OpenCore
Reference Manual (0.0.3)

2019.07.02]

Copyright ©2018-2019 vit9696

Contents

B.1 Configuration Terms| oL e e e

3.2 _Configuration Processing|. L

3.3 onfiguration Structure] Lo
B:4 Directory Structure]. oL e
B-5 Installation and Upgrade|. o o
B.6 Contributionl e

4 _ACPIl

4. Properties| e e e
4.3 Add Properties| L
4.4 Block Properties| e
4.5 Patch Properties| e
4.6 Quirks Properties|. e

[DeviceProperties|
BI Tntroductionl. e
..

b.3 Common Properties| e

[6_Kernell

0. Properties| e e e e e e e

[6.3 Add Properties|
[64 Block Properties] o i

6.5 Emulate Properties|o
6.6 Patch Properties| e
6.7 Quirks Properties|. e e

7 Misc

..
[.3 _Boot Properties|.
[74 Debug Properties] o v o i

[7.5 Security Properties| e
[7.6 Tools Properties| o e

8 NVRAM

9.1 Properties| e
9.2 eneric Properties| L L L
9.3 DataHub Properties| e
9.4 PlattormNVRAM Properties| e
9.5 SMBIOS Properties| o e

15
15
15
15
16
16
16
17

20
20
20
20
22
23
25

26
26
26
27
27
27

110.3 Protocols Properties| e

110.4 Quirks Properties|

[L1 Troubleshooting|
[11.1 Windows support|
111.2 Tips and 'Tricks| .

1 Introduction

This document provides information on [OpenCore user configuration file format used to setup the correct functioning
of macOS operating system.

1.1 Known defects

For OpenCore issues please refer to |Acidanthera Bugtracker.

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker

Generic Terms

plist — Subset of ASCII Property List format written in XML, also know as XML plist format version
1. Uniform Type Identifier (UTT): com.apple.property-list. Plists consist of plist objects, which are
combined to form a hierarchical structure. Due to plist format not being well-defined, all the definitions of this
document may only be applied after plist is considered valid by running plutil -lint. External references:
https://www.apple.com/DTDs/PropertyList-1.0.dtd, man plutil.

plist type — plist collections (plist array, plist dictionary, plist key) and primitives (plist string,
plist data, plist date, plist boolean, plist integer, plist real).

plist object — definite realisation of plist type, which may be interpreted as value.
plist array — array-like collection, conforms to array. Consists of zero or more plist objects.

plist dictionary — map-like (associative array) collection, conforms to dict. Consists of zero or more plist
keys.

plist key — contains one plist object going by the name of plist key, conforms to key. Consists of
printable 7-bit ASCII characters.

plist string — printable 7-bit ASCII string, conforms to string.

plist data — base64-encoded blob, conforms to data.

plist date — ISO-8601 date, conforms to date, unsupported.

plist boolean — logical state object, which is either true (1) or false (0), conforms to true and false.

plist integer — possibly signed integer number in base 10, conforms to integer. Fits in 64-bit unsigned integer
in two’s complement representation, unless a smaller signed or unsigned integral type is explicitly mentioned in
specific plist object description.

plist real — floating point number, conforms to real, unsupported.

plist metadata — value cast to data by the implementation. Permits passing plist string, in which case
the result is represented by a null-terminated sequence of bytes (aka C string), plist integer, in which case
the result is represented by 32-bit little endian sequence of bytes in two’s complement representation, plist
boolean, in which case the value is one byte: 01 for true and 00 for false, and plist data itself. All other
types or larger integers invoke undefined behaviour.

3 Overview

3.1 Configuration Terms

e 0C config — OpenCore Configuration file in plist format named config.plist. It has to provide extensible
way to configure OpenCore and is structured to be separated into multiple named sections situated in the root
plist dictionary. These sections are permitted to have plist array or plist dictionary types and are
described in corresponding sections of this document.

e valid key — plist key object of OC config described in this document or its future revisions. Besides explicitly
described valid keys, keys starting with # symbol (e.g. #Hello) are also considered valid keys and behave as
comments, effectively discarding their value, which is still required to be a valid plist object. All other plist
keys are not valid, and their presence yields to undefined behaviour.

e valid value — valid plist object of OC config described in this document that matches all the additional
requirements in specific plist object description if any.

e invalid value — valid plist object of OC config described in this document that is of other plist type,
does not conform to additional requirements found in specific plist object description (e.g. value range), or
missing from the corresponding collection. Invalid value is read with or without an error message as any
possible value of this plist object in an undetermined manner (i.e. the values may not be same across the
reboots). Whilst reading an invalid value is equivalent to reading certain defined valid value, applying
incompatible value to the host system may yield to undefined behaviour.

e optional value — valid value of OC config described in this document that reads in a certain defined manner
provided in specific plist object description (instead of invalid value) when not present in 0C config. All
other cases of invalid value do still apply. Unless explicitly marked as optional value, any other value is
required to be present and reads to invalid value if missing.

e fatal behaviour — behaviour leading to boot termination. Implementation must stop the boot process from
going any further until next host system boot. It is allowed but not required to perform cold reboot or show any
warning message.

e undefined behaviour — behaviour not prescribed by this document. Implementation is allowed to take any
measures including but not limited to fatal behaviour, assuming any states or values, or ignoring, unless these
measures negatively affect system security in general.

3.2 Configuration Processing

0C config is guaranteed to be processed at least once if it was found. Depending on OpenCore bootstrapping
mechanism multiple 0C config files may lead to reading any of them. No 0C Config may be present on disk, in which
case all the values read follow the rules of invalid value and optional value.

0C config has size, nesting, and key amount limitations. 0C config size does not exceed 16 MBs. OC config has no
more than 8 nesting levels. 0C config has up to 16384 XML nodes (i.e. one plist dictionary item is counted as a
pair of nodes) within each plist object.

Reading malformed 0C config file leads to undefined behaviour. Examples of malformed OC config cover at least
the following cases:

o files non-conformant to plist DTD
e files with unsupported or non-conformant plist objects found in this document
o files violating size, nesting, and key amount limitations

It is recommended but not required to abort loading malformed 0C config and continue as if no 0C config was
present. For forward compatibility it is recommended but not required for the implementation to warn about the use of
invalid values. Recommended practice of interpreting invalid values is to conform to the following convention
where applicable:

Type Value
plist string Empty string (<string></string>)
plist data Empty data (<data></data>)

Type Value

plist integer 0 (<integer>0</integer>)
plist boolean False (<false/>)
plist tristate False (<false/>)

3.3 Configuration Structure

0C config is separated into following sections, which are described in separate sections of this document. By default it
is tried to not enable anything and optionally provide kill switches with Enable property for plist dict entries. In
general the configuration is written idiomatically to group similar actions in subsections:

e Add provides support for data addition.

e Block provides support for data removal or ignorance.
e Patch provides support for data modification.

e Quirks provides support for specific hacks.

Root configuration entries consist of the following:

« [ACPT]

e [DeviceProperties|
o Kernell

o [Misd

« [NVRAHM

« [PlatformIniol

« [UEFT]

Note: Currently most properties try to have defined values even if not specified in the configuration for safety reasons.
This behaviour should not be relied upon, and all fields must be properly specified in the configuration.

3.4 Directory Structure

When directory boot is used the directory structure used should follow the description on [Directory Structure| figure.
Available entries include:

e BOOTx64.efi

Initial booter, which loads OpenCore.efi unless it was already started as a driver.
e ACPI

Directory used for storing supplemental ACPI information for section.
e Drivers

Directory used for storing supplemental UEFI drivers for section.

e Kexts
Directory used for storing supplemental kernel information for [Kernel] section.
e Tools

Directory used for storing supplemental tools.
¢ OpenCore.efi

Main booter driver responsible for operating system loading.
e vault.plist

Hashes for all files potentially loadable by 0C Config.
e config.plist

0C Config.
e vault.sig

Signature for vault.plist.
e nvram.plist

OpenCore variable import file.
e opencore.log

OpenCore log file.

Figure 1. Directory Structure

3.5 Installation and Upgrade

To install OpenCore reflect the [Configuration Structure| described in the previous section on a EFI volume of a GPT
partition. While corresponding sections of this document do provide some information in regards to external resources
like ACPI tables, UEFI drivers, or kernel extensions (kexts), completeness of the matter is out of the scope of this
document. Information about kernel extensions may be found in a separate [Kext List| document available in OpenCore
repository. Vaulting information is provided in [Security Properties|section of this document.

0C config, just like any property lists can be edited with any stock textual editor (e.g. nano, vim), but specialised
software may provide better experience. On macOS the preferred GUI application is Xcode. For a lightweight
cross-platform and open-source alternative ProperTree editor can be utilised.

For BIOS booting a third-party UEFI environment provider will have to be used. DuetPkg is one of the known UEFI
environment providers for legacy systems. To run OpenCore on such a legacy system you can install DuetPkg with a
dedicated tool: BootInstall.

For upgrade purposes refer to Differences.pdf document, providing the information about the changes affecting
the configuration compared to the previous release, and Changelog.md document, containing the list of modifications
across all published updates.

https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Kexts.md
https://developer.apple.com/xcode
https://github.com/corpnewt/ProperTree
https://github.com/acidanthera/OcSupportPkg/tree/master/Utilities/BootInstall

3.6 Contribution

OpenCore can be compiled as an ordinary EDK II. Since UDK] development was abandoned by TianoCore, OpenCore
requires the use of EDK II Stable. Currently supported EDK II release (potentially with patches enhancing the
experience) is hosted in acidanthera/audk.

The only officially supported toolchain is XCODE5. Other toolchains might work, but are neither supported, nor
recommended. Contribution of clean patches is welcome. Please do follow [EDK II C Codestylel

Required external package dependencies include EfiPkg, MaclnfoPkg, and |OcSupportPkgl

To compile with XCODE5, besides Xcode, one should also install NASM and MTOC. The latest Xcode version is
recommended for use despite the toolchain name. Example command sequence may look as follows:

git clone https://github.com/acidanthera/audk UDK

cd UDK

git clone https://github.com/acidanthera/EfiPkg

git clone https://github.com/acidanthera/MacInfoPkg

git clone https://github.com/acidanthera/0OcSupportPkg

git clone https://github.com/acidanthera/OpenCorePkg

source edksetup.sh

make -C BaseTools

build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc

Listing 1: Compilation Commands

NOOPT or DEBUG build modes instead of RELEASE can produce a lot more debug output. With NOOPT source level
debugging with GDB or IDA Pro is also available. For GDB check |OcSupport Debug| page. For IDA Pro you will need
IDA Pro 7.3 or newer.

For IDE usage Xcode projects are available in the root of the repositories. Another approach could be Sublime Text
with [EasyClangComplete plugin. Add .clang_complete file with similar content to your UDK root:

-I/UefiPackages/MdePkg
-I/UefiPackages/MdePkg/Include
-I/UefiPackages/MdePkg/Include/X64
-I/UefiPackages/EfiPkg
-I/UefiPackages/EfiPkg/Include
-I/UefiPackages/EfiPkg/Include/X64
-I/UefiPackages/AptioFixPkg/Include
-I/UefiPackages/AppleSupportPkg/Include
-I/UefiPackages/OpenCorePkg/Include
-I/UefiPackages/0cSupportPkg/Include
-I/UefiPackages/MacInfoPkg/Include
-I/UefiPackages/UefiCpuPkg/Include
-IInclude

—include
/UefiPackages/MdePkg/Include/Uefi.h
-fshort-wchar

-Wall

-Wextra

-Wno-unused-parameter
-Wno-missing-braces
-Wno-missing-field-initializers
-Wno-tautological-compare
-Wno-sign-compare

-Wno-varargs
-Wno-unused-const-variable

Listing 2: ECC Configuration

https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/tianocore.github.io/wiki/UDK
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II#stable-tags
https://github.com/acidanthera/audk
https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://github.com/acidanthera/OcSupportPkg
https://github.com/acidanthera/OcSupportPkg
https://github.com/acidanthera/OcSupportPkg
https://developer.apple.com/xcode
https://www.nasm.us
https://github.com/acidanthera/ocbuild/raw/master/external/mtoc-mac64.zip
https://github.com/acidanthera/OcSupportPkg/tree/master/Debug
https://www.sublimetext.com
https://niosus.github.io/EasyClangComplete

Warning: Tool developers modifying config.plist or any other OpenCore files must ensure that their tool checks
for opencore-version NVRAM variable (see [Debug Properties| section below) and warn the user if the version listed
is unsupported or prerelease. OpenCore configuration may change across the releases and the tool shall ensure that it
carefully follows this document. Failure to do so may result in this tool to be considered as malware and blocked with
all possible means.

4

4.1

ACPI

Introduction

ACPT (Advanced Configuration and Power Interface) is an open standard to discover and configure computer hardware.
ACPI specification| defines the standard tables (e.g. DSDT, SSDT, FACS, DMAR) and various methods (e.g. _DSM, _PWR) for
implementation. Modern hardware needs little changes to maintain ACPI compatibility, yet some of those are provided
as a part of OpenCore.

To compile and disassemble ACPI tables iASL compiler can be used developed by ACPICA.L GUI front-end to iASL
compiler can be downloaded from |Acidanthera/MaciASL.

4.2

1.

Properties

Add

Type: plist array

Failsafe: Empty

Description: Load selected tables from 0C/ACPI directory.

Designed to be filled with plist dict values, describing each block entry. See section below.

Block

Type: plist array

Failsafe: Empty

Description: Remove selected tables from ACPI stack.

Designed to be filled with plist dict values, describing each block entry. See[Block Properties|section below.

Patch

Type: plist array

Failsafe: Empty

Description: Perform binary patches in ACPI tables before table addition or removal.

Designed to be filled with plist dictionary values describing each patch entry. See|Patch Properties|section
below.

Quirks
Type: plist dict
Description: Apply individual ACPI quirks described in [Quirks Properties| section below.

Add Properties

. Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Enabled

Type: plist boolean

Failsafe: false

Description: This ACPI table will not be added unless set to true.

Path

Type: plist string

Failsafe: Empty string

Description: File paths meant to be loaded as ACPI tables. Example values include DSDT . aml, SubDir/SSDT-8.aml,
SSDT-USBX.aml, etc.

ACPI table load order follows the item order in the array. All ACPI tables load from 0C/ACPI directory.

Note: All tables but tables with DSDT table identifier (determined by parsing data not by filename) insert new
tables into ACPI stack. DSDT, unlike the rest, performs replacement of DSDT table.

10

https://uefi.org/specifications
https://github.com/acpica/acpica
https://www.acpica.org
https://github.com/acidanthera/MaciASL/releases

4.4

Block Properties

. A1l

Type: plist boolean

Failsafe: false

Description: If set to true, all ACPI tables matching the condition will be dropped. Otherwise only first
matched table.

. Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Enabled

Type: plist boolean

Failsafe: false

Description: This ACPI table will not be removed unless set to true.

. OemTableld

Type: plist data, 8 bytes
Failsafe: All zero
Description: Match table OEM ID to be equal to this value unless all zero.

TableLength

Type: plist integer

Failsafe: 0

Description: Match table size to be equal to this value unless 0.

TableSignature

Type: plist data, 4 bytes

Failsafe: All zero

Description: Match table signature to be equal to this value unless all zero.

Patch Properties

. Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

. Count

Type: plist integer
Failsafe: 0
Description: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

Enabled

Type: plist boolean

Failsafe: false

Description: This ACPI patch will not be used unless set to true.

Find

Type: plist data

Failsafe: Empty data

Description: Data to find. Must equal to Replace in size.

Limit

Type: plist integer

Failsafe: 0

Description: Maximum number of bytes to search for. Can be set to 0 to look through the whole ACPI table.

11

6. Mask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

7. OemTableId
Type: plist data, 8 bytes
Failsafe: All zero
Description: Match table OEM ID to be equal to this value unless all zero.

8. Replace
Type: plist data
Failsafe: Empty data
Description: Replacement data of one or more bytes.

9. ReplaceMask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set
to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

10. Skip
Type: plist integer
Failsafe: 0
Description: Number of found occurrences to be skipped before replacement is done.

11. TableLength
Type: plist integer
Failsafe: 0
Description: Match table size to be equal to this value unless 0.

12. TableSignature
Type:
textttplist data, 4 bytes
Failsafe: All zero
Description: Match table signature to be equal to this value unless all zero.

In the majority of the cases ACPI patches are not useful and harmful:

e Avoid renaming devices with ACPI patches. This may fail or perform improper renaming of unrelated devices
(e.g. EC and ECO), be unnecessary, or even fail to rename devices in select tables. For ACPI consistency it is much
safer to rename devices at I/O Registry level, as done by WhateverGreen.

¢ Avoid patching _0SI to support a higher level of feature sets unless absolutely required. Commonly this enables a
number of hacks on APTIO firmwares, which result in the need to add more patches. Modern firmwares generally
do not need it at all, and those that do are fine with much smaller patches.

e Try to avoid hacky changes like renaming _PWR or _DSM whenever possible.
Several cases, where patching actually does make sense, include:

o Refreshing HPET (or another device) method header to avoid compatibility checks by _0SI on legacy hardware.
_STA method with if ((0SFL () == Zero)) { If (HPTE) ... Return (Zero) content may be forced to
always return OxF by replacing AO 10 93 4F 53 46 4C 00 with A4 OA OF A3 A3 A3 A3 A3.

e To provide custom method implementation with in an SSDT, for instance, to report functional key presses on a
laptop, the original method can be replaced with a dummy name by patching _Q11 with XQ11.

Tianocore AcpiAml.h/ source file may help understanding ACPI opcodes.

4.6 Quirks Properties

1. FadtEnableReset
Type: plist boolean

12

https://github.com/acidanthera/WhateverGreen
https://github.com/tianocore/edk2/blob/UDK2018/MdePkg/Include/IndustryStandard/AcpiAml.h

Failsafe: false
Description: Provide reset register and flag in FADT table to enable reboot and shutdown on legacy hardware.
Not recommended unless required.

. NormalizeHeaders

Type: plist boolean

Failsafe: false

Description: Cleanup ACPI header fields to workaround macOS ACPI implementation bug causing boot crashes.
Reference: Debugging Apple ACPIPlatform on 10.13| by Alex James aka theracermaster. The issue is fixed in
macOS Mojave (10.14).

. RebaseRegions

Type: plist boolean

Failsafe: false

Description: Attempt to heuristically relocate ACPI memory regions. Not recommended.

ACPI tables are often generated dynamically by underlying firmware implementation. Among the position-
independent code, ACPI tables may contain physical addresses of MMIO areas used for device configuration,
usually grouped in regions (e.g. OperationRegion). Changing firmware settings or hardware configuration,
upgrading or patching the firmware inevitably leads to changes in dynamically generated ACPI code, which
sometimes lead to the shift of the addresses in aforementioned OperationRegion constructions.

For this reason it is very dangerous to apply any kind of modifications to ACPI tables. The most reasonable
approach is to make as few as possible changes to ACPI and try to not replace any tables, especially DSDT.
When this is not possible, then at least attempt to ensure that custom DSDT is based on the most recent DSDT
or remove writes and reads for the affected areas.

When nothing else helps this option could be tried to avoid stalls at PCI Configuration Begin phase of macOS
booting by attempting to fix the ACPI addresses. It does not do magic, and only works with most common cases.
Do not use unless absolutely required.

. ResetHwSig

Type: plist boolean

Failsafe: false

Description: Reset FACS table HardwareSignature value to 0.

This works around firmwares that fail to maintain hardware signature across the reboots and cause issues with
waking from hibernation.

. ResetLogoStatus

Type: plist boolean

Failsafe: false

Description: Reset BGRT table Displayed status field to false.

This works around firmwares that provide BGRT table but fail to handle screen updates afterwards.

13

https://alextjam.es/debugging-appleacpiplatform/

5 DeviceProperties

5.1 Introduction

Device configuration is provided to macOS with a dedicated buffer, called EfiDevicePropertyDatabase. This buffer
is a serialised map of DevicePaths to a map of property names and their values.

Property data can be debugged with gfxutil. To obtain current property data use the following command in macOS:

ioreg -1w0 -p IODeviceTree -n efi -r -x | grep device-properties |
sed 's/.*<//;s/>.x//' > /tmp/device-properties.hex &&
gfxutil /tmp/device-properties.hex /tmp/device-properties.plist &&
cat /tmp/device-properties.plist

5.2 Properties

1. Add
Type: plist dict
Description: Sets device properties from a map (plist dict) of deivce paths to a map (plist dict) of variable
names and their values in plist metadata format. Device paths must be provided in canonic string format (e.g.
PciRoot (0x0) /Pci(0x1,0x0) /Pci(0x0,0x0)). Properties will only be set if not present and not blocked.

Note: Currently properties may only be (formerly) added by the original driver, so unless a separate driver was
installed, there is no reason to block the variables.

2. Block
Type: plist dict
Description: Removes device properties from a map (plist dict) of deivce paths to an array (plist array)
of variable names in plist string format.

5.3 Common Properties
Some known properties include:

e device-id
User-specified device identifier used for I/O Kit matching. Has 4 byte data type.
e vendor-id
User-specified vendor identifier used for I/O Kit matching. Has 4 byte data type.
e AAPL,ig-platform-id
Intel GPU framebuffer identifier used for framebuffer selection on Ivy Bridge and newer. Has 4 byte data
type.
e AAPL,snb-platform-id
Intel GPU framebuffer identifier used for framebuffer selection on Sandy Bridge. Has 4 byte data type.
e layout-id
Audio layout used for AppleHDA layout selection. Has 4 byte data type.

14

https://github.com/acidanthera/gfxutil

6 Kernel

6.1

Introduction

This section allows to apply different kinds of kernelspace modifications on Apple Kernel (XNU). The modifications
currently provide driver (kext) injection, kernel and driver patching, and driver blocking.

6.2

1.

Properties

Add

Type: plist array

Failsafe: Empty

Description: Load selected kernel drivers from 0C/Kexts directory.

Designed to be filled with plist dict values, describing each driver. See section below. Kernel
driver load order follows the item order in the array, thus the dependencies should be written prior to their
consumers.

. Block

Type: plist array
Failsafe: Empty
Description: Remove selected kernel drivers from prelinked kernel.

Designed to be filled with plist dictionary values, describing each blocked driver. See [Block Properties| section
below.

Emulate

Type: plist dict

Description: Emulate select hardware in kernelspace via parameters described in |[Emulate Properties| section
below.

. Patch

Type: plist array
Failsafe: Empty
Description: Perform binary patches in kernel and drivers prior to driver addition and removal.

Designed to be filled with plist dictionary values, describing each patch. See [Patch Properties|section below.

Quirks
Type: plist dict
Description: Apply individual kernel and driver quirks described in [Quirks Properties| section below.

Add Properties

1. BundlePath

Type: plist string
Failsafe: Empty string
Description: Kext bundle path (e.g. Lilu.kext or MyKext.kext/Contents/PlugIns/MySubKext.kext).

. Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Enabled

Type: plist boolean

Failsafe: false

Description: This kernel driver will not be added unless set to true.

. ExecutablePath

Type: plist string

15

https://opensource.apple.com/source/xnu

Failsafe: Empty string
Description: Kext executable path relative to bundle (e.g. Contents/Mac0S/Lilu).

MatchKernel

Type: plist string

Failsafe: Empty string

Description: Blocks kernel driver on selected macOS version only. The selection happens based on prefix match
with the kernel version, i.e. 16.7.0 will match macOS 10.12.6 and 16. will match any macOS 10.12.x version.

PlistPath

Type: plist string

Failsafe: Empty string

Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

Block Properties

. Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Enabled

Type: plist boolean

Failsafe: false

Description: This kernel driver will not be blocked unless set to true.

Identifier

Type: plist string

Failsafe: Empty string

Description: Kext bundle identifier (e.g. com.apple.driver.AppleTyMCEDriver).

. MatchKernel

Type: plist string

Failsafe: Empty string

Description: Blocks kernel driver on selected macOS version only. The selection happens based on prefix match
with the kernel version, i.e. 16.7.0 will match macOS 10.12.6 and 16. will match any macOS 10.12.x version.

Emulate Properties

. CpuidiData

Type: plist data, 16 bytes

Failsafe: All zero

Description: Sequence of EAX, EBX, ECX, EDX values in Little Endian order to replace CPUID (1) call in XNU
kernel.

CpuidiMask

Type: plist data, 16 bytes

Failsafe: All zero

Description: Bit mask of active bits in CpuidiData. When each CpuidiMask is set to 0, the original CPU bit is
used, otherwise .

Patch Properties

. Base

Type: plist string

Failsafe: Empty string

Description: Selects symbol-matched base for patch lookup (or immediate replacement) by obtaining the address
of provided symbol name. Can be set to empty string to be ignored.

Comment
Type: plist string

16

10.

11.

12.

Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Count

Type: plist integer

Failsafe: 0

Description: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

. Enabled

Type: plist boolean
Failsafe: false
Description: This kernel patch will not be used unless set to true.

Find

Type: plist data

Failsafe: Empty data

Description: Data to find. Can be set to empty for immediate replacement at Base. Must equal to Replace in
size otherwise.

Identifier

Type: plist string

Failsafe: Empty string

Description: Kext bundle identifier (e.g. com.apple.driver.AppleHDA) or kernel for kernel patch.

Limit

Type: plist integer

Failsafe: 0

Description: Maximum number of bytes to search for. Can be set to 0 to look through the whole kext or kernel.

Mask

Type: plist data

Failsafe: Empty data

Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

MatchKernel

Type: plist string

Failsafe: Empty string

Description: Adds kernel driver to selected macOS version only. The selection happens based on prefix match
with the kernel version, i.e. 16.7.0 will match macOS 10.12.6 and 16. will match any macOS 10.12.x version.

Replace

Type: plist data

Failsafe: Empty data

Description: Replacement data of one or more bytes.

ReplaceMask

Type: plist data

Failsafe: Empty data

Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set
to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

Skip

Type: plist integer

Failsafe: 0

Description: Number of found occurrences to be skipped before replacement is done.

Quirks Properties

1. AppleCpuPmCfgLock

Type: plist boolean
Failsafe: false

17

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in AppleIntelCPUPowerManage-
ment.kext, commonly causing early kernel panic, when it is locked from writing.

Note: This option should avoided whenever possible. Modern firmwares provide CFG Lock setting, disabling
which is much cleaner. More details about the issue can be found in [VerifyMsrE2| notes.

. AppleXcpmCfgLock

Type: plist boolean

Failsafe: false

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in XNU kernel, commonly causing
early kernel panic, when it is locked from writing (XCPM power management).

Note: This option should avoided whenever possible. Modern firmwares provide CFG Lock setting, disabling
which is much cleaner. More details about the issue can be found in [VerifyMsrE2 notes.

. AppleXcpmExtraMsrs

Type: plist boolean

Failsafe: false

Description: Disables multiple MSR access critical for select CPUs, which have no native XCPM support.

This is normally used in conjunction with Emulate section on Haswell-E, Broadwell-E, Skylake-X, and similar
CPUs. More details on the XCPM patches are outlined in [acidanthera/bugtracker#365.

Note: Additional not provided patches will be required for Ivy Bridge or Pentium CPUs. It is recommended to
use AppleIntelCpuPowerManagement.kext for the former.

. CustomSMBIOSGuid

Type: plist boolean

Failsafe: false

Description: Performs GUID patching for UpdateSMBIOSMode Custom mode. Usually relevant for Dell laptops.

. DisableIoMapper

Type: plist boolean

Failsafe: false

Description: Disables I0Mapper support in XNU (VT-d), which may conflict with the firmware implementation.

Note: This option is a preferred alternative to dropping DMAR ACPI table and disabling VT-d in firmware
preferences, which does not break VT-d support in other systems in case they need it.

. ExternalDiskIcons

Type: plist boolean
Failsafe: false
Description: Apply icon type patches to AppleAHCIPort.kext to force internal disk icons for all AHCI disks.

Note: This option should avoided whenever possible. Modern firmwares usually have compatible AHCI controllers.

. LapicKernelPanic

Type: plist boolean

Failsafe: false

Description: Disables kernel panic on LAPIC interrupts.

. PanicNoKextDump

Type: plist boolean

Failsafe: false

Description: Prevent kernel from printing kext dump in the panic log preventing from observing panic details.
Affects 10.13 and above.

. ThirdPartyTrim

Type: plist boolean

Failsafe: false

Description: Patch IOAHCIBlockStorage.kext to force TRIM command support on AHCI SSDs.

Note: This option should avoided whenever possible. NVMe SSDs are compatible without the change. For AHCI
SSDs on modern macOS version there is a dedicated built-in utility called trimforce.

18

https://github.com/acidanthera/AptioFixPkg#verifymsre2
https://github.com/acidanthera/AptioFixPkg#verifymsre2
https://github.com/acidanthera/bugtracker/issues/365

10. XhciPortLimit
Type: plist boolean
Failsafe: false
Description: Patch various kexts (AppleUSBXHCILkext, AppleUSBXHCIPCIL kext, IOUSBHostFamily.kext) to
remove USB port count limit of 15 ports.

Note: This option should avoided whenever possible. USB port limit is imposed by the amount of used bits in
locationID format and there is no possible way to workaround this without heavy OS modification. The only valid
solution is to limit the amount of used ports to 15 (discarding some). More details can be found on AppleLife.ru.

19

https://applelife.ru/posts/550233

7

7.1

Misc

Introduction

This section contains miscellaneous configuration entries for OpenCore behaviour that does not go to any other sections

7.2

1.

2.

3.

4.

Properties

Boot
Type: plist dict
Description: Apply boot configuration described in section below.

Debug
Type: plist dict
Description: Apply debug configuration described in [Debug Properties| section below.

Security
Type: plist dict
Description: Apply security configuration described in [Security Properties| section below.

Tools
Type: plist array
Description: Add new entries to boot picker.

Designed to be filled with plist dict values, describing each block entry. See[Tools Properties| section below.

Note: Select tools, for example, UEFI Shell or NVRAM cleaning are very dangerous and MUST NOT appear
in production configurations, especially in vaulted ones and protected with secure boot, as they may be used to
easily bypass secure boot chain.

Boot Properties

. ConsoleMode

Type: plist string

Failsafe: Empty string

Description: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string. Set to empty
string not to change console mode. Set to Max to try to use largest available console mode.

. ConsoleBehaviourQOs

Type: plist string
Failsafe: Empty string
Description: Set console control behaviour upon operating system load.

Console control is a legacy protocol used for switching between text and graphics screen output. Some firmwares
do not provide it, yet select operating systems require its presence, which is what ConsoleControl UEFI protocol
is for.

When console control is available, OpenCore can be made console control aware, and and set different modes for
the operating system booter (ConsoleBehaviourOs), which normally runs in graphics mode, and its own user
interface (ConsoleBehaviourUi), which normally runs in text mode. Possible behaviours, set as values of these
options, include:

o Empty string — Do not modify console control mode.

e Text — Switch to text mode.

e Graphics — Switch to graphics mode.

o ForceText — Switch to text mode and preserve it (requires ConsoleControl).

o ForceGraphics — Switch to graphics mode and preserve it (require ConsoleControl).

Hints:

e Unless empty works, firstly try to set ConsoleBehaviourOs to Graphics and ConsoleBehaviourUi to Text.
e On APTIO IV (Haswell and earlier) it is usually enough to have ConsoleBehaviourOs set to Graphics and
ConsoleBehaviourUi set to ForceText to avoid visual glitches.

20

e On APTIO V (Broadwell and newer) ConsoleBehaviour0s set to ForceGraphics and ConsoleBehaviourUi
set to ForceText usually works best.

e On Apple firmwares ConsoleBehaviourOs set to Graphics and ConsoleBehaviourUi set to Text is supposed
to work best.

Note: IgnoreTextInGraphics may need to be enabled for select firmware implementations.

. ConsoleBehaviourUi

Type: plist string

Failsafe: Empty string

Description: Set console control behaviour upon OpenCore user interface load. Refer to ConsoleBehaviourQOs
description for details.

. HibernateMode

Type: plist string
Failsafe: None
Description: Hibernation detection mode. The following modes are supported:

e None — Avoid hibernation for your own good.
e Auto — Use RTC and NVRAM detection.

e RTC — Use RTC detection.

¢ NVRAM — Use NVRAM detection.

. HideSelf

Type: plist boolean

Failsafe: false

Description: Hides own boot entry from boot picker. This may potentially hide other entries, for instance, when
another UEFT OS is installed on the same volume and driver boot is used.

. Resolution

Type: plist string
Failsafe: Empty string
Description: Sets console output screen resolution.

o Set to WxH@Bpp (e.g. 1920x1080032) WxH (e.g. 1920x1080) formatted string to request custom resolution
from GOP if available.

e Set to empty string not to change screen resolution.

e Set to Max to try to use largest available screen resolution.

On HiDPI screens APPLE_VENDOR_VARIABLE_GUID UIScale NVRAM variable may need to be set to 02 to enable
HiDPI scaling in FileVault 2 UEFI password interface and boot screen logo. Refer to [Recommended Variables|
section for more details.

Note: This will fail when console handle has no GOP protocol. When the firmware does not provide it, it can be
added with ProvideConsoleGop UEFI quirk set to true.

. ShowPicker

Type: plist boolean
Failsafe: false
Description: Show simple boot picker to allow boot entry selection.

. Timeout

Type: plist integer, 32 bit
Failsafe: 0
Description: Timeout in seconds in boot picker before automatic booting of the default boot entry.

. UsePicker

Type: plist boolean
Failsafe: false
Description: Use OpenCore built-in boot picker for boot management.

UsePicker set to false entirely disables all boot management in OpenCore except policy enforcement. In this
case a custom user interface may utilise OcSupportPkg OcBootManagementLib to implement a user friendly boot
picker oneself. Reference example of external graphics interface is provided in ExternalUi test driver.

21

https://github.com/acidanthera/OcSupportPkg
https://github.com/acidanthera/OcSupportPkg/tree/master/Tests/ExternalUi

7.4

Note: By default OpenCore built-in boot picker loads the default discovered option, this can be changed by
setting ShowPicker to true.

Debug Properties

. DisableWatchDog

Type: plist boolean

Failsafe: false

Description: Select firmwares may not succeed in quickly booting the operating system, especially in debug
mode, which results in watch dog timer aborting the process. This option turns off watch dog timer.

DisplayDelay

Type: plist integer

Failsafe: 0

Description: Delay in microseconds performed after every printed line visible onscreen (i.e. console).

DisplayLevel

Type: plist integer, 64 bit

Failsafe: 0

Description: EDK II debug level bitmask (sum) showed onscreen. Unless Target enables console (onscreen)
printing, onscreen debug output will not be visible. The following levels are supported (discover more in
DebugLib.h):

+ 0x00000002 (bit 1) — DEBUG_WARN in DEBUG, NOOPT, RELEASE.

+ 0x00000040 (bit 6) — DEBUG_INFO in DEBUG, NOOPT.

+ 0x00400000 (bit 22) — DEBUG_VERBOSE in custom builds.

+ 0x80000000 (bit 31) — DEBUG_ERROR in DEBUG, NOOPT, RELEASE.

Target

Type: plist integer

Failsafe: 0

Description: A bitmask (sum) of enabled logging targets. By default all the logging output is hidden, so this
option is required to be set when debugging is necessary.

The following logging targets are supported:

e 0x01 (bit 0) — Enable logging, otherwise all log is discarded.
e 0x02 (bit 1) — Enable basic console (onscreen) logging.

o 0x04 (bit 2) — Enable logging to Data Hub.

o 0x08 (bit 3) — Enable serial port logging.

e 0x10 (bit 4) — Enable UEFI variable logging.

e 0x20 (bit 5) — Enable non-volatile UEFI variable logging.

o 0x40 (bit 6) — Enable logging to file.

Console logging prints less than all the other variants. Depending on the build type (RELEASE, DEBUG, or NOOPT)
different amount of logging may be read (from least to most).

Data Hub log will not log kernel and kext patches. To obtain Data Hub log use the following command in macOS:

ioreg -1w0 -p IODeviceTree | grep boot-log | sort | sed 's/.*<\(.*\)>.*/\1/' | xxd -r -p

UEFI variable log does not include some messages and has no performance data. For safety reasons log size is
limited to 32 kilobytes. Some firmwares may truncate it much earlier or drop completely if they have no memory.
Using non-volatile flag will write the log to NVRAM flash after every printed line. To obtain UEFT variable log
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-1log |
awk '{gsub(/%0d4%0a%00/,"") ;gsub(/%0d%0a/,"\n")}1"

Warning: Some firmwares are reported to have broken NVRAM garbage collection. This means that they may
not be able to always free space after variable deletion. Do not use non-volatile NVRAM logging without extra
need on such devices.

22

https://github.com/tianocore/edk2/blob/UDK2018/MdePkg/Include/Library/DebugLib.h

7.5

While OpenCore boot log already contains basic version information with build type and date, this data may also
be found in NVRAM in opencore-version variable even with boot log disabled.

File logging will create a file named opencore.log at EFI volume root with log contents. Please be warned that
some file system drivers present in firmwares are not reliable, and may corrupt data when writing files through
UEFTI. Log is attempted to be written in the safest manner, and thus is very slow. Ensure that DisableWatchDog
is set to true when you use a slow drive.

Security Properties

. ExposeSensitiveData

Type: plist integer
Failsafe: 2
Description: Sensitive data exposure bitmask (sum) to operating system.

e 0x01 — Expose printable booter path as an UEFI variable.
e 0x02 — Expose OpenCore version as an UEFI variable.

Exposed booter path points to OpenCore.efi or its booter depending on the load order. To obtain booter path
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path

To use booter path for mounting booter volume use the following command in macOS:

u=$(nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path | sed 's/.*GPT,\([7,I1*\),.*/\1/'); \
if ["$u" !'= ""]; then sudo diskutil mount $u ; fi

To obtain OpenCore version use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:0opencore-version

HaltLevel

Type: plist integer, 64 bit

Failsafe: 0x80000000 (DEBUG_ERROR)

Description: EDK IT debug level bitmask (sum) causing CPU to halt (stop execution) after obtaining a message
of HaltLevel. Possible values match DisplayLevel values.

RequireSignature

Type: plist boolean

Failsafe: true

Description: Require vault.sig signature file for vault.plist in OC directory.

This file should contain a raw 256 byte RSA-2048 signature from SHA-256 hash of vault.plist. The signature
is verified against the public key embedded into OpenCore.efi.

To embed the public key you should do either of the following;:

e Provide public key during the OpenCore.efi compilation in OpenCoreVault. c|file.
o Binary patch OpenCore.efi replacing zeroes with the public key between =BEGIN 0C VAULT= and ==END
0C VAULT== ASCII markers.

RSA public key 520 byte format description can be found in Chromium OS documentation. To convert public
key from X.509 certificate or from PEM file use RsaTool.

Note: vault.sig is used regardless of this option when public key is embedded into OpenCore.efi. Setting it
to true will only ensure configuration sanity, and abort the boot process when public key is not set but was
supposed to be used for verification.

. RequireVault

Type: plist boolean
Failsafe: true
Description: Require vault.plist file present in OC directory.

23

https://github.com/acidanthera/OpenCorePkg/blob/master/Platform/OpenCore/OpenCoreVault.c
https://github.com/acidanthera/OcSupportPkg/tree/master/Utilities/CreateVault

This file should contain SHA-256 hashes for all files used by OpenCore. Presence of this file is highly recommended
to ensure that unintentional file modifications (including filesystem corruption) do not happen unnoticed. To
create this file automatically use |create_vault.sh script.

Regardless of the underlying filesystem, path name and case must match between config.plist and vault.plist.

Note: vault.plist is tried to be read regardless of the value of this option, but setting it to true will ensure
configuration sanity, and abort the boot process.

The complete set of commands to:

o Create vault.plist.

¢ Create a new RSA key (always do this to avoid loading old configuration).
e Embed RSA key into OpenCore.efi.

o Create vault.sig.

Can look as follows:

cd /Volumes/EFI/EFI/0C

/path/to/create_vault.sh .

/path/to/RsaTool -sign vault.plist vault.sig vault.pub

off=$(($(strings -a -t d OpenCore.efi | grep "=BEGIN OC VAULT=" | cut -f1 -d' ')+16))
dd of=0OpenCore.efi if=vault.pub bs=1 seek=$0ff count=520 conv=notrunc

rm vault.pub

Note: While it may appear obvious, but you have to use an external method to verify OpenCore.efi and
BOOTx64.efi for secure boot path. For this you are recommended to at least enable UEFI SecureBoot with a
custom certificate, and sign OpenCore.efi and BOOTx64.efi with your custom key. More details on customising
secure boot on modern firmwares can be found in [Taming UEFI SecureBoot paper (in Russian).

. ScanPolicy

Type: plist integer, 32 bit

Failsafe: 0xF0103

Description: Define operating system detection policy.

This value allows to prevent scanning (and booting) from untrusted source based on a bitmask (sum) of select
flags. As it is not possible to reliably detect every file system or device type, this feature cannot be fully relied
upon in open environments, and the additional measures are to be applied.

Third party drivers may introduce additional security (and performance) measures following the provided scan
policy. Scan policy is exposed in scan-policy variable of 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 GUID for
UEFT Boot Services only.

e 0x00000001 (bit 0) — OC_SCAN_FILE_SYSTEM_LOCK, restricts scanning to only known file systems defined as
a part of this policy. File system drivers may not be aware of this policy, and to avoid mounting of undesired
file systems it is best not to load its driver. This bit does not affect dmg mounting, which may have any file
system. Known file systems are prefixed with 0C_SCAN_ALLOW_FS_.

e 0x00000002 (bit 1) — OC_SCAN_DEVICE_LOCK, restricts scanning to only known device types defined as a
part of this policy. This is not always possible to detect protocol tunneling, so be aware that on some
systems it may be possible for e.g. USB HDDs to be recognised as SATA. Cases like this must be reported.
Known device types are prefixed with 0C_SCAN_ALLOW_DEVICE_.

e 0x00000100 (bit 8) — OC_SCAN_ALLOW_FS_APFS, allows scanning of APFS file system.

e 0x00000200 (bit 9) — OC_SCAN_ALLOW_FS_HFS, allows scanning of HFS file system.

e 0x00000400 (bit 10) — OC_SCAN_ALLOW_FS_ESP, allows scanning of EFI System Partition file system.

e 0x00010000 (bit 16) — OC_SCAN_ALLOW_DEVICE_SATA, allow scanning SATA devices.

e 0x00020000 (bit 17) — 0C_SCAN_ALLOW_DEVICE_SASEX, allow scanning SAS and Mac NVMe devices.

e 0x00040000 (bit 18) — O0C_SCAN_ALLOW_DEVICE_SCSI, allow scanning SCSI devices.

e 0x00080000 (bit 19) — 0C_SCAN_ALLOW_DEVICE_NVME, allow scanning NVMe devices.

e 0x00100000 (bit 20) — 0C_SCAN_ALLOW_DEVICE_ATAPI, allow scanning CD/DVD devices.

¢ 0x00200000 (bit 21) — 0C_SCAN_ALLOW_DEVICE_USB, allow scanning USB devices.

¢ 0x00400000 (bit 22) — 0C_SCAN_ALLOW_DEVICE_FIREWIRE, allow scanning FireWire devices.

e 0x00800000 (bit 23) — 0C_SCAN_ALLOW_DEVICE_SDCARD, allow scanning card reader devices.

P N T e s e T s T

24

https://github.com/acidanthera/OcSupportPkg/tree/master/Utilities/CreateVault
https://habr.com/post/273497/

Note: Given the above description, 0xF0103 value is expected to allow scanning of SATA, SAS, SCSI, and NVMe
devices with APFS file system, and prevent scanning of any devices with HFS or FAT32 file systems in addition
to not scanning APFS file systems on USB, CD, USB, and FireWire drives. The combination reads as:

« OC_SCAN_FILE_SYSTEM_LOCK
« 0C_SCAN_DEVICE_LOCK

o OC_SCAN_ALLOW_FS_APFS

o OC_SCAN_ALLOW_DEVICE_SATA
o 0OC_SCAN_ALLOW_DEVICE_SASEX
« 0OC_SCAN_ALLOW_DEVICE_SCSI
e 0OC_SCAN_ALLOW_DEVICE_NVME

Tools Properties

1. Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Enabled

Type: plist boolean

Failsafe: false

Description: This tool will not be listed unless set to true.

Name

Type: plist string

Failsafe: Empty string

Description: Human readable tool name displayed in boot picker.

. Path

Type: plist string
Failsafe: Empty string
Description: File path to select UEFT tool relative to 0C/Tools directory.

25

8 NVRAM

8.1 Introduction

Has plist dict type and allows to set volatile UEFI variables commonly referred as NVRAM variables. Refer
to man nvram for more details. macOS extensively uses NVRAM variables for OS — Bootloader — Firmware
intercommunication, and thus supplying several NVRAM is required for proper macOS functioning.

Each NVRAM variable consists of its name, value, attributes (refer to UEFI specification), and its GUID) representing
which ‘section’ NVRAM variable belongs to. macOS uses several GUIDs, including but not limited to:

 4D1EDE05-38C7-4A6A-9CC6-4BCCAS8B38C14 (APPLE_VENDOR_VARIABLE_GUID)
« 7C436110-AB2A-4BBB-A880-FE41995C9F82 (APPLE_BOOT_VARIABLE_GUID)
« 8BE4DF61-93CA-11D2-AAOD-00E098032B8C (EFI_GLOBAL_VARIABLE_GUID)
+ 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 (OC_VENDOR_VARIABLE_GUID)

Note: Some of the variables may be added by [PlatformNVRAM] or [Generid subsections of section. Please

ensure that variables of this section never collide with them, as behaviour is undefined otherwise.

8.2 Properties

1. Add
Type: plist dict
Description: Sets NVRAM variables from a map (plist dict) of GUIDs to a map (plist dict) of variable
names and their values in plist metadata format. GUIDs must be provided in canonic string format in upper
or lower case (e.g. 8BE4DF61-93CA-11D2-AA0D-00E098032B8C).

Created variables get EFI_VARIABLE_BOOTSERVICE_ACCESS and EFI_VARIABLE_RUNTIME_ACCESS attributes set.
Variables will only be set if not present and not blocked. To overwrite a variable add it to Block section. This
approach enables to provide default values till the operating system takes the lead.

Note: If plist key does not conform to GUID format, behaviour is undefined.

2. Block
Type: plist dict
Description: Removes NVRAM variables from a map (plist dict) of GUIDs to an array (plist array) of
variable names in plist string format.

3. LegacyEnable
Type: plist boolean
Failsafe: false
Description: Enables loading of NVRAM variable file named nvram.plist from EFI volume root.

This file must have root plist dictionary type and contain two fields:

e Version — plist integer, file version, must be set to 1.
e Add — plist dictionary, equivalent to Add from config.plist.

Variable loading happens prior to Block (and Add) phases, and will not overwrite any existing variable. Variables
allowed to be set must be specified in LegacySchema. Third-party scripts may be used to create nvram.plist
file. Example can be found in Tools. The use of third-party scripts may require ExposeSensitiveData set to
0x3 to provide boot-path variable with OpenCore EFI partition UUID.

WARNING: This feature is very dangerous as it passes unprotected data to your firmware variable services.
Use it only when no hardware NVRAM implementation is provided by the firmware or it is incompatible.

4. LegacySchema
Type: plist dict
Description: Allows setting select NVRAM variables from a map (plist dict) of GUIDs to an array (plist
array) of variable names in plist string format.

You can use * value to accept all variables for select GUID.

WARNING: Choose variables very carefully, as nvram.plist is not vaulted. For instance, do not put boot-args
or csr-active-config, as this can bypass SIP.

26

https://en.wikipedia.org/wiki/Universally_unique_identifier

To read NVRAM variable value from macOS one could use nvram by concatenating variable GUID and name separated
by : symbol. For example, nvram 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args.

A continuously updated variable list can be found in a corresponding document: NVRAM Variables|

8.3

Mandatory Variables

Warning: These variables may be added by [PlatformNVRAM)] or [Generid subsections of section. Using

PlatformInfo is the recommend way of setting these variables.

The following variables are mandatory for macOS functioning:

8.4

4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :FirmwareFeatures

32-bit FirmwareFeatures. Present on all Macs to avoid extra parsing of SMBIOS tables
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :FirmwareFeaturesMask

32-bit FirmwareFeaturesMask. Present on all Macs to avoid extra parsing of SMBIOS tables.
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB

BoardSerialNumber. Present on newer Macs (20134 at least) to avoid extra parsing of SMBIOS tables, especially
in boot.efi.

4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :ROM

Primary network adapter MAC address or replacement value. Present on newer Macs (2013+ at least) to
avoid accessing special memory region, especially in boot.efi.

Recommended Variables

The following variables are recommended for faster startup or other improvements:

8.5

7C436110-AB2A-4BBB-A880-FE41995C9F82:csr-active-config

32-bit System Integrity Protection bitmask. Declared in XNU source code in [csr.h.
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :ExtendedFirmwareFeatures

Combined FirmwareFeatures and ExtendedFirmwareFeatures. Present on newer Macs to avoid extra parsing
of SMBIOS tables

4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask

Combined FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask. Present on newer Macs to avoid
extra parsing of SMBIOS tables.

4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_BID

Hardware BoardProduct (e.g. Mac-35C1E88140C3E6CF). Not present on real Macs, but used to avoid extra
parsing of SMBIOS tables, especially in boot.efi.

4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_MLB

Hardware BoardSerialNumber. Override for MLB. Present on newer Macs (20134 at least).
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :HW_ROM

Hardware ROM. Override for ROM. Present on newer Macs (2013+ at least).
7C436110-AB2A-4BBB-A880-FE41995C9F82: prev-lang:kbd

ASCII string defining default keyboard layout. Format is 1ang-COUNTRY : keyboard, e.g. ru-RU:252 for Russian
locale and ABC keyboard. Also accepts short forms: ru:252 or ru:0 (U.S. keyboard, compatible with 10.9).
Full decoded keyboard list from AppleKeyboardLayouts-L.dat can be found herel Using non-latin keyboard on
10.14 will not enable ABC keyboard, unlike previous macOS versions, and is thus not recommended.
7C436110-AB2A-4BBB-A880-FE41995C9F82: security-mode

ASCII string defining FireWire security mode. Legacy, can be found in IOFireWireFamily source code in
IOFireWireController.cpp. It is recommended not to set this variable, which may speedup system startup. Setting
to full is equivalent to not setting the variable and none disables FireWire security.
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:UIScale

One-byte data defining boot.efi user interface scaling. Should be 01 for normal screens and 02 for HiDPI
screens.

Other Variables

The following variables may be useful for certain configurations or troubleshooting:

7C436110-AB2A-4BBB-A880-FE41995CI9F82:boot-args
Kernel arguments, used to pass configuration to Apple kernel and drivers. There are many arguments, which

27

https://docs.google.com/spreadsheets/d/1HTCBwfOBkXsHiK7os3b2CUc6k68axdJYdGl-TyXqLu0
https://opensource.apple.com/source/xnu/xnu-4570.71.2/bsd/sys/csr.h.auto.html
https://github.com/acidanthera/OcSupportPkg/tree/master/Utilities/AppleKeyboardLayouts
https://opensource.apple.com/source/IOFireWireFamily/IOFireWireFamily-473/IOFireWireFamily.kmodproj/IOFireWireController.cpp.auto.html

may be found by looking for the use of PE_parse_boot_argn function in the kernel or driver code. Some of the
known boot arguments include:
— acpi_layer=0xFFFFFFFF
— acpi_level=0xFFFF5F (implies ACPI_ALL_COMPONENTS)
— cpus=VALUE
— debug=VALUE
— io=VALUE
— keepsyms=1
— kextlog=VALUE
— nvda_drv=1
— lapic_dont_panic=1
— slide=VALUE
— -nehalem_error_disable
— —no_compat_check
— -8
— -v
- -x
7C436110-AB2A-4BBB-A880-FE41995COF82:bootercfg
Booter arguments, similar to boot-args but for boot.efi. Accepts a set of arguments, which are hexadeci-
mal 64-bit values with or without Ox prefix primarily for logging control:
— log=VALUE
* 1 — AppleLoggingConOutOrErrSet/AppleLoggingConOutOrErrPrint (classical ConOut/StdErr)
* 2 — AppleLoggingStdErrSet/AppleLoggingStdErrPrint (StdErr or serial?)
* 4 — AppleLoggingFileSet/AppleLoggingFilePrint (BOOTER.LOG/BOOTER.OLD file on EFI partition)
— debug=VALUE
* 1 — enables print something to BOOTER.LOG (stripped code implies there may be a crash)
* 2 — enables perf logging to /efi/debug-log in the device three
x 4 — enables timestamp printing for styled printf calls
— level=VALUE — Verbosity level of DEBUG output. Everything but 0x80000000 is stripped from the binary,
and this is the default value.
— kc-read-size=VALUE — Chunk size used for buffered I/O from network or disk for prelinkedkernel reading
and related. Set to 1MB (0x100000) by default, can be tuned for faster booting.
7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg-once
Booter arguments override removed after first launch. Otherwise equivalent to bootercfg.
7C436110-AB2A-4BBB-A880-FE41995C9F82 : fmm-computer-name
Current saved host name. ASCII string.
7C436110-AB2A-4BBB-A880-FE41995C9F82:nvda_drv
NVIDIA Web Driver control variable. Takes ASCII digit 1 or 0 to enable or disable installed driver.

28

https://github.com/acpica/acpica/blob/master/source/include/acoutput.h

9 PlatformlInfo

Platform information is comprised of several identification fields generated or filled manually to be compatible with
macOS services. The base part of the configuration may be obtained from MacInfoPkg package, which itself generates
a set of interfaces based on a database in [YAML format. These fields are written to three select destinations:

« SMBIOS
e Data Hub
« NVRAM

Most of the fields specify the overrides in SMBIOS, and their field names conform to EDK2 SmBios.h| header file.
However, several important fields reside in Data Hub and NVRAM. Some of the values can be found in more than one
field and/or destination, so there are two ways to control their update process: manual, where one specifies all the
values (the default), and semi-automatic, where (Automatic) only select values are specified, and later used for system
configuration.

To inspect SMBIOS contents dmidecode utility can be used. Version with macOS specific enhancements can be
downloaded from |Acidanthera/dmidecode!

9.1 Properties

1. Automatic
Type: plist boolean
Failsafe: false
Description: Generate PlatformInfo based on Generic section instead of using values from DataHub, NVRAM,
and SMBIOS sections.

Enabling this option is useful when Generic section is flexible enough. When enabled SMBIOS, DataHub, and
PlatformNVRAM data is unused.

2. UpdateDataHub
Type: plist boolean
Failsafe: false
Description: Update Data Hub fields. These fields are read from Generic or DataHub sections depending on
Automatic value.

3. UpdateNVRAM
Type: plist boolean
Failsafe: false
Description: Update NVRAM fields related to platform information.

These fields are read from Generic or PlatformNVRAM sections depending on Automatic value. All the other
fields are to be specified with NVRAM section.

If UpdateNVRAM is set to false the aforementioned variables can be updated with [NVRAM section. If UpdateNVRAM
is set to true the behaviour is undefined when any of the fields are present in NVRAM section.

4. UpdateSMBIOS
Type: plist boolean
Failsafe: false
Description: Update SMBIOS fields. These fields are read from Generic or SMBIOS sections depending on
Automatic value.

5. UpdateSMBIOSMode
Type: plist string
Failsafe: Create
Description: Update SMBIOS fields approach:

e TryOverwrite — Overwrite if new size is <= than the page-aligned original and there are no issues with
legacy region unlock. Create otherwise. Has issues with some firmwares.

e Create — Replace the tables with newly allocated EfiReservedMemoryType at AllocateMaxAddress without
any fallbacks.

29

https://github.com/acidanthera/MacInfoPkg
https://yaml.org/spec/1.2/spec.html
https://www.dmtf.org/standards/smbios
https://github.com/acidanthera/EfiPkg/blob/master/Include/Protocol/DataHub.h
https://github.com/tianocore/edk2/blob/UDK2018/MdePkg/Include/IndustryStandard/SmBios.h
http://www.nongnu.org/dmidecode
https://github.com/acidanthera/dmidecode/releases

e Overwrite — Overwrite existing gEfiSmbiosTableGuid and gEfiSmbiosTable3Guid data if it fits new size.
Abort with unspecified state otherwise.

o Custom — Write first SMBIOS table (gEfiSmbiosTableGuid) to g0cCustomSmbiosTableGuid to workaround
firmwares overwriting SMBIOS contents at ExitBootServices. Otherwise equivalent to Create. Requires
patching AppleSmbios.kext and AppleACPIPlatform.kext to read from another GUID: "EB9D2D31" -
"EB9D2D35" (in ASCII), done automatically by CustomSMBIOSGuid quirk.

Generic

Type: plist dictonary

Optional: When Automatic is false

Description: Update all fields. This section is read only when Automatic is active.

DataHub

Type: plist dictonary

Optional: When Automatic is true

Description: Update Data Hub fields. This section is read only when Automatic is not active.

PlatformNVRAM

Type: plist dictonary

Optional: When Automatic is true

Description: Update platform NVRAM fields. This section is read only when Automatic is not active.

SMBIOS

Type: plist dictonary

Optional: When Automatic is true

Description: Update SMBIOS fields. This section is read only when Automatic is not active.

Generic Properties

. SpoofVendor

Type: plist boolean
Failsafe: false
Description: Sets SMBIOS vendor fields to Acidanthera.

It is dangerous to use Apple in SMBIOS vendor fields for reasons given in SystemManufacturer description.
However, certain firmwares may not provide valid values otherwise, which could break some software.

SystemProductName

Type: plist string

Failsafe: MacPro6,1

Description: Refer to SMBIOS SystemProductName.

SystemSerialNumber

Type: plist string

Failsafe: OPENCORE_SN1

Description: Refer to SMBIOS SystemSerialNumber.

. SystemUUID

Type: plist string, GUID
Failsafe: OEM specified
Description: Refer to SMBIOS SystemUUID.

MLB

Type: plist string

Failsafe: OPENCORE_MLB_SN11

Description: Refer to SMBIOS BoardSerialNumber.

ROM

Type: plist data, 6 bytes

Failsafe: all zero

Description: Refer to 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM.

30

9.3

DataHub Properties

. PlatformName

Type: plist string
Failsafe: Not installed
Description: Sets name in gEfiMiscSubClassGuid. Value found on Macs is platform in ASCII.

SystemProductName
Type: plist string
Failsafe: Not installed
Description: Sets Model in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS SystemProductName
in Unicode.

SystemSerialNumber

Type: plist string

Failsafe: Not installed

Description: Sets SystemSerialNumber in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS
SystemSerialNumber in Unicode.

. SystemUUID

Type: plist string, GUID
Failsafe: Not installed
Description: Sets system-id in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS SystemUUID.

BoardProduct

Type: plist string

Failsafe: Not installed

Description: Sets board-id in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS BoardProduct
in ASCIIL.

BoardRevision

Type: plist data, 1 byte

Failsafe: 0

Description: Sets board-rev in gEfiMiscSubClassGuid. Value found on Macs seems to correspond to internal
board revision (e.g. 01).

StartupPowerEvents

Type: plist integer, 64-bit

Failsafe: 0

Description: Sets StartupPowerEvents in gEfiMiscSubClassGuid. Value found on Macs is power management
state bitmask, normally 0. Known bits read by X86PlatformPlugin.kext:

e 0x00000001 — Shutdown cause was a PWROK event (Same as GEN_PMCON_2 bit 0)

e 0x00000002 — Shutdown cause was a SYS_PWROK event (Same as GEN_PMCON_2 bit 1)

e 0x00000004 — Shutdown cause was a THRMTRIP# event (Same as GEN_PMCON_2 bit 3)

e 0x00000008 — Rebooted due to a SYS_RESET# event (Same as GEN_PMCON_2 bit 4)

¢ 0x00000010 — Power Failure (Same as GEN_PMCON_3 bit 1 PWR_FLR)

e 0x00000020 — Loss of RTC Well Power (Same as GEN_PMCON_3 bit 2 RTC_PWR_STS)

e 0x00000040 — General Reset Status (Same as GEN_PMCON_3 bit 9 GEN_RST_STS)

o Oxffffff80 — SUS Well Power Loss (Same as GEN_PMCON_3 bit 14)

e 0x00010000 — Wake cause was a ME Wake event (Same as PRSTS bit 0, ME_WAKE_STS)

¢ 0x00020000 — Cold Reboot was ME Induced event (Same as PRSTS bit 1 ME_HRST_COLD_STS)
e 0x00040000 — Warm Reboot was ME Induced event (Same as PRSTS bit 2 ME_HRST_WARM_STS)
e 0x00080000 — Shutdown was ME Induced event (Same as PRSTS bit 3 ME_HOST_PWRDN)

e 0x00100000 — Global reset ME Wachdog Timer event (Same as PRSTS bit 6)

e 0x00200000 — Global reset PowerManagment Wachdog Timer event (Same as PRSTS bit 15)

InitialTSC

Type: plist integer, 64-bit

Failsafe: 0

Description: Sets InitialTSC in gEfiProcessorSubClassGuid. Sets initial TSC value, normally 0.

31

10.

11.

12.

13.

14.

9.4

FSBFrequency

Type: plist integer, 64-bit

Failsafe: Automatic

Description: Sets FSBFrequency in gEfiProcessorSubClassGuid. Sets CPU FSB frequency.

ARTFrequency

Type: plist integer, 64-bit

Failsafe: Not installed

Description: Sets ARTFrequency in gEfiProcessorSubClassGuid. Sets CPU ART frequency, Skylake and
newer.

DevicePathsSupported

Type: plist integer, 32-bit

Failsafe: Not installed

Description: Sets DevicePathsSupported in gEfiMiscSubClassGuid. Must be set to 1 for AppleACPIPlat-
form.kext to append SATA device paths to Boot#### and efi-boot-device-data variables. Set to 1 on all
modern Magcs.

SmcRevision

Type: plist data, 6 bytes

Failsafe: Not installed

Description: Sets REV in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate
SMC REV key.

SmcBranch

Type: plist data, 8 bytes

Failsafe: Not installed

Description: Sets RBr in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate
SMC RBr key.

SmcPlatform

Type: plist data, 8 bytes

Failsafe: Not installed

Description: Sets RP1t in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to
generate SMC RP1t key.

PlatformNVRAM Properties

BID

Type: plist string

Failsafe: Not installed

Description: Specifies the value of NVRAM variable 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :HW_BID.

ROM

Type: plist data, 6 bytes

Failsafe: Not installed

Description: Specifies the values of NVRAM variables 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :HW_ROM and
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :ROM.

MLB

Type: plist string

Failsafe: Not installed

Description: Specifies the values of NVRAM variables 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :HW_MLB and
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 : MLB.

. FirmwareFeatures

Type: plist data, 8 bytes
Failsafe: Not installed
Description: This variable comes in pair with FirmwareFeaturesMask. Specifies the values of NVRAM variables:

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeatures

32

9.5

FirmwareFeaturesMask

Type: plist data, 8 bytes

Failsafe: Not installed

Description: This variable comes in pair with FirmwareFeatures. Specifies the values of NVRAM variables:

e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :FirmwareFeaturesMask
e 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask

SMBIOS Properties

. BIOSVendor

Type: plist string

Failsafe: OEM specified

SMBIOS: BIOS Information (Type 0) — Vendor

Description: BIOS Vendor. All rules of SystemManufacturer do apply.

. BIOSVersion

Type: plist string

Failsafe: OEM specified

SMBIOS: BIOS Information (Type 0) — BIOS Version

Description: Firmware version. This value gets updated and takes part in update delivery configuration and
macOS version compatibility. This value could look like MM71.88Z.0234.B00.1809171422 in older firmwares,
and is described in |BiosId.h. In newer firmwares it should look like 236.0.0.0.0 or 220.230.16.0.0 (iBridge:
16.16.2542.0.0,0). iBridge version is read from BridgeOSVersion variable, and is only present on macs with
T2.

Apple ROM Version

BIOS ID: MBP151.88Z.F000.B00.1811142212
Model: MBP151

EFI Version: 220.230.16.0.0

Built by: root@quinoa

Date: Wed Nov 14 22:12:53 2018
Revision: 220.230.16 (B&I)

ROM Version: FO000_BOO
Build Type: Official Build, RELEASE

Compiler: Apple LLVM version 10.0.0 (clang-1000.2.42)
UUID: E5D1475B-29FF-32BA-8552-682622BA42E1

UUID: 151B0907-10F9-3271-87CD-4BF5DBECACF5
BIOSReleaseDate

Type: plist string

Failsafe: OEM specified

SMBIOS: BIOS Information (Type 0) — BIOS Release Date

Description: Firmware release date. Similar to BIOSVersion. May look like 12/08/2017.

SystemManufacturer

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — Manufacturer

Description: OEM manufacturer of the particular board. Shall not be specified unless strictly required. Should
not contain Apple Inc., as this confuses numerous services present in the operating system, such as firmware
updates, eficheck, as well as kernel extensions developed in Acidanthera, such as Lilu and its plugins. In addition
it will also make some operating systems like Linux unbootable.

. SystemProductName

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1), Product Name

Description: Preferred Mac model used to mark the device as supported by the operating system. This value
must be specified by any configuration for later automatic generation of the related values in this and other

33

https://github.com/acidanthera/EfiPkg/blob/master/Include/Guid/BiosId.h

10.

11.

12.

13.

14.

SMBIOS tables and related configuration parameters. If SystemProductName is not compatible with the target
operating system, -no_compat_check boot argument may be used as an override.

Note: If SystemProductName is unknown, and related fields are unspecified, default values should be assumed as
being set to MacPro6,1 data. The list of known products can be found in MacInfoPkg.

SystemVersion

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — Version

Description: Product iteration version number. May look like 1.1.

SystemSerialNumber

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — Serial Number

Description: Product serial number in defined format. Known formats are described in macserial.

. SystemUUID

Type: plist string, GUID

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — UUID

Description: A UUID is an identifier that is designed to be unique across both time and space. It requires no
central registration process.

SystemSKUNumber

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — SKU Number

Description: Mac Board ID (board-id). May look like Mac-7BA5B2D9E42DDD94 or Mac-F221BEC8 in older
models. Sometimes it can be just empty.

SystemFamily

Type: plist string

Failsafe: OEM specified

SMBIOS: System Information (Type 1) — Family
Description: Family name. May look like iMac Pro.

BoardManufacturer

Type: plist string

Failsafe: OEM specified

SMBIOS: Baseboard (or Module) Information (Type 2) - Manufacturer
Description: Board manufacturer. All rules of SystemManufacturer do apply.

BoardProduct

Type: plist string

Failsafe: OEM specified

SMBIOS: Baseboard (or Module) Information (Type 2) - Product

Description: Mac Board ID (board-id). May look like Mac-7BA5SB2D9E42DDD94 or Mac-F221BEC8 in older
models.

BoardVersion

Type: plist string

Failsafe: OEM specified

SMBIOS: Baseboard (or Module) Information (Type 2) - Version

Description: Board version number. Varies, may match SystemProductName or SystemProductVersion.

BoardSerialNumber

Type: plist string

Failsafe: OEM specified

SMBIOS: Baseboard (or Module) Information (Type 2) — Serial Number

Description: Board serial number in defined format. Known formats are described in macseriall

34

https://github.com/acidanthera/macserial/blob/master/FORMAT.md
https://github.com/acidanthera/macserial/blob/master/FORMAT.md

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

BoardAssetTag

Type: plist string

Failsafe: OEM specified

SMBIOS: Baseboard (or Module) Information (Type 2) — Asset Tag

Description: Asset tag number. Varies, may be empty or Type2 - Board Asset Tag.

BoardType

Type: plist integer

Failsafe: OEM specified

SMBIOS: Baseboard (or Module) Information (Type 2) — Board Type

Description: Either 0xA (Motherboard (includes processor, memory, and I/O) or 0xB (Processor/Memory

Module), refer to Table 15 — Baseboard: Board Type for more details.

BoardLocationInChassis

Type: plist string

Failsafe: OEM specified

SMBIOS: Baseboard (or Module) Information (Type 2) — Location in Chassis
Description: Varies, may be empty or Part Component.

ChassisManufacturer

Type: plist string

Failsafe: OEM specified

SMBIOS: System Enclosure or Chassis (Type 3) — Manufacturer
Description: Board manufacturer. All rules of SystemManufacturer do apply.

ChassisType

Type: plist integer

Failsafe: OEM specified

SMBIOS: System Enclosure or Chassis (Type 3) — Type

Description: Chassis type, refer to Table 17 — System Enclosure or Chassis Types for more details.

ChassisVersion

Type: plist string

Failsafe: OEM specified

SMBIOS: System Enclosure or Chassis (Type 3) — Version
Description: Should match BoardProduct.

ChassisSerialNumber

Type: plist string

Failsafe: OEM specified

SMBIOS: System Enclosure or Chassis (Type 3) — Version
Description: Should match SystemSerialNumber.

ChassisAssetTag

Type: plist string

Failsafe: OEM specified

SMBIOS: System Enclosure or Chassis (Type 3) — Asset Tag Number
Description: Chassis type name. Varies, could be empty or MacBook-Aluminum.

PlatformFeature

Type: plist integer, 32-bit

Failsafe: OxFFFFFFFF

SMBIOS: APPLE_SMBIOS_TABLE_TYPE133 - PlatformFeature

Description: Platform features bitmask. Refer to AppleFeatures.h| for more details. Use 0xFFFFFFFF value to

not provide this table.

SmcVersion

Type: plist data, 16 bytes

Failsafe: All zero

SMBIOS: APPLE_SMBIOS_TABLE_TYPE134 - Version

Description: ASCII string containing SMC version in upper case. Missing on T2 based Macs. Ignored when

Zero.

35

https://github.com/acidanthera/EfiPkg/blob/master/Include/IndustryStandard/AppleFeatures.h

25.

26.

27.

28.

FirmwareFeatures

Type: plist data, 8 bytes

Failsafe: 0

SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeatures and ExtendedFirmwareFeatures
Description: 64-bit firmware features bitmask. Refer to |AppleFeatures.h for more details. Lower 32 bits match
FirmwareFeatures. Upper 64 bits match ExtendedFirmwareFeatures.

FirmwareFeaturesMask

Type: plist data, 8 bytes

Failsafe: 0

SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask
Description: Supported bits of extended firmware features bitmask. Refer to AppleFeatures.h| for more details.
Lower 32 bits match FirmwareFeaturesMask. Upper 64 bits match ExtendedFirmwareFeaturesMask.

ProcessorType

Type: plist integer, 16-bit

Failsafe: Automatic

SMBIOS: APPLE_SMBIOS_TABLE_TYPE131 - ProcessorType
Description: Combined of Processor Major and Minor types.

MemoryFormFactor

Type: plist integer, 8-bit

Failsafe: OEM specified

SMBIOS: Memory Device (Type 17) — Form Factor

Description: Memory form factor. On Macs it should be DIMM or SODIMM.

36

https://github.com/acidanthera/EfiPkg/blob/master/Include/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/EfiPkg/blob/master/Include/IndustryStandard/AppleFeatures.h

10 UEFI

10.1 Introduction

UEFT (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load additional UEFI modules and/or apply tweaks for the onboard
firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITooll and supplementary
utilities can be used.

10.2 Properties

1. ConnectDrivers
Type: plist boolean
Failsafe: false
Description: Perform UEFT controller connection after driver loading. This option is useful for loading filesystem
drivers, which usually follow UEFT driver model, and may not start by themselves. While effective, this option is
not necessary with e.g. APFS loader driver, and may slightly slowdown the boot.

2. Drivers
Type: plist array
Failsafe: None
Description: Load selected drivers from 0C/Drivers directory.

Designed to be filled with string filenames meant to be loaded as UEFI drivers. Depending on the firmware a
different set of drivers may be required. Loading an incompatible driver may lead your system to unbootable
state or even cause permanent firmware damage. Some of the known drivers include:

e |ApfsDriverLoader|— APFS file system bootstrap driver adding the support of embedded APFS drivers in
bootable APFS containers in UEFI firmwares.

e |AppleUiSupport|— Apple-specific user interface support driver. This driver brings the support for FileVault
2 GUI, hotkey parsing (shift, cmd+v, etc.), language collation support, and certain other features important
for normal macOS functioning. For hotkey support AppleKeyMapAggregator-compatible driver is required.

e AptioInputFix — user input driver adding the support of AppleKeyMapAggregator protocols on top of
different UEFT input protocols. Additionally resolves mouse input issues on select firmwares. This is an
alternative to UsbKbDxe, which may work better or worse depending on the firmware.

e |AptioMemoryFix|— a set of quirks for various firmwares. While it primarily targets APTIO firmwares, other
firmwares may be compatible as well. Among the resolved issues are hibernation support, KASLR, Lilu
NVRAM security enhancements, NVRAM, and UEFI Boot entry preservation.

e EmuVariableRuntimeDxe| — NVRAM emulation driver from MdeModulePkg. NVRAM is supported by most
modern firmwares. For firmwares with macOS incompatible NVRAM implementation an emulated driver
may be used. This driver will not preserve NVRAM contents across the reboots.

e EnglishDxe — Unicode collation driver from MdeModulePkg. This driver is a lightweight alternative to
AppleUiSupport, which contains no Apple-specific code, and only provides unicode collation support. The
driver is not recommended for use on any hardware but few original Macs.

e EnhancedFatDxe| — FAT filesystem driver from FatPkg. This driver is embedded in all UEFI firmwares,
and cannot be used from OpenCore. It is known that multiple firmwares have a bug in their FAT support
implementation, which leads to corrupted filesystems on write attempt. Embedding this driver within the
firmware may be required in case writing to EFI partition is needed during the boot process.

o NvmExpressDxe — NVMe support driver from MdeModulePkg. This driver is included in most firmwares
starting with Broadwell generation. For Haswell and earlier embedding it within the firmware may be more
favourable in case a NVMe SSD drive is installed.

e UsbKbDxe — USB keyboard driver adding the support of AppleKeyMapAggregator protocols on top of a
custom USB keyboard driver implementation. This is an alternative to AptioInputFix, which may work
better or worse depending on the firmware.

e [VirtualSmc|— UEFI SMC driver, required for proper FileVault 2 functionality and potentially other macOS
specifics. An alternative, named SMCHelper, is not compatible with VirtualSmc and OpenCore, which
is unaware of its specific interfaces. In case FakeSMC kernel extension is used, manual NVRAM variable
addition may be needed and VirtualSmc driver should still be used.

e VBoxHfs| — HFS file system driver with bless support. This driver is an alternative to a closed source

37

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/AptioFixPkg
https://github.com/acidanthera/AptioFixPkg
https://github.com/tianocore/edk2/tree/UDK2018
https://github.com/tianocore/edk2/tree/UDK2018
https://github.com/tianocore/edk2/tree/UDK2018
https://github.com/tianocore/edk2/tree/UDK2018
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/VirtualSMC
https://github.com/acidanthera/AppleSupportPkg

HFSPlus driver commonly found in Apple firmwares. While it is feature complete, it is approximately 3 times
slower and is yet to undergo a security audit.

e XhciDxe| — XHCI USB controller support driver from MdeModulePkg. This driver is included in most
firmwares starting with Sandy Bridge generation. For earlier firmwares or legacy systems it may be used to
support external USB 3.0 PCI cards.

To compile the drivers from TianoCore UDK use the same command you do normally use for OpenCore compilation,
but choose a corresponding package:

git clone https://github.com/tianocore/edk2 -b UDK2018 UDK

cd UDK

source edksetup.sh

make -C BaseTools

build -a X64 -b RELEASE -t XCODE5 -p FatPkg/FatPkg.dsc

build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc

3. Protocols
Type: plist dict
Failsafe: None
Description: Force builtin versions of select protocols described in [Protocols Properties| section below.

Note: all protocol instances are installed prior to driver loading.

4. Quirks
Type: plist dict
Failsafe: None
Description: Apply individual firmware quirks described in [Quirks Properties| section below.

10.3 Protocols Properties

1. AppleBootPolicy
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Boot Policy protocol with a builtin version. This may be used to ensure APFS
compatibility on VMs or legacy Macs.

2. ConsoleControl
Type: plist boolean
Failsafe: false
Description: Replaces Console Control protocol with a builtin version.

macOS bootloader requires console control protocol for text output, which some firmwares miss. This option
is required to be set when the protocol is already available in the firmware, and other console control options
are used, such as IgnoreTextInGraphics, SanitiseClearScreen, and sometimes ConsoleBehaviourOs with
ConsoleBehaviourUi).

3. DataHub
Type: plist boolean
Failsafe: false
Description: Reinstalls Data Hub protocol with a builtin version. This will drop all previous properties if the
protocol was already installed.

4. DeviceProperties
Type: plist boolean
Failsafe: false
Description: Reinstalls Device Property protocol with a builtin version. This will drop all previous properties if
it was already installed. This may be used to ensure full compatibility on VMs or legacy Macs.

10.4 Quirks Properties

1. ExitBootServicesDelay
Type: plist integer

38

https://github.com/tianocore/edk2/tree/UDK2018

Failsafe: 0
Description: Adds delay in microseconds after EXIT_BOOT_SERVICES event.

This is a very ugly quirk to circumvent "Still waiting for root device" message on select APTIO IV firmwares,
namely ASUS Z87-Pro, when using FileVault 2 in particular. It seems that for some reason they execute code
in parallel to EXIT_BOOT_SERVICES, which results in SATA controller being inaccessible from macOS. A better
approach should be found in some future. Expect 3-5 seconds to be enough in case the quirk is needed.

. IgnoreInvalidFlexRatio

Type: plist boolean

Failsafe: false

Description: Select firmwares, namely APTIO IV, may contain invalid values in MSR_FLEX_RATIO (0x194) MSR
register. These values may cause macOS boot failure on Intel platforms.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required.

. IgnoreTextInGraphics

Type: plist boolean

Failsafe: false

Description: Select firmwares output text onscreen in both graphics and text mode. This is normally unexpected,
because random text may appear over graphical images and cause Ul corruption. Setting this option to true will
discard all text output when console control is in mode different from Text.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required. This option may hide onscreen error messages. ConsoleControl may need to be set to
true for this to work.

. ProvideConsoleGop

Type: plist boolean

Failsafe: false

Description: macOS bootloader requires GOP (Graphics Output Protocol) to be present on console handle.
This option will install it if missing.

Note: Some drivers, like AptioMemoryFix, may provide equivalent functionality. These drivers are not guaranteed
to adhere to the same logic, and if a quirk is necessary, this option is preferred.

. ReleaseUsbOwnership

Type: plist boolean

Failsafe: false

Description: Attempt to detach USB controller ownership from the firmware driver. While most firmwares
manage to properly do that, or at least have an option for, select firmwares do not. As a result, operating system
may freeze upon boot. Not recommended unless required.

. RequestBootVarRouting

Type: plist boolean

Failsafe: false

Description: Request NVRAM driver (or AptioMemoryFix) to redirect Boot prefixed variables from EFI_GLOBAL_VARIABLE_C(
to OC_VENDOR_VARIABLE_GUID.

This will set special boot-redirect variable, which a compatible driver will abide after booter start. The quirk
lets default boot entry preservation at times when firmwares delete incompatible boot entries.

. SanitiseClearScreen

Type: plist boolean

Failsafe: false

Description: Some firmwares reset screen resolution to a failsafe value (like 1024x768) on the attempts to clear
screen contents when large display (e.g. 2K or 4K) is used. This option attempts to apply a workaround.

Note: ConsoleControl may need to be set to true for this to work. On all known affected systems ConsoleMode
had to be set to empty string for this to work.

39

11 Troubleshooting

11.1 Windows support
Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared
with Boot Camp are supposed to work. Third-party UEFT installations as well as systems partially supporting UEFI
boot, like Windows 7, might work with some extra precautions. Things to keep in mind:

o MBR (Master Boot Record) installations are legacy and will not be supported.
e Installing Windows and macOS on the same drive is currently unsupported but will be addressed later.

o All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic,
i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.

e macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout.
While OpenCore does have a workaround for this, it is highly recommend not to rely on it and install properly.

e Windows may need to be reactivated. To avoid it consider leaving SystemUUID field empty, so that the original
firmware UUID is used. Be warned, on old firmwares it may be invalid, i.e. not random. In case you still have
issues, consider using HWID or KMS38 license. The nuances of Windows activation are out of the scope of this
document and can be found online.

What additional software do I need?

To enable operating system switching and install relevant drivers in the majority of cases you will need Windows
support software from Boot Camp. For simplicity of the download process or when configuring an already installed
Windows version a third-party utility, Brigadier, can be used successfully. Note, that you may have to download and
install [7-Zip| prior to using Brigadier.

Remember to always use the latest version of Windows support software from Boot Camp, as versions prior to 6.1 do
not support APFS, and thus will not function correctly. To download newest software pass most recent Mac model
to Brigadier, for example ./brigadier.exe -m iMac19,1. To install Boot Camp on an unsupported Mac model
afterwards run PowerShell as Administrator and enter msiexec /i BootCamp.msi. In case you already have a previous
version of Boot Camp installed you will have to remove it first by running msiexec /x BootCamp.msi command.
BootCamp.msi file is located in BootCamp/Drivers/Apple directory and can be reached through Windows Explorer.

While Windows support software from Boot Camp solves most of compatibility problems, sometimes you may have to
address some of them manually:

e To invert mouse wheel scroll direction FlipFlopWheel must be set to 1 as explained on SuperUserl

e RealTimeIsUniversal must be set to 1 to avoid time desync between Windows and macOS as explained on
SuperUser| (this one is usually not needed).

e To access Apple filesystems like HFS and APFS separate software may need to be installed. Some of the known
tools are: |Apple HFS+ driver| (hack for Windows 10), HFSExplorer, MacDrive, Paragon APFS, Paragon HFS+,
TransMac, etc. Remember to never ever attempt to modify Apple file systems from Windows as this often leads
to irrecoverable data loss.

Why do I see Basic data partition in Boot Camp Control panel?

Boot Camp control panel uses GPT partition table to obtain each boot option name. After installing Windows
separately you will have to relabel the partition manually. This can be done with many tools including open-source
gdiskl utility. Reference example:

PS C:\gdisk> .\gdisk64.exe \\.\physicaldriveO
GPT fdisk (gdisk) version 1.0.4

Command (7 for help): p

Disk \\.\physicaldriveO: 419430400 sectors, 200.0 GiB
Sector size (logical): 512 bytes

Disk identifier (GUID): DEC57EB1-B3B5-49B2-95F5-3B8C4D3E4E12
Partition table holds up to 128 entries

40

https://github.com/acidanthera/bugtracker/issues/327
https://support.apple.com/boot-camp
https://github.com/timsutton/brigadier
https://www.7-zip.org
https://superuser.com/a/364353
https://superuser.com/q/494432
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/page-4#post-24180079
http://www.catacombae.org/hfsexplorer
https://sourceforge.net/projects/gptfdisk

Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 419430366
Partitions will be aligned on 2048-sector boundaries

Total free space is 4029 sectors (2.0 MiB)

Number Start (sector) End (sector) Size Code Name
1 2048 1023999 499.0 MiB 2700 Basic data partition
2 1024000 1226751 99.0 MiB EF0O0 EFI system partition
3 1226752 1259519 16.0 MiB 0CO1 Microsoft reserved ...
4 1259520 419428351 199.4 GiB 0700 Basic data partition

Command (7 for help): ¢
Partition number (1-4): 4
Enter name: BOOTCAMP

Command (7 for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING PARTITIONS!!
Do you want to proceed? (Y/N): Y

OK; writing new GUID partition table (GPT) to \\.\physicaldriveO.

Disk synchronization succeeded! The computer should now use the new partition table.
The operation has completed successfully.

Listing 3: Relabeling Windows volume

11.2 Tips and Tricks
1. How to debug boot failure?

Normally it is enough to obtain the actual error message. For this ensure that:

¢ You have a DEBUG or NOOPT version of OpenCore.

o Logging is enabled (1) and shown onscreen (2): Misc — Debug — Target = 3.

o Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO
(0x00000040) levels are visible onscreen: Misc — Debug — DisplayLevel = 0x80000042.

o Critical error messages, like DEBUG_ERROR, stop booting: Misc — Security — HaltLevel = 0x80000000.

e Watch Dog is disabled to prevent automatic reboot: Uefi — Quirks — DisableWatchDog = true.

e Boot Picker (entry selector) is enabled: Misc — Boot — ShowPicker = true.

If there is no obvious error, check the available hacks in Quirks sections one by one.
2. How to customise boot entries?

OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and
.disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string
with an entry title, which may then be customised by the user.

3. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32
partition with OpenCore. Load OpenCore Boot Picker and choose the entry, it will have a (dmg) suffix. Custom
name may be created by providing .contentDetails file.

To download recovery online you may use [Recovery| tool from |OcSupportPkg,
4. Can I use this on Apple hardware or virtual machines?

Sure, most relatively modern Mac models including MacPro5,1 and virtual machines are fully supported. Even
though there are little to none specific details relevant to Mac hardware, some ongoing instructions can be found
in acidanthera/bugtracker#377.

41

https://github.com/acidanthera/OcSupportPkg/tree/master/Utilities/Recovery
https://github.com/acidanthera/OcSupportPkg
https://github.com/acidanthera/bugtracker/issues/377

	Introduction
	Known defects

	Generic Terms
	Overview
	Configuration Terms
	Configuration Processing
	Configuration Structure
	Directory Structure
	Installation and Upgrade
	Contribution

	ACPI
	Introduction
	Properties
	Add Properties
	Block Properties
	Patch Properties
	Quirks Properties

	DeviceProperties
	Introduction
	Properties
	Common Properties

	Kernel
	Introduction
	Properties
	Add Properties
	Block Properties
	Emulate Properties
	Patch Properties
	Quirks Properties

	Misc
	Introduction
	Properties
	Boot Properties
	Debug Properties
	Security Properties
	Tools Properties

	NVRAM
	Introduction
	Properties
	Mandatory Variables
	Recommended Variables
	Other Variables

	PlatformInfo
	Properties
	Generic Properties
	DataHub Properties
	PlatformNVRAM Properties
	SMBIOS Properties

	UEFI
	Introduction
	Properties
	Protocols Properties
	Quirks Properties

	Troubleshooting
	Windows support
	Tips and Tricks

