
OpenCore

Reference Manual (0.9.5
:::
.6)

[2023.10.09]

Copyright ©2018-2023 vit9696



This setting allows matching the latest kernelcache with a suitable architecture when the kernelcache without
suffix is unavailable, improving macOS 10.6 boot performance on several platforms.

3. KernelArch
Type: plist string
Failsafe: Auto (Choose the preferred architecture automatically)
Description: Prefer specified kernel architecture (i386, i386-user32, x86_64) when available.

On macOS 10.7 and earlier, the XNU kernel can boot with architectures different from the usual x86_64. This
setting will use the specified architecture to boot macOS when it is supported by the macOS and the configuration:

• i386 — Use i386 (32-bit) kernel when available.
• i386-user32 — Use i386 (32-bit) kernel when available and force the use of 32-bit userspace on 64-bit

capable processors if supported by the operating system.
– On macOS, 64-bit capable processors are assumed to support SSSE3. This is not the case for older 64-bit

capable Pentium processors, which cause some applications to crash on macOS 10.6. This behaviour
corresponds to the -legacy kernel boot argument.

– This option is unavailable on macOS 10.4 and 10.5 when running on 64-bit firmware due to an uninitialised
64-bit segment in the XNU kernel, which causes AppleEFIRuntime to incorrectly execute 64-bit code as
16-bit code.

• x86_64 — Use x86_64 (64-bit) kernel when available.

The algorithm used to determine the preferred kernel architecture is set out below.

(a) arch argument in image arguments (e.g. when launched via UEFI Shell) or in boot-args variable overrides
any compatibility checks and forces the specified architecture, completing this algorithm.

(b) OpenCore build architecture restricts capabilities to i386 and i386-user32 mode for the 32-bit firmware
variant.

(c) Determined EfiBoot version restricts architecture choice:
• 10.4-10.5 — i386 or i386-user32 (only on 32-bit firmware)
• 10.6 — i386, i386-user32, or x86_64
• 10.7 — i386 or x86_64
• 10.8 or newer — x86_64

(d) If KernelArch is set to Auto and SSSE3 is not supported by the CPU, capabilities are restricted to
i386-user32 if supported by EfiBoot.

(e) Board identifier (from SMBIOS) based on EfiBoot version disables x86_64 support on an unsupported model
if any i386 variant is supported. Auto is not consulted here as the list is not overridable in EfiBoot.

(f) KernelArch restricts the support to the explicitly specified architecture (when not set to Auto) if the
architecture remains present in the capabilities.

(g) The best supported architecture is chosen in this order: x86_64, i386, i386-user32.

Unlike macOS 10.7 (where certain board identifiers are treated as the i386 only machines), and macOS 10.5 or
earlier (where x86_64 is not supported by the macOS kernel), macOS 10.6 is very special. The architecture choice
on macOS 10.6 depends on many factors including not only the board identifier, but also the macOS product
type (client vs server), macOS point release, and amount of RAM. The detection of all these is complicated and
impractical, as several point releases had implementation flaws resulting in a failure to properly execute the server
detection in the first place. For this reason

::::
when

:::::
Auto

:
is
::::

set, OpenCore on macOS 10.6 falls back on
::
to

:
the

x86_64 architecture whenever
:::::
when

:
it is supported by the board, as it is on macOS 10.7.

::::
The

::::::
32-bit

:::::::::::
KernelArch

::::::
options

::::
can

::::
still

:::
be

:::::::::
configured

:::::::::
explicitly

::::::::
however.

:

A 64-bit Mac model compatibility matrix corresponding to actual EfiBoot behaviour on macOS 10.6.8 and 10.7.5
is outlined below.

Model 10.6 (minimal) 10.6 (client) 10.6 (server) 10.7 (any)
Macmini 4,x (Mid 2010) 5,x (Mid 2011) 4,x (Mid 2010) 3,x (Early 2009)
MacBook Unsupported Unsupported Unsupported 5,x (2009/09)
MacBookAir Unsupported Unsupported Unsupported 2,x (Late 2008)
MacBookPro 4,x (Early 2008) 8,x (Early 2011) 8,x (Early 2011) 3,x (Mid 2007)
iMac 8,x (Early 2008) 12,x (Mid 2011) 12,x (Mid 2011) 7,x (Mid 2007)
MacPro 3,x (Early 2008) 5,x (Mid 2010) 3,x (Early 2008) 3,x (Early 2008)
Xserve 2,x (Early 2008) 2,x (Early 2008) 2,x (Early 2008) 2,x (Early 2008)

38



Predefined labels are saved in the \EFI\OC\Resources\Label directory. Each label has .lbl or .l2x suffix to represent
the scaling level. Full list of labels is provided below. All labels are mandatory.

• EFIBoot — Generic OS.
• Apple — Apple OS.
• AppleRecv — Apple Recovery OS.
• AppleTM — Apple Time Machine.
• Windows — Windows.
• Other — Custom entry (see Entries).
• ResetNVRAM — Reset NVRAM system action or tool.
• SIPDisabled — Toggle SIP tool with SIP disabled.
• SIPEnabled — Toggle SIP tool with SIP enabled.
• Shell — Entry with UEFI Shell name (e.g. OpenShell).
• Tool — Any other tool.

Note: All labels must have a height of exactly 12 px. There is no limit for their width.

Label and icon generation can be performed with bundled utilities: disklabel and icnspack. Font is Helvetica 12 pt
times scale factor.

Font format corresponds to AngelCode binary BMF. While there are many utilities to generate font files, currently it is
recommended to use dpFontBaker to generate bitmap font (using CoreText produces best results) and fonverter to
export it to binary format.

11.5 OpenRuntime
OpenRuntime is an OpenCore plugin implementing OC_FIRMWARE_RUNTIME protocol. This protocol implements multiple
features required for OpenCore that are otherwise not possible to implement in OpenCore itself as they are needed to
work in runtime, i.e. during operating system functioning. Feature highlights:

• NVRAM namespaces, allowing to isolate operating systems from accessing select variables (e.g. RequestBootVarRouting
or ProtectSecureBoot).

• Read-only and write-only NVRAM variables, enhancing the security of OpenCore, Lilu, and Lilu plugins, such as
VirtualSMC, which implements AuthRestart support.

• NVRAM isolation, allowing to protect all variables from being written from an untrusted operating system (e.g.
DisableVariableWrite).

• UEFI Runtime Services memory protection management to workaround read-only mapping (e.g. EnableWriteUnprotector).

11.6 OpenLegacyBoot
OpenLegacyBoot is an OpenCore plugin implementing OC_BOOT_ENTRY_PROTOCOL. It aims to detect and boot legacy
installed operating systems

::
on

::::::::::
supported

::::::::
systems,

::::
such

:::
as

::::::::::
OpenDuet

:::
and

:::::
Mac

:::::::
models

:::::::
capable

::
of

::::::
legacy

:::::::
booting.

Usage:

• Add OpenLegacyBoot.efi and also optionally (see below) OpenNtfsDxe.efi to the config.plist Drivers
section.

• Install Windows or another legacy operating system as normal if this has not been done earlier – OpenLegacyBoot
is not involved in this stage and may be unable to boot from installation media such as a USB device.

• Reboot into OpenCore: the installed legacy operating system should appear and boot directly from OpenCore
when selected.

OpenLegacyBoot does not require any additional filesystem drivers such as OpenNtfsDxe.efi to be loaded for base
functionality, but loading them will enable the use of .contentDetails and .VolumeIcon.icns files for boot entry
customisation.

11.6.1 Configuration

No additional configuration should work well in most circumstances, but if required the following options for the driver
may be specified in UEFI/Drivers/Arguments:

84

https://www.angelcode.com/products/bmfont
https://github.com/danpla/dpfontbaker
https://github.com/danpla/dpfontbaker/pull/1
https://github.com/usr-sse2/fonverter


6. Sign all the installed drivers and tools with the private key. Do not sign tools that provide administrative access
to the computer, such as UEFI Shell.

7. Vault the configuration as explained Vaulting section.

8. Sign all OpenCore binaries (BOOTX64.efi, BOOTIa32.efi, OpenCore.efi, custom launchers) used on this system
with the same private key.

9. Sign all third-party operating system (not made by Microsoft or Apple) bootloaders if needed. For Linux there is
an option to install a user built, user signed Shim bootloader giving SBAT and MOK integration, as explained in
the /Utilities/ShimUtils directory of OpenCore source or releases.

10. Enable UEFI Secure Boot in firmware preferences and install the certificate with a private key. Details on how to
generate a certificate can be found in various articles, such as this one, and are out of the scope of this document.
If Windows is needed one will also need to add the Microsoft Windows Production CA 2011. To launch option
ROMs or to use signed Linux drivers if not using a user build of Shim, Microsoft UEFI Driver Signing CA will
also be needed.

11. Password-protect changing firmware settings to ensure that UEFI Secure Boot cannot be disabled without the
user’s knowledge.

12.3 Windows support
Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared
with Boot Camp are supposed to work. Third-party UEFI installations as well as systems partially supporting UEFI
boot, such as Windows 7, might work with some extra precautions. Things to consider:

• MBR (Master Boot Record) installations are legacy and are only supported with the OpenLegacyBoot driver
::
on

:::::
legacy

::::::::
systems.

• All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic,
i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.

• macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout.
While OpenCore does have a workaround for this, it is highly recommend not to rely on it and install properly.

• Windows may need to be reactivated. To avoid it consider setting SystemUUID to the original firmware UUID.
Be aware that it may be invalid on old firmware, i.e., not random. If there still are issues, consider using HWID
or KMS38 license or making the use Custom UpdateSMBIOSMode. Other nuances of Windows activation are out
of the scope of this document and can be found online.

What additional software do I need?

To enable operating system switching and install relevant drivers in the majority of cases Windows support software
from Boot Camp is required. For simplicity of the download process or when configuring an already installed Windows
version a third-party utility, Brigadier, can be used successfully. Note, that 7-Zip may be downloaded and installed
prior to using Brigadier.

Remember to always use the latest version of Windows support software from Boot Camp, as versions prior to 6.1 do
not support APFS, and thus will not function correctly. To download newest software pass most recent Mac model
to Brigadier, for example ./brigadier.exe -m iMac19,1. To install Boot Camp on an unsupported Mac model
afterwards run PowerShell as Administrator and enter msiexec /i BootCamp.msi. If there is a previous version of
Boot Camp installed it should be removed first by running msiexec /x BootCamp.msi command. BootCamp.msi file
is located in BootCamp/Drivers/Apple directory and can be reached through Windows Explorer.

While Windows support software from Boot Camp solves most of compatibility problems, the rest may still have to be
addressed manually:

• To invert mouse wheel scroll direction FlipFlopWheel must be set to 1 as explained on SuperUser.

• RealTimeIsUniversal must be set to 1 to avoid time desync between Windows and macOS as explained on
SuperUser (this is typically not required).

116

https://habr.com/en/post/273497
http://go.microsoft.com/fwlink/?LinkID=321192
http://go.microsoft.com/fwlink/?LinkId=321194
https://github.com/acidanthera/bugtracker/issues/327
https://support.apple.com/boot-camp
https://github.com/timsutton/brigadier
https://www.7-zip.org
https://superuser.com/a/364353
https://superuser.com/q/494432

	OpenRuntime
	OpenLegacyBoot
	Windows support

