KeyMergeThreshold

Description: Assume simultaneous combination for keys submitted within this timeout in milliseconds.

Similarly to KeyForgetThreshold, this option works around the sequential nature of key submission. To be able
to recognise simultaneously pressed keys in the situation when all keys arrive sequentially, we are required to set
a timeout within which we assume the keys were pressed together.

Holding multiple keys results in reports every 2 and 1 milliseconds for VMware and APTIO V respectively.
Pressing keys one after the other results in delays of at least 6 and 10 milliseconds for the same platforms. The
recommended value for this option is 2 milliseconds, but it may be decreased for faster platforms and increased

for slower.

KeySupport
Type: plist boolean

Description: Enable internal keyboard input translation to AppleKeyMapAggregator protocol.

41

This option activates the internal keyboard interceptor driver, based on AppleGenericInput aka AptioIntputFix),
to fill AppleKeyMapAggregator database for input functioning. In case a separate driver is used, such as UsbKbDxe,
this option should never be enabled.

4. KeySupportMode
Type: plist string
Failsafe: empty string
Description: Set internal keyboard input translation to AppleKeyMapAggregator protocol mode.

* Auto __ Performs automatic choice as available with the following preference: AMI, V2, V1.
* V1 Uses UEFI standard legacy input protocol EFT_SIMPLE TEXT INPUT_PROTOCOL.
e AMI _ Uses APTIO input protocol AMI EFIKEYCODE_PROTOCOL.

5. KeySwap
Type: plist boolean
Failsafe: false

Description: Swap Command and Option keys during submission.
This option may be useful for keyboard layouts with Option key situated to the right of Command key._

6. PointerSupport
Type: plist boolean
Failsafe: false

Description: Enable internal pointer driver.

This option implements standard UEFI pointer protocol (EFI_SIMPLE POINTER_PROTOCOL) through select OEM
rotocols. The option may be useful on Z87 ASUS boards, where EFI_SIMPLE_POINTER PROTOCOL is broken.

7. PointerSupportlode
Type: plist string
Failsafe: empty string
Description: Set OEM protocol used for internal pointer driver,

Currently the only supported variant is ASUS, using specialised protocol available on select Z87 and 7297 ASUS
boards. More details can be found in LongSoft/UefiTool#116,

8. TimerResolution

Type: plist integer
Failsafe: 0

Description: Set architecture timer resolution.

This option allows to update firmware architecture timer period with the specified value in 100 nanosecond units.
Setting a lower value generally improves performance and responsiveness of the interface and input handling.

The recommended value is 50000 (5 milliseconds) or slightly higher. ASUS boards use 60000 for the interface.
Apple boards use 100000.

11.4 Protocols Properties

1. AppleBootPolicy
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Boot Policy protocol with a builtin version. This may be used to ensure APFS
compatibility on VMs or legacy Macs.

2. AppleEvent
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Event protocol with a builtin version. This may be used to ensure File Vault 2
compatibility on VMs or legacy Macs.

3. AppleImageConversion
Type: plist boolean

42

https://github.com/LongSoft/UEFITool/pull/116

Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 419430366
Partitions will be aligned on 2048-sector boundaries

Total free space is 4029 sectors (2.0 MiB)

Number Start (sector) End (sector) Size Code Name
1 2048 1023999 499.0 MiB 2700 Basic data partition
2 1024000 1226751 99.0 MiB EF0O0 EFI system partition
3 1226752 1259519 16.0 MiB 0CO1 Microsoft reserved ...
4 1259520 419428351 199.4 GiB 0700 Basic data partition

Command (7 for help): c
Partition number (1-4): 4
Enter name: BOOTCAMP

Command (7 for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING PARTITIONS!!
Do you want to proceed? (Y/N): Y

OK; writing new GUID partition table (GPT) to \\.\physicaldriveO.

Disk synchronization succeeded! The computer should now use the new partition table.
The operation has completed successfully.

Listing 3: Relabeling Windows volume

How to choose Windows BOOTCAMP with custom NTFS drivers?

Third-party drivers providing NTFS support, such as NTFS-3G, Paragon NTFS, Tuxera NTFS or |Seagate Paragon
Driver break certain macOS functionality, including Startup Disk preference pane normally used for operating system
selection. While the recommended option remains not to use such drivers as they commonly corrupt the filesystem, and
prefer the driver bundled with macOS with optional write support (command| or GUI), there still exist vendor-specific
workarounds for their products: Tuxera, |Paragon) etc.

12.2 Debugging

Similar to other projects working with hardware OpenCore supports auditing and debugging. The use of NOOPT or
DEBUG build modes instead of RELEASE can produce a lot more debug output. With NOOPT source level debugging with
GDB or IDA Pro is also available. For GDB check OcSupport Debug page. For IDA Pro you will need IDA Pro 7.3 or
newer, refer to Debugging the XNU Kernel with IDA Prol| for more details.

To obtain the log during boot you can make the use of serial port debugging. Serial port debugging is enabled in
Target, e.g. 0xB for onscreen with serial. OpenCore uses 115200 baud rate, 8 data bits, no parity, and 1 stop bit.
For macOS your best choice are CP2102-based UART devices. Connect motherboard TX to USB UART GNBRX, and
motherboard GND to USB UART RXGND. Use screen utility to get the output, or download GUI software, such as
CoolTerm.

Note: On several motherboards (and possibly USB UART dongles) PIN naming may be incorrect. It is very common

to have GND swapped with RX, thus you have to connect motherboard “TX” to USB UART GND, and motherboard “GND”
to USB UART RX._

Remember to enable COM port in firmware settings, and never use USB cables longer than 1 meter to avoid output
corruption. To additionally enable XNU kernel serial output you will need debug=0x8 boot argument.

12.3 Tips and Tricks
1. How to debug boot failure?

Normally it is enough to obtain the actual error message. For this ensure that:

47

https://www.tuxera.com/community/open-source-ntfs-3g
https://www.seagate.com/support/software/paragon
https://www.seagate.com/support/software/paragon
https://support.apple.com/HT202796
http://osxdaily.com/2013/10/02/enable-ntfs-write-support-mac-os-x
https://mounty.app
https://www.tuxera.com/products/tuxera-ntfs-for-mac/faq
https://kb.paragon-software.com/article/6604
https://github.com/acidanthera/OcSupportPkg/tree/master/Debug
https://www.hex-rays.com/products/ida/support/tutorials/index.shtml
https://freeware.the-meiers.org

e You have a DEBUG or NOOPT version of OpenCore.

o Logging is enabled (1) and shown onscreen (2): Misc — Debug — Target = 3.

e Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO
(0x00000040) levels are visible onscreen: Misc — Debug — DisplayLevel = 0x80000042.

o Critical error messages, like DEBUG_ERROR, stop booting: Misc — Security — HaltLevel = 0x80000000.

o Watch Dog is disabled to prevent automatic reboot: Misc — Debug — DisableWatchDog = true.

o Boot Picker (entry selector) is enabled: Misc — Boot — ShowPicker = true.

If there is no obvious error, check the available hacks in Quirks sections one by one. For early boot troubleshootin
for instance, when OpenCore menu does not appear, using UEFI Shell may help to see early debug messages.

. How to customise boot entries?

OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and
.disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string
with an entry title, which may then be customised by the user.

. How to choose the default boot entry?

OpenCore uses the primary UEFI boot option to select the default entry. This choice can be altered from UEFI
Setup, with the macOS Startup Disk| preference, or the Windows |Boot Camp, Control Panel. Since choosing
OpenCore’s B0OOTx64.EFI as a primary boot option limits this functionality in addition to several firmwares
deleting incompatible boot options, potentially including those created by macOS, you are strongly encouraged to
use the RequestBootVarRouting quirk, which will preserve your selection made in the operating system within
the OpenCore variable space. Note, that RequestBootVarRouting requires a separate driver for functioning.

. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32
partition with OpenCore. Load OpenCore Boot Picker and choose the entry, it will have a (dmg) suffix. Custom
name may be created by providing .contentDetails file.

To download recovery online you may use macrecovery.py tool from MacInfoPkg,.
For offline installation refer to [How to create a bootable installer for macOS! article.
. Why do online recovery images (*.dmg) fail to load?

This may be caused by missing HFS+ driver, as all presently known recovery volumes have HFS+ filesystem.
Another cause may be buggy firmware allocator, which can be worked around with AvoidHighAlloc UEFI quirk.

. Can I use this on Apple hardware or virtual machines?

Sure, most relatively modern Mac models including MacPro5,1 and virtual machines are fully supported. Even
though there are little to none specific details relevant to Mac hardware, some ongoing instructions can be found
in lacidanthera/bugtracker#377.

. Why do Find&Replace patches must equal in length?

For machine code (x86 code) it is not possible to do such replacements due to [relative addressing. For ACPI
code this is risky, and is technically equivalent to ACPI table replacement, thus not implemented. More detailed
explanation can be found on AppleLife.ru.

. How can I migrate from AptioMemoryFix?

Behaviour similar to that of AptioMemoryFix can be obtained by installing FwRuntimeServices driver and
enabling the quirks listed below. Please note, that most of these are not necessary to be enabled. Refer to their
individual descriptions in this document for more details.

e ProvideConsoleGop (UEFI quirk)
e AvoidRuntimeDefrag

e DiscardHibernateMap

¢ EnableSafeModeSlide

e EnableWriteUnprotector

e ForceExitBootServices

¢ ProtectCsmRegion

48

https://github.com/acidanthera/OpenCoreShell
https://support.apple.com/HT202796
https://support.apple.com/guide/bootcamp-control-panel/start-up-your-mac-in-windows-or-macos-bcmp29b8ac66/mac
https://github.com/acidanthera/MacInfoPkg/blob/master/macrecovery/macrecovery.py
https://github.com/acidanthera/MacInfoPkg/releases
https://support.apple.com/HT201372
https://github.com/acidanthera/bugtracker/issues/377
https://en.wikipedia.org/w/index.php?title=Relative_addressing
https://applelife.ru/posts/819790

	Block Properties
	Patch Properties
	Booter
	Introduction
	Properties
	Quirks Properties

	Block Properties
	Emulate Properties
	Patch Properties
	Quirks Properties
	Misc
	Introduction
	Properties
	Boot Properties
	Entry Properties

	UEFI
	Introduction
	Properties
	Input Properties
	Protocols Properties

	Debugging
	Tips and Tricks

