
OpenCore

Reference Manual

[2019.04.10]

Copyright ©2018-2019 vit9696

Contents

1 Introduction 3
1.1 Known defects . 3

2 Generic Terms 4

3 Overview 5
3.1 Configuration Terms . 5
3.2 Configuration Processing . 5
3.3 Configuration Structure . 6
3.4 Directory Structure . 6
3.5 Contribution . 7

4 ACPI 8
4.1 Introduction . 8
4.2 Properties . 8
4.3 Block Properties . 8
4.4 Patch Properties . 9
4.5 Quirks Properties . 10

5 DeviceProperties 12
5.1 Introduction . 12
5.2 Properties . 12
5.3 Quirks Properties . 12
5.4 Common Properties . 12

6 Kernel 13
6.1 Introduction . 13
6.2 Properties . 13
6.3 Add Properties . 13
6.4 Block Properties . 14
6.5 Patch Properties . 14
6.6 Quirks Properties . 15

7 Misc 17
7.1 Introduction . 17
7.2 Properties . 17
7.3 Debug Properties . 17

8 NVRAM 18
8.1 Introduction . 18
8.2 Properties . 18
8.3 Mandatory Variables . 18
8.4 Recommended Variables . 18
8.5 Other Variables . 19

9 PlatformInfo 20
9.1 Properties . 20
9.2 Generic Properties . 21
9.3 DataHub Properties . 21
9.4 PlatformNVRAM Properties . 23
9.5 SMBIOS Properties . 23

10 UEFI 27
10.1 Introduction . 27
10.2 Properties . 27
10.3 Quirks Properties . 27

1

11 Troubleshooting 29

2

1 Introduction
This document provides information on OpenCore user configuration file format used to setup the correct functioning
of macOS operating system.

1.1 Known defects
For OpenCore issues please refer to Acidanthera Bugtracker. Currently this file has the following entries not completed:

• Known UEFI driver list is incomplete.

• Not all NVRAM variables are properly described (e.g. boot-args).

3

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker

2 Generic Terms
• plist — Subset of ASCII Property List format written in XML, also know as XML plist format version

1. Uniform Type Identifier (UTI): com.apple.property-list. Plists consist of plist objects, which are
combined to form a hierarchical structure. Due to plist format not being well-defined, all the definitions of this
document may only be applied after plist is considered valid by running plutil -lint. External references:
https://www.apple.com/DTDs/PropertyList-1.0.dtd, man plutil.

• plist type — plist collections (plist array, plist dictionary, plist key) and primitives (plist string,
plist data, plist date, plist boolean, plist integer, plist real).

• plist object — definite realisation of plist type, which may be interpreted as value.

• plist array — array-like collection, conforms to array. Consists of zero or more plist objects.

• plist dictionary — map-like (associative array) collection, conforms to dict. Consists of zero or more plist
keys.

• plist key — contains one plist object going by the name of plist key, conforms to key. Consists of
printable 7-bit ASCII characters.

• plist string — printable 7-bit ASCII string, conforms to string.

• plist data — base64-encoded blob, conforms to data.

• plist date — ISO-8601 date, conforms to date, unsupported.

• plist boolean — logical state object, which is either true (1) or false (0), conforms to true and false.

• plist integer — possibly signed integer number in base 10, conforms to integer. Fits in 64-bit unsigned integer
in two’s complement representation, unless a smaller signed or unsigned integral type is explicitly mentioned in
specific plist object description.

• plist real — floating point number, conforms to real, unsupported.

• plist metadata — value cast to data by the implementation. Permits passing plist string, in which case
the result is represented by a null-terminated sequence of bytes (aka C string), plist integer, in which case
the result is represented by 32-bit little endian sequence of bytes in two’s complement representation, plist
boolean, in which case the value is one byte: 01 for true and 00 for false, and plist data itself. All other
types or larger integers invoke undefined behaviour.

4

3 Overview

3.1 Configuration Terms
• OC config — OpenCore Configuration file in plist format named config.plist. It has to provide extensible

way to configure OpenCore and is structured to be separated into multiple named sections situated in the root
plist dictionary. These sections are permitted to have plist array or plist dictionary types and are
described in corresponding sections of this document.

• valid key — plist key object of OC config described in this document or its future revisions. Besides explicitly
described valid keys, keys starting with # symbol (e.g. #Hello) are also considered valid keys and behave as
comments, effectively discarding their value, which is still required to be a valid plist object. All other plist
keys are not valid, and their presence yields to undefined behaviour.

• valid value — valid plist object of OC config described in this document that matches all the additional
requirements in specific plist object description if any.

• invalid value — valid plist object of OC config described in this document that is of other plist type,
does not conform to additional requirements found in specific plist object description (e.g. value range), or
missing from the corresponding collection. Invalid value is read with or without an error message as any
possible value of this plist object in an undetermined manner (i.e. the values may not be same across the
reboots). Whilst reading an invalid value is equivalent to reading certain defined valid value, applying
incompatible value to the host system may yield to undefined behaviour.

• optional value — valid value of OC config described in this document that reads in a certain defined manner
provided in specific plist object description (instead of invalid value) when not present in OC config. All
other cases of invalid value do still apply. Unless explicitly marked as optional value, any other value is
required to be present and reads to invalid value if missing.

• fatal behaviour — behaviour leading to boot termination. Implementation must stop the boot process from
going any further until next host system boot. It is allowed but not required to perform cold reboot or show any
warning message.

• undefined behaviour — behaviour not prescribed by this document. Implementation is allowed to take any
measures including but not limited to fatal behaviour, assuming any states or values, or ignoring, unless these
measures negatively affect system security in general.

3.2 Configuration Processing
OC config is guaranteed to be processed at least once if it was found. Depending on OpenCore bootstrapping
mechanism multiple OC config files may lead to reading any of them. No OC Config may be present on disk, in which
case all the values read follow the rules of invalid value and optional value.

OC config has size, nesting, and key amount limitations. OC config size does not exceed 16 MBs. OC config has no
more than 8 nesting levels. OC config has up to 16384 XML nodes (i.e. one plist dictionary item is counted as a
pair of nodes) within each plist object.

Reading malformed OC config file leads to undefined behaviour. Examples of malformed OC config cover at least
the following cases:

• files non-conformant to plist DTD
• files with unsupported or non-conformant plist objects found in this document
• files violating size, nesting, and key amount limitations

It is recommended but not required to abort loading malformed OC config and continue as if no OC config was
present. For forward compatibility it is recommended but not required for the implementation to warn about the use of
invalid values. Recommended practice of interpreting invalid values is to conform to the following convention
where applicable:

Type Value
plist string Empty string (<string></string>)
plist data Empty data (<data></data>)

5

Type Value
plist integer 0 (<integer>0</integer>)
plist boolean False (<false/>)
plist tristate False (<false/>)

3.3 Configuration Structure
OC config is separated into following sections, which are described in separate sections of this document. By default it
is tried to not enable anything and optionally provide kill switches with Enable property for plist dict entries. In
general the configuration is written idiomatically to group similar actions in subsections:

• Add provides support for data addition.
• Block provides support for data removal or ignorance.
• Patch provides support for data modification.
• Quirks provides support for specific hacks.

Root configuration entries consist of the following:

• ACPI
• DeviceProperties
• Kernel
• Misc
• NVRAM
• PlatformInfo
• UEFI

Note: Currently most properties try to have defined values even if not specified in the configuration for safety reasons.
This behaviour should not be relied upon, and all fields must be properly specified in the configuration.

3.4 Directory Structure
When directory boot is used the directory structure used should follow the description on Directory Structure figure.
Available entries include:

• BOOTx64.efi
Initial booter, which loads OpenCore.efi unless it was already started as a driver.

• ACPI
Directory used for storing supplemental ACPI information for ACPI section.

• Drivers
Directory used for storing supplemental UEFI drivers for UEFI section.

• Kexts
Directory used for storing supplemental kernel information for Kernel section.

• OpenCore.efi
Main booter driver responsible for operating system loading.

• config.hash
Hashes for all files potentially loadable by OC Config.

• config.plist
OC Config.

• config.sig
Signature for config.hash.

6

ESP

BOOT

BOOTx64.efi

EFI

OC

ACPI

Custom

DSDT.aml

SSDT-1.aml

MYTABLE.aml

Drivers

MyDriver.efi

OtherDriver.efi

Kexts

MyKext.kext

OtherKext.kext

OpenCore.efi

config.hash

config.plist

config.sig
Figure 1. Directory Structure

3.5 Contribution
OpenCore can be compiled as an ordinary EDK II package with UDK 2018.

The only officially supported toolchain is XCODE5. Other toolchains might work, but are neither supported, nor
recommended. Contribution of clean patches is welcome. Please do follow EDK II C Codestyle.

Required external package dependencies include EfiPkg and OcSupportPkg.

To compile with XCODE5, besides Xcode, one should also install NASM and MTOC. Example command sequence may
look as follows:

git clone https://github.com/tianocore/edk2 -b UDK2018 UDK
cd UDK
git clone https://github.com/acidanthera/EfiPkg
git clone https://github.com/acidanthera/OcSupportPkg
git clone https://github.com/acidanthera/OpenCorePkg
source edksetup.sh
make -C BaseTools
build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc

Listing 1: Compilation Commands

7

https://github.com/tianocore/tianocore.github.io/wiki/UDK2018
https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://github.com/acidanthera/OcSupportPkg
https://github.com/acidanthera/OcSupportPkg
https://developer.apple.com/xcode
https://www.nasm.us
https://github.com/acidanthera/AppleSupportPkg/blob/master/External/mtoc-mac64.zip

4 ACPI

4.1 Introduction
ACPI (Advanced Configuration and Power Interface) is an open standard to discover and configure computer hardware.
ACPI specification defines the standard tables (e.g. DSDT, SSDT, FACS, DMAR) and various methods (e.g. _DSM, _PWR) for
implementation. Modern hardware needs little changes to maintain ACPI compatibility, yet some of those are provided
as a part of OpenCore.

4.2 Properties
1. Add

Type: plist array
Default value: Empty
Description: Load selected tables from OC/ACPI/Custom directory.

Designed to be filled with string filenames meant to be loaded as ACPI tables. Example values include DSDT.aml,
SSDT-8.aml, SSDT-USBX.aml, etc. ACPI table load order follows the item order in the array.

Note: all values but DSDT.aml insert new ables into ACPI stack. DSDT.aml, unlike the rest, performs replacement
of DSDT table.

2. Block
Type: plist array
Default value: Empty
Description: Remove selected tables from ACPI stack.

Designed to be filled with plist dict values, describing each block entry. See Block Properties section below.

3. Patch
Type: plist array
Default value: Empty
Description: Perform binary patches in ACPI tables after table addition and removal.

Designed to be filled with plist dictionary values describing each patch entry. See Patch Properties section
below.

4. Quirks
Type: plist dict
Description: Apply individual ACPI quirks described in Quirks Properties section below.

4.3 Block Properties
1. Comment

Type: plist string
Default value: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

2. Enabled
Type: plist boolean
Default value: false
Description: This ACPI table will not be removed unless set to true.

3. OemTableId
Type: plist data, 8 bytes
Default value: All zero
Description: Match table OEM ID to be equal to this value unless all zero.

4. TableLength
Type: plist integer
Default value: 0
Description: Match table size to be equal to this value unless 0.

8

https://uefi.org/specifications

5. TableSignature
Type: plist data, 4 bytes
Default value: All zero
Description: Match table signature to be equal to this value unless all zero.

4.4 Patch Properties
1. Comment

Type: plist string
Default value: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

2. Count
Type: plist integer
Default value: 0
Description: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

3. Enabled
Type: plist boolean
Default value: false
Description: This ACPI patch will not be used unless set to true.

4. Find
Type: plist data
Default value: Empty data
Description: Data to find. Must equal to Replace in size.

5. Limit
Type: plist integer
Default value: 0
Description: Maximum number of bytes to search for. Can be set to 0 to look through the whole ACPI table.

6. Mask
Type: plist data
Default value: Empty data
Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

7. OemTableId
Type: plist data, 8 bytes
Default value: All zero
Description: Match table OEM ID to be equal to this value unless all zero.

8. Replace
Type: plist data
Default value: Empty data
Description: Replacement data of one or more bytes.

9. ReplaceMask
Type: plist data
Default value: Empty data
Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set
to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

10. Skip
Type: plist integer
Default value: 0
Description: Number of found occurrences to be skipped before replacement is done.

11. TableLength
Type: plist integer

9

Default value: 0
Description: Match table size to be equal to this value unless 0.

12. TableSignature
Type:
textttplist data, 4 bytes
Default value: All zero
Description: Match table signature to be equal to this value unless all zero.

In the majority of the cases ACPI patches are not useful and harmful:

• Avoid renaming devices with ACPI patches. This may fail or perform improper renaming of unrelated devices
(e.g. EC and EC0), be unnecessary, or even fail to rename devices in select tables. For ACPI consistency it is much
safer to rename devices at I/O Registry level, as done by WhateverGreen.

• Avoid patching _OSI to support a higher level of feature sets unless absolutely required. Commonly this enables a
number of hacks on APTIO firmwares, which result in the need to add more patches. Modern firmwares generally
do not need it at all, and those that do are fine with much smaller patches.

• Try to avoid hacky changes like renaming _PWR or _DSM whenever possible.

Several cases, where patching actually does make sense, include:

• Refreshing HPET (or another device) method header to avoid compatibility checks by _OSI on legacy hardware.
_STA method with if ((OSFL () == Zero)) { If (HPTE) ... Return (Zero) content may be forced to
always return 0xF by replacing A0 10 93 4F 53 46 4C 00 with A4 0A 0F A3 A3 A3 A3 A3.

• To provide custom method implementation with in an SSDT, for instance, to report functional key presses on a
laptop, the original method can be replaced with a dummy name by patching _Q11 with XQ11.

Tianocore AcpiAml.h source file may help understanding ACPI opcodes.

4.5 Quirks Properties
1. FadtEnableReset

Type: plist boolean
Default value: false
Description: Provide reset register and flag in FADT table to enable reboot and shutdown on legacy hardware.
Not recommended unless required.

2. IgnoreForWindows
Type: plist boolean
Default value: false
Description: Disable all sorts of ACPI modifications when booting Windows operating system.

This flag implements a quick workaround for those, who made their ACPI tables incompatible with Windows, but
need it right now. Not recommended, as ACPI tables must be compatible with any operating system regardless
of the changes.

Note: This option may be removed in the future.

3. NormalizeHeaders
Type: plist boolean
Default value: false
Description: Cleanup ACPI header fields to workaround macOS ACPI implementation bug causing boot crashes.
Reference: Debugging AppleACPIPlatform on 10.13 by Alex James aka theracermaster. The issue is fixed in
macOS Mojave (10.14).

4. RebaseRegions
Type: plist boolean
Default value: false
Description: Attempt to heuristically relocate ACPI memory regions. Not recommended.

ACPI tables are often generated dynamically by underlying firmware implementation. Among the position-
independent code, ACPI tables may contain physical addresses of MMIO areas used for device configuration,

10

https://github.com/acidanthera/WhateverGreen
https://github.com/tianocore/edk2/blob/UDK2018/MdePkg/Include/IndustryStandard/AcpiAml.h
https://alextjam.es/debugging-appleacpiplatform/

usually grouped in regions (e.g. OperationRegion). Changing firmware settings or hardware configuration,
upgrading or patching the firmware inevitably leads to changes in dynamically generated ACPI code, which
sometimes lead to the shift of the addresses in aforementioned OperationRegion constructions.

For this reason it is very dangerous to apply any kind of modifications to ACPI tables. The most reasonable
approach is to make as few as possible changes to ACPI and try to not replace any tables, especially DSDT.
When this is not possible, then at least attempt to ensure that custom DSDT is based on the most recent DSDT
or remove writes and reads for the affected areas.

When nothing else helps this option could be tried to avoid stalls at PCI Configuration Begin phase of macOS
booting by attempting to fix the ACPI addresses. It does not do magic, and only works with most common cases.
Do not use unless absolutely required.

11

5 DeviceProperties

5.1 Introduction
Device configuration is provided to macOS with a dedicated buffer, called EfiDevicePropertyDatabase. This buffer
is a serialised map of DevicePaths to a map of property names and their values.

5.2 Properties
1. Add

Type: plist dict
Description: Sets device properties from a map (plist dict) of deivce paths to a map (plist dict) of variable
names and their values in plist metadata format. Device paths must be provided in canonic string format (e.g.
PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x0)). Properties will only be set if not present and not blocked.

Note: Currently properties may only be (formerly) added by the original driver, so unless a separate driver was
installed, there is no reason to block the variables.

2. Block
Type: plist dict
Description: Removes device properties from a map (plist dict) of deivce paths to an array (plist array)
of variable names in plist string format.

3. Quirks
Type: plist dict
Description: Apply individual device property quirks described in Quirks Properties section below.

5.3 Quirks Properties
1. ReinstallProtocol

Type: plist boolean
Default value: false
Description: Reinstalls device property protocol (and drops all previous properties) if it was already installed.

5.4 Common Properties
Some known properties include:

• device-id
User-specified device identifier used for I/O Kit matching. Has 4 byte data type.

• vendor-id
User-specified vendor identifier used for I/O Kit matching. Has 4 byte data type.

• AAPL,ig-platform-id
Intel GPU framebuffer identifier used for framebuffer selection on Ivy Bridge and newer. Has 4 byte data
type.

• AAPL,snb-platform-id
Intel GPU framebuffer identifier used for framebuffer selection on Sandy Bridge. Has 4 byte data type.

• layout-id
Audio layout used for AppleHDA layout selection. Has 4 byte data type.

12

6 Kernel

6.1 Introduction
This section allows to apply different kinds of kernelspace modifications on Apple Kernel (XNU). The modifications
currently provide driver (kext) injection, kernel and driver patching, and driver blocking.

6.2 Properties
1. Add

Type: plist array
Default value: Empty
Description: Load selected kernel drivers from OC/Kexts directory.

Designed to be filled with plist dict values, describing each driver. See Add Properties section below. Kernel
driver load order follows the item order in the array, thus the dependencies should be written prior to their
consumers.

2. Block
Type: plist array
Default value: Empty
Description: Remove selected kernel drivers from prelinked kernel.

Designed to be filled with plist dictionary values, describing each blocked driver. See Block Properties section
below.

3. Patch
Type: plist array
Default value: Empty
Description: Perform binary patches in kernel and drivers prior to driver addition and removal (FIXME:
consistency with ACPI?).

Designed to be filled with plist dictionary values, describing each patch. See Patch Properties section below.

4. Quirks
Type: plist dict
Description: Apply individual kernel and driver quirks described in Quirks Properties section below.

6.3 Add Properties
1. BundleName

Type: plist string
Default value: Empty string
Description: Kext bundle name (e.g. Lilu.kext).

2. Comment
Type: plist string
Default value: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Enabled
Type: plist boolean
Default value: false
Description: This kernel driver will not be added unless set to true.

4. ExecutablePath
Type: plist string
Default value: Empty string
Description: Kext executable path relative to bundle (e.g. Contents/MacOS/Lilu).

5. MatchKernel
Type: plist string

13

https://opensource.apple.com/source/xnu

Default value: Empty string
Description: Blocks kernel driver on selected macOS version only. The selection happens based on prefix match
with the kernel version, i.e. 16.7.0 will match macOS 10.12.6 and 16. will match any macOS 10.12.x version.

6. PlistPath
Type: plist string
Default value: Empty string
Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

6.4 Block Properties
1. Comment

Type: plist string
Default value: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

2. Enabled
Type: plist boolean
Default value: false
Description: This kernel driver will not be blocked unless set to true.

3. Identifier
Type: plist string
Default value: Empty string
Description: Kext bundle identifier (e.g. com.apple.driver.AppleTyMCEDriver).

4. MatchKernel
Type: plist string
Default value: Empty string
Description: Blocks kernel driver on selected macOS version only. The selection happens based on prefix match
with the kernel version, i.e. 16.7.0 will match macOS 10.12.6 and 16. will match any macOS 10.12.x version.

6.5 Patch Properties
1. Base

Type: plist string
Default value: Empty string
Description: Selects symbol-matched base for patch lookup (or immediate replacement) by obtaining the address
of provided symbol name. Can be set to empty string to be ignored.

2. Comment
Type: plist string
Default value: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Count
Type: plist integer
Default value: 0
Description: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

4. Enabled
Type: plist boolean
Default value: false
Description: This kernel patch will not be used unless set to true.

5. Find
Type: plist data
Default value: Empty data
Description: Data to find. Can be set to empty for immediate replacement at Base. Must equal to Replace in
size otherwise.

14

6. Identifier
Type: plist string
Default value: Empty string
Description: Kext bundle identifier (e.g. com.apple.driver.AppleHDA) or kernel for kernel patch.

7. Limit
Type: plist integer
Default value: 0
Description: Maximum number of bytes to search for. Can be set to 0 to look through the whole kext or kernel.

8. Mask
Type: plist data
Default value: Empty data
Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

9. MatchKernel
Type: plist string
Default value: Empty string
Description: Adds kernel driver to selected macOS version only. The selection happens based on prefix match
with the kernel version, i.e. 16.7.0 will match macOS 10.12.6 and 16. will match any macOS 10.12.x version.

10. Replace
Type: plist data
Default value: Empty data
Description: Replacement data of one or more bytes.

11. ReplaceMask
Type: plist data
Default value: Empty data
Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set
to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

12. Skip
Type: plist integer
Default value: 0
Description: Number of found occurrences to be skipped before replacement is done.

6.6 Quirks Properties
1. AppleCpuPmCfgLock

Type: plist boolean
Default value: false
Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in AppleIntelCPUPowerManage-
ment.kext, commonly causing early kernel panic, when it is locked from writing.

Note: This option should avoided whenever possible. Modern firmwares provide CFG Lock setting, disabling
which is much cleaner. More details about the issue can be found in VerifyMsrE2 notes.

2. ExternalDiskIcons
Type: plist boolean
Default value: false
Description: Apply icon type patches to IOAHCIPort.kext to force internal disk icons for all AHCI disks.

Note: This option should avoided whenever possible. Modern firmwares usually have compatible AHCI controllers.

3. ThirdPartyTrim
Type: plist boolean
Default value: false
Description: Patch IOAHCIFamily.kext to force TRIM command support on AHCI SSDs.

Note: This option should avoided whenever possible. NVMe SSDs are compatible without the change. For AHCI
SSDs on modern macOS version there is a dedicated built-in utility called trimforce.

15

https://github.com/acidanthera/AptioFixPkg#verifymsre2

4. XhciPortLimit
Type: plist boolean
Default value: false
Description: Patch various kexts (AppleUSBXHCI.kext, AppleUSBXHCIPCI.kext, IOUSBHostFamily.kext) to
remove USB port count limit of 15 ports.

Note: This option should avoided whenever possible. USB port limit is imposed by the amount of used bits in
locationID format and there is no possible way to workaround this without heavy OS modification. The only valid
solution is to limit the amount of used ports to 15 (discarding some). More details can be found on AppleLife.ru.

16

https://applelife.ru/posts/550233

7 Misc

7.1 Introduction
This section contains miscellaneous configuration entries for OpenCore behaviour that does not go to any other sections

7.2 Properties
1. Debug

Type: plist dict
Description: Apply debug configuration described in Debug Properties section below.

7.3 Debug Properties
1. Delay

Type: plist integer
Default value: 0
Description: Delay in microseconds performed after every printed line of visible logging output like console,
Data Hub, or serial port.

2. Target
Type: plist integer
Default value: 0
Description: A bitmask (sum) of enabled logging targets. By default all the logging output is hidden, so this
option is required to be set when debugging is necessary. The following logging targets are supported:

• 1 — Enable logging, otherwise all log is discarded.
• 2 — Enable basic console (onscreen) logging.
• 4 — Enable logging to Data Hub.
• 8 — Enable serial port logging.
• 16 — Enable UEFI variable logging.
• 32 — Enable non-volatile UEFI variable logging.
• 64 — Enable logging to file.

Note: Console logging prints less than all the other variants. Depending on the build type (RELEASE, DEBUG, or
NOOPT) different amount of logging may be read (from least to most).

Note: To obtain Data Hub log use the following command in macOS:

ioreg -lw0 -p IODeviceTree | grep boot-log | sed 's/.*<\(.*\)>.*/\1/'

Note: UEFI variable log may get truncated on some firmwares. Using non-volatile flag will write the log to
NVRAM flash after every printed line. To obtain UEFI variable log use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-log | \
awk '{gsub(/%0d%0a%00/,"");gsub(/%0d%0a/,"\n")}1'

Note: File logging is currently not implemented.

17

8 NVRAM

8.1 Introduction
Has plist dict type and allows to set volatile UEFI variables commonly referred as NVRAM variables. Refer
to man nvram for more details. macOS extensively uses NVRAM variables for OS — Bootloader — Firmware
intercommunication, and thus supplying several NVRAM is required for proper macOS functioning.

Each NVRAM variable consists of its name, value, attributes (refer to UEFI specification), and its GUID, representing
which ‘section’ NVRAM variable belongs to. macOS uses several GUIDs, including but not limited to:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 (APPLE_VENDOR_VARIABLE_GUID)
• 7C436110-AB2A-4BBB-A880-FE41995C9F82 (APPLE_BOOT_VARIABLE_GUID)
• 8BE4DF61-93CA-11D2-AA0D-00E098032B8C (EFI_GLOBAL_VARIABLE_GUID)

Note: Some of the variables may be added by PlatformNVRAM or Generic subsections of PlatformInfo section. Please
ensure that variables of this section never collide with them, as behaviour is undefined otherwise.

8.2 Properties
1. Add

Type: plist dict
Description: Sets NVRAM variables from a map (plist dict) of GUIDs to a map (plist dict) of variable
names and their values in plist metadata format. GUIDs must be provided in canonic string format in upper
or lower case (e.g. 8BE4DF61-93CA-11D2-AA0D-00E098032B8C).

Created variables get EFI_VARIABLE_BOOTSERVICE_ACCESS and EFI_VARIABLE_RUNTIME_ACCESS attributes set.
Variables will only be set if not present and not blocked. To overwrite a variable add it to Block section. This
approach enables to provide default values till the operating system takes the lead.

Note: If plist key does not conform to GUID format, behaviour is undefined.

2. Block
Type: plist dict
Description: Removes NVRAM variables from a map (plist dict) of GUIDs to an array (plist array) of
variable names in plist string format.

To read NVRAM variable value from macOS one could use nvram by concatenating variable GUID and name separated
by : symbol. For example, nvram 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args.

A continuously updated variable list can be found in a corresponding document: NVRAM Variables.

8.3 Mandatory Variables
The following variables are mandatory for macOS functioning:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
32-bit FirmwareFeatures. Present on all Macs to avoid extra parsing of SMBIOS tables

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask
32-bit FirmwareFeaturesMask. Present on all Macs to avoid extra parsing of SMBIOS tables.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB
BoardSerialNumber. Present on newer Macs (2013+ at least) to avoid extra parsing of SMBIOS tables, especially
in boot.efi.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM
Primary network adapter MAC address or replacement value. Present on newer Macs (2013+ at least) to
avoid accessing special memory region, especially in boot.efi.

8.4 Recommended Variables
The following variables are recommended for faster startup or other improvements:

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:csr-active-config
32-bit System Integrity Protection bitmask. Declared in XNU source code in csr.h.

18

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://docs.google.com/spreadsheets/d/1HTCBwfOBkXsHiK7os3b2CUc6k68axdJYdGl-TyXqLu0
https://opensource.apple.com/source/xnu/xnu-4570.71.2/bsd/sys/csr.h.auto.html

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeatures
Combined FirmwareFeatures and ExtendedFirmwareFeatures. Present on newer Macs to avoid extra parsing
of SMBIOS tables

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask
Combined FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask. Present on newer Macs to avoid
extra parsing of SMBIOS tables.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_BID
Hardware BoardProduct (e.g. Mac-35C1E88140C3E6CF). Not present on real Macs, but used to avoid extra
parsing of SMBIOS tables, especially in boot.efi.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_MLB
Hardware BoardSerialNumber. Override for MLB. Present on newer Macs (2013+ at least).

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_ROM
Hardware ROM. Override for ROM. Present on newer Macs (2013+ at least).

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:prev-lang:kbd
ASCII string defining default keyboard layout. Format is lang-COUNTRY:keyboard, e.g. ru-RU:19456 for Mac key-
board. Also accepts short forms: ru:19456 or ru:0. Full decoded list of keyboards in AppleKeyboardLayouts-L.dat
can be found on AppleLife.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:security-mode
ASCII string defining FireWire security mode. Legacy, can be found in IOFireWireFamily source code in
IOFireWireController.cpp. It is recommended not to set this variable, which may speedup system startup. Setting
to full is equivalent to not setting the variable and none disables FireWire security.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:UIScale
8-bit integer defining boot.efi user interface scaling. Should be 1 for normal screens and 2 for HDPI screens.

8.5 Other Variables
The following variables may be useful for certain configurations or troubleshooting:

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args
Kernel arguments, used to pass configuration to Apple kernel and drivers. There are many arguments, which may
be found by looking for the use of PE_parse_boot_argn function in the kernel or driver code.
– FIXME: document several known values! debug, keepsyms, slide, -v, -s, -x, cpus=x, io=x, kextlog=x,
-nehalem_error_disable -no_compat_check nvda_drv=1, etc?

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg
Booter arguments, similar to boot-args but for boot.efi. Accepts a set of arguments, which are hexadeci-
mal 64-bit values with or without 0x prefix primarily for logging control:
– log=VALUE

∗ 1 — AppleLoggingConOutOrErrSet/AppleLoggingConOutOrErrPrint (classical ConOut/StdErr)
∗ 2 — AppleLoggingStdErrSet/AppleLoggingStdErrPrint (StdErr or serial?)
∗ 4 — AppleLoggingFileSet/AppleLoggingFilePrint (BOOTER.LOG/BOOTER.OLD file on EFI partition)

– debug=VALUE
∗ 1 — enables print something to BOOTER.LOG (stripped code implies there may be a crash)
∗ 2 — enables perf logging to /efi/debug-log in the device three
∗ 4 — enables timestamp printing for styled printf calls

– level=VALUE — Verbosity level of DEBUG output. Everything but 0x80000000 is stripped from the binary,
and this is the default value.

– kc-read-size=VALUE — Chunk size used for buffered I/O from network or disk for prelinkedkernel reading
and related. Set to 1MB (0x100000) by default, can be tuned for faster booting.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg-once
Booter arguments override removed after first launch. Otherwise equivalent to bootercfg.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:fmm-computer-name
• 7C436110-AB2A-4BBB-A880-FE41995C9F82:nvda_drv

19

https://www.applelife.ru/posts/763537
https://opensource.apple.com/source/IOFireWireFamily/IOFireWireFamily-473/IOFireWireFamily.kmodproj/IOFireWireController.cpp.auto.html

9 PlatformInfo
Platform information is comprised of several identification fields generated or filled manually to be compatible with
macOS services. The base part of the configuration may be obtained from MacInfoPkg package, which itself generates
a set of interfaces based on a database in YAML format. These fields are written to three select destinations:

• SMBIOS
• Data Hub
• NVRAM

Most of the fields specify the overrides in SMBIOS, and their field names conform to EDK2 SmBios.h header file.
However, several important fields reside in Data Hub and NVRAM. Some of the values can be found in more than one
field and/or destination, so there are two ways to control their update process: manual, where one specifies all the
values (the default), and semi-automatic, where (Automatic) only select values are specified, and later used for system
configuration.

9.1 Properties
1. Automatic

Type: plist boolean
Default value: false
Description: Generate PlatformInfo based on Generic section instead of using values from DataHub, NVRAM,
and SMBIOS sections.

Enabling this option is useful when Generic section is flexible enough. When enabled SMBIOS and DataHub data
is unused.

FIXME: Currently unsupported.

2. UpdateDataHub
Type: plist boolean
Default value: false
Description: Update DataHub fields. These fields are read from Generic or DataHub sections depending on
Automatic value.

3. UpdateNVRAM
Type: plist boolean
Default value: false
Description: Update NVRAM fields related to platform information.

These fields are read from Generic or PlatformNVRAM sections depending on Automatic value. All the other
fields are to be specified with NVRAM section.

If UpdateNVRAM is set to false the aforementioned variables can be updated with NVRAM section. If UpdateNVRAM
is set to true the behaviour is undefined when any of the fields are present in NVRAM section.

4. UpdateSMBIOS
Type: plist boolean
Default value: false
Description: Update SMBIOS fields. These fields are read from Generic or SMBIOS sections depending on
Automatic value.

5. UpdateSMBIOSMode
Type: plist string
Default value: Auto
Description: Update SMBIOS fields approach:

• Auto — Overwrite if new size is <= than the page-aligned original and there are no issues with legacy
region unlock. Create otherwise.

• Create — Replace the tables with newly allocated EfiReservedMemoryType at AllocateMaxAddress without
any fallbacks.

• Overwrite — Overwrite existing gEfiSmbiosTableGuid and gEfiSmbiosTable3Guid data if it fits new size.
Abort with unspecified state otherwise.

20

https://yaml.org/spec/1.2/spec.html
https://www.dmtf.org/standards/smbios
https://github.com/freebsd/uefi-edk2/blob/master/IntelFrameworkModulePkg/Universal/DataHubDxe/DataHubDxe.uni
https://github.com/tianocore/edk2/blob/UDK2018/MdePkg/Include/IndustryStandard/SmBios.h

• Custom —Write first SMBIOS table (gEfiSmbiosTableGuid) to gOcCustomSmbiosTableGuid to workaround
firmwares overwriting SMBIOS contents at ExitBootServices. Otherwise equivalent to Create. Requires
patching AppleSmbios.kext and AppleACPIPlatform.kext to read from another GUID: "EB9D2D31" ->
"EB9D2D35" (in ASCII).

6. Generic
Type: plist dictonary
Description: Update all fields. This section is read only when Automatic is active.

7. DataHub
Type: plist dictonary
Description: Update Data Hub fields. This section is read only when Automatic is not active.

8. PlatformNVRAM
Type: plist dictonary
Description: Update platform NVRAM fields. This section is read only when Automatic is not active.

9. SMBIOS
Type: plist dictonary
Description: Update SMBIOS fields. This section is read only when Automatic is not active.

9.2 Generic Properties
1. SystemProductName

Type: plist string
Default value: MacPro6,1
Description: Refer to SMBIOS SystemProductName.

2. SystemSerialNumber
Type: plist string
Default value: OPENCORE_SN1
Description: Refer to SMBIOS SystemSerialNumber.

3. SystemUUID
Type: plist string, GUID
Default value: OEM specified
Description: Refer to SMBIOS SystemUUID.

4. MLB
Type: plist string
Default value: OPENCORE_MLB_SN11
Description: Refer to SMBIOS BoardSerialNumber.

5. ROM
Type: plist data, 6 bytes
Default value: all zero
Description: Refer to 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM.

9.3 DataHub Properties
1. PlatformName

Type: plist string
Default value: Not installed
Description: Sets name in gEfiMiscSubClassGuid. Value found on Macs is platform in ASCII.

2. SystemProductName
Type: plist string
Default value: Not installed
Description: Sets Model in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS SystemProductName
in Unicode.

3. SystemSerialNumber
Type: plist string

21

Default value: Not installed
Description: Sets SystemSerialNumber in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS
SystemSerialNumber in Unicode.

4. SystemUUID
Type: plist string, GUID
Default value: Not installed
Description: Sets system-id in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS SystemUUID.

5. BoardProduct
Type: plist string
Default value: Not installed
Description: Sets board-id in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS BoardProduct
in ASCII.

6. BoardRevision
Type: plist data, 1 byte
Default value: 0
Description: Sets board-rev in gEfiMiscSubClassGuid. Value found on Macs seems to correspond to internal
board revision (e.g. 01).

7. StartupPowerEvents
Type: plist integer, 64-bit
Default value: 0
Description: Sets StartupPowerEvents in gEfiMiscSubClassGuid. Value found on Macs is power management
state bitmask, normally 0. Known bits read by X86PlatformPlugin.kext:

• 0x00000001 — Shutdown cause was a PWROK event (Same as GEN_PMCON_2 bit 0)
• 0x00000002 — Shutdown cause was a SYS_PWROK event (Same as GEN_PMCON_2 bit 1)
• 0x00000004 — Shutdown cause was a THRMTRIP# event (Same as GEN_PMCON_2 bit 3)
• 0x00000008 — Rebooted due to a SYS_RESET# event (Same as GEN_PMCON_2 bit 4)
• 0x00000010 — Power Failure (Same as GEN_PMCON_3 bit 1 PWR_FLR)
• 0x00000020 — Loss of RTC Well Power (Same as GEN_PMCON_3 bit 2 RTC_PWR_STS)
• 0x00000040 — General Reset Status (Same as GEN_PMCON_3 bit 9 GEN_RST_STS)
• 0xffffff80 — SUS Well Power Loss (Same as GEN_PMCON_3 bit 14)
• 0x00010000 — Wake cause was a ME Wake event (Same as PRSTS bit 0, ME_WAKE_STS)
• 0x00020000 — Cold Reboot was ME Induced event (Same as PRSTS bit 1 ME_HRST_COLD_STS)
• 0x00040000 — Warm Reboot was ME Induced event (Same as PRSTS bit 2 ME_HRST_WARM_STS)
• 0x00080000 — Shutdown was ME Induced event (Same as PRSTS bit 3 ME_HOST_PWRDN)
• 0x00100000 — Global reset ME Wachdog Timer event (Same as PRSTS bit 6)
• 0x00200000 — Global reset PowerManagment Wachdog Timer event (Same as PRSTS bit 15)

8. InitialTSC
Type: plist integer, 64-bit
Default value: 0
Description: Sets InitialTSC in gEfiProcessorSubClassGuid. Sets initial TSC value, normally 0.

9. FSBFrequency
Type: plist integer, 64-bit
Default value: Automatic
Description: Sets FSBFrequency in gEfiProcessorSubClassGuid. Sets CPU FSB frequency.

10. ARTFrequency
Type: plist integer, 64-bit
Default value: Not installed
Description: Sets ARTFrequency in gEfiProcessorSubClassGuid. Sets CPU ART frequency, Skylake and
newer.

11. DevicePathsSupported
Type: plist data, 1 byte
Default value: Not installed

22

Description: Sets DevicePathsSupported in gEfiMiscSubClassGuid. Value found on Macs is 01. Read by
AppleACPIPlatform.kext.

12. SmcRevision
Type: plist data, 6 bytes
Default value: Not installed
Description: Sets REV in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate
SMC REV key.

13. SmcBranch
Type: plist data, 8 bytes
Default value: Not installed
Description: Sets RBr in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate
SMC RBr key.

14. SmcPlatform
Type: plist data, 8 bytes
Default value: Not installed
Description: Sets RPlt in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to
generate SMC RPlt key.

9.4 PlatformNVRAM Properties
1. BID

Type: plist string
Default value: Not installed
Description: Specifies the value of NVRAM variable 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_BID.

2. ROM
Type: plist data, 6 bytes
Default value: Not installed
Description: Specifies the values of of NVRAM variables 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_ROM
and 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM.

3. MLB
Type: plist string
Default value: Not installed
Description: Specifies the values of NVRAM variables 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_MLB and
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB.

9.5 SMBIOS Properties
1. BIOSVendor

Type: plist string
Default value: OEM specified
SMBIOS: BIOS Information (Type 0) — Vendor
Description: BIOS Vendor. All rules of SystemManufacturer do apply.

2. BIOSVersion
Type: plist string
Default value: OEM specified
SMBIOS: BIOS Information (Type 0) — BIOS Version
Description: Firmware version. This value gets updated and takes part in update delivery configuration and
macOS version compatibility. This value could look like MM71.88Z.0234.B00.1809171422 in older firmwares,
and is described in BiosId.h. In newer firmwares it should look like 236.0.0.0.0 or 220.230.16.0.0 (iBridge:
16.16.2542.0.0,0). iBridge version is read from BridgeOSVersion variable, and is only present on macs with
T2.

Apple ROM Version
BIOS ID: MBP151.88Z.F000.B00.1811142212
Model: MBP151

23

https://github.com/acidanthera/EfiPkg/blob/master/Include/Guid/BiosId.h

EFI Version: 220.230.16.0.0
Built by: root@quinoa
Date: Wed Nov 14 22:12:53 2018
Revision: 220.230.16 (B&I)
ROM Version: F000_B00
Build Type: Official Build, RELEASE
Compiler: Apple LLVM version 10.0.0 (clang-1000.2.42)
UUID: E5D1475B-29FF-32BA-8552-682622BA42E1
UUID: 151B0907-10F9-3271-87CD-4BF5DBECACF5

3. BIOSReleaseDate
Type: plist string
Default value: OEM specified
SMBIOS: BIOS Information (Type 0) — BIOS Release Date
Description: Firmware release date. Similar to BIOSVersion. May look like 12/08/2017.

4. SystemManufacturer
Type: plist string
Default value: OEM specified
SMBIOS: System Information (Type 1) — Manufacturer
Description: OEM manufacturer of the particular board. Shall not be specified unless strictly required. Should
not contain Apple Inc., as this confuses numerous services present in the operating system, such as firmware
updates, eficheck, as well as kernel extensions developed in Acidanthera, such as Lilu and its plugins.

5. SystemProductName
Type: plist string
Default value: OEM specified
SMBIOS: System Information (Type 1), Product Name
Description: Preferred Mac model used to mark the device as supported by the operating system. This value
must be specified by any configuration for later automatic generation of the related values in this and other
SMBIOS tables and related configuration parameters. If SystemProductName is not compatible with the target
operating system, -no_compat_check boot argument may be used as an override.

Note: If SystemProductName is unknown, and related fields are unspecified, default values should be assumed as
being set to MacPro6,1 data. The list of known products can be found in MacInfoPkg.

6. SystemVersion
Type: plist string
Default value: OEM specified
SMBIOS: System Information (Type 1) — Version
Description: Product iteration version number. May look like 1.1.

7. SystemSerialNumber
Type: plist string
Default value: OEM specified
SMBIOS: System Information (Type 1) — Serial Number
Description: Product serial number in defined format. Known formats are described in macserial.

8. SystemUUID
Type: plist string, GUID
Default value: OEM specified
SMBIOS: System Information (Type 1) — UUID
Description: A UUID is an identifier that is designed to be unique across both time and space. It requires no
central registration process.

9. SystemSKUNumber
Type: plist string
Default value: OEM specified
SMBIOS: System Information (Type 1) — SKU Number
Description: Mac Board ID (board-id). May look like Mac-7BA5B2D9E42DDD94 or Mac-F221BEC8 in older
models. Sometimes it can be just empty.

24

https://github.com/acidanthera/macserial/blob/master/FORMAT.md

10. SystemFamily
Type: plist string
Default value: OEM specified
SMBIOS: System Information (Type 1) — Family
Description: Family name. May look like iMac Pro.

11. BoardManufacturer
Type: plist string
Default value: OEM specified
SMBIOS: Baseboard (or Module) Information (Type 2) - Manufacturer
Description: Board manufacturer. All rules of SystemManufacturer do apply.

12. BoardProduct
Type: plist string
Default value: OEM specified
SMBIOS: Baseboard (or Module) Information (Type 2) - Product
Description: Mac Board ID (board-id). May look like Mac-7BA5B2D9E42DDD94 or Mac-F221BEC8 in older
models.

13. BoardVersion
Type: plist string
Default value: OEM specified
SMBIOS: Baseboard (or Module) Information (Type 2) - Version
Description: Board version number. Varies, may match SystemProductName or SystemProductVersion.

14. BoardSerialNumber
Type: plist string
Default value: OEM specified
SMBIOS: Baseboard (or Module) Information (Type 2) — Serial Number
Description: Board serial number in defined format. Known formats are described in macserial.

15. BoardAssetTag
Type: plist string
Default value: OEM specified
SMBIOS: Baseboard (or Module) Information (Type 2) — Asset Tag
Description: Asset tag number. Varies, may be empty or Type2 - Board Asset Tag.

16. BoardType
Type: plist integer
Default value: OEM specified
SMBIOS: Baseboard (or Module) Information (Type 2) — Board Type
Description: Either 0xA (Motherboard (includes processor, memory, and I/O) or 0xB (Processor/Memory
Module), refer to Table 15 – Baseboard: Board Type for more details.

17. BoardLocationInChassis
Type: plist string
Default value: OEM specified
SMBIOS: Baseboard (or Module) Information (Type 2) — Location in Chassis
Description: Varies, may be empty or Part Component.

18. ChassisManufacturer
Type: plist string
Default value: OEM specified
SMBIOS: System Enclosure or Chassis (Type 3) — Manufacturer
Description: Board manufacturer. All rules of SystemManufacturer do apply.

19. ChassisType
Type: plist integer
Default value: OEM specified
SMBIOS: System Enclosure or Chassis (Type 3) — Type
Description: Chassis type, refer to Table 17 — System Enclosure or Chassis Types for more details.

25

https://github.com/acidanthera/macserial/blob/master/FORMAT.md

20. ChassisVersion
Type: plist string
Default value: OEM specified
SMBIOS: System Enclosure or Chassis (Type 3) — Version
Description: Should match BoardProduct.

21. ChassisSerialNumber
Type: plist string
Default value: OEM specified
SMBIOS: System Enclosure or Chassis (Type 3) — Version
Description: Should match SystemSerialNumber.

22. ChassisAssetTag
Type: plist string
Default value: OEM specified
SMBIOS: System Enclosure or Chassis (Type 3) — Asset Tag Number
Description: Chassis type name. Varies, could be empty or MacBook-Aluminum.

23. PlatformFeature
Type: plist integer
Default value: 0
SMBIOS: APPLE_SMBIOS_TABLE_TYPE133 - PlatformFeature
Description: Platform features bitmask. Refer to AppleFeatures.h for more details.

24. FirmwareFeatures
Type: plist integer, 64-bit
Default value: 0
SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeatures and ExtendedFirmwareFeatures
Description: 64-bit firmware features bitmask. Refer to AppleFeatures.h for more details. Lower 32 bits match
FirmwareFeatures. Upper 64 bits match ExtendedFirmwareFeatures.

25. FirmwareFeaturesMask
Type: plist integer, 64-bit
Default value: 0
SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask
Description: Supported bits of extended firmware features bitmask. Refer to AppleFeatures.h for more details.
Lower 32 bits match FirmwareFeaturesMask. Upper 64 bits match ExtendedFirmwareFeaturesMask.

26. ProcessorType
Type: plist integer, 16-bit
Default value: Automatic
SMBIOS: APPLE_SMBIOS_TABLE_TYPE131 - ProcessorType
Description: Combined of Processor Major and Minor types.

27. MemoryFormFactor
Type: plist integer, 8-bit
Default value: OEM specified
SMBIOS: Memory Device (Type 17) — Form Factor
Description: Memory form factor. On Macs it should be DIMM or SODIMM.

26

https://github.com/acidanthera/EfiPkg/blob/master/Include/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/EfiPkg/blob/master/Include/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/EfiPkg/blob/master/Include/IndustryStandard/AppleFeatures.h

10 UEFI

10.1 Introduction
UEFI (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load additional UEFI modules and/or apply tweaks for the
onboard firmware.

10.2 Properties
1. ConnectDrivers

Type: plist boolean
Default value: NO
Description: Perform UEFI controller connection after driver loading. This option is useful for loading filesystem
drivers, which usually follow UEFI driver model, and may not start by themselves. While effective, this option is
not necessary with e.g. APFS loader driver, and may slightly slowdown the boot.

2. Drivers
Type: plist array
Default value: None
Description: Load selected drivers from OC/Drivers directory.

Designed to be filled with string filenames meant to be loaded as UEFI drivers. Depending on the firmware a
different set of drivers may be required. Loading an incompatible driver may lead your system to unbootable
state or even cause permanent firmware damage. Some of the known drivers include:

FIXME: Write

3. Quirks
Type: plist dict
Default value: None
Description: Apply individual firmware quirks described in Quirks Properties section below.

10.3 Quirks Properties
1. DisableWatchDog

Type: plist boolean
Default value: NO
Description: Select firmwares may not succeed in quickly booting the operating system, which results in watch
dog timer aborting the process. This option turns off watch dog timer.

Note: This option is believed to be unnecessary on modern firmwares, yet may be safer to turn on as system
performance across the boots is not constant.

2. IgnoreInvalidFlexRatio
Type: plist boolean
Default value: NO
Description: Select firmwares, namely APTIO IV, may contain invalid values in MSR_FLEX_RATIO (0x194) MSR
register. These values may cause macOS boot failure on Intel platforms.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required.

3. ProvideConsoleGop
Type: plist boolean
Default value: NO
Description: macOS bootloader requires GOP (Graphics Output Protocol) to be present on console handle.
This option will install it if missing.

Note: Some drivers, like AptioMemoryFix, may provide equivalent functionality. These drivers are not guaranteed
to adhere to the same logic, and if a quirk is necessary, this option is preferred.

27

https://uefi.org/specifications

4. ReleaseUsbOwnership
Type: plist boolean
Default value: false
Description: Attempt to detach USB controller ownership from the firmware driver. While most firmwares
manage to properly do that, or at least have an option for, select firmwares do not. As a result, operating system
may freeze upon boot. Not recommended unless required.

28

11 Troubleshooting
Good luck.

29

	Introduction
	Known defects

	Generic Terms
	Overview
	Configuration Terms
	Configuration Processing
	Configuration Structure
	Directory Structure
	Contribution

	ACPI
	Introduction
	Properties
	Block Properties
	Patch Properties
	Quirks Properties

	DeviceProperties
	Introduction
	Properties
	Quirks Properties
	Common Properties

	Kernel
	Introduction
	Properties
	Add Properties
	Block Properties
	Patch Properties
	Quirks Properties

	Misc
	Introduction
	Properties
	Debug Properties

	NVRAM
	Introduction
	Properties
	Mandatory Variables
	Recommended Variables
	Other Variables

	PlatformInfo
	Properties
	Generic Properties
	DataHub Properties
	PlatformNVRAM Properties
	SMBIOS Properties

	UEFI
	Introduction
	Properties
	Quirks Properties

	Troubleshooting

